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Abstract

In this paper we introduce landmark-based pre-
shapes which allow mixing of anatomical land-
marks and pseudo-landmarks, constraining consecutive
pseudo-landmarks to satisfy planar equidistance rela-
tions. This defines naturally a structure of Rieman-
nian manifold on these preshapes, with a natural ac-
tion of the group of planar rotations. Orbits define the
shapes. We develop a Geodesic Generalized Procrustes
Analysis procedure for a sample set on such a preshape
spaces and use it to compute Principal Geodesic Anal-
ysis. We demonstrate it on an elementary synthetic
example as well on a dataset of manually annotated
vertebra shapes from X-ray. We re-landmark them con-
sistently and show that PGA captures the variability of
the dataset better than its linear counterpart, PCA.

1. Introduction

There is a wide literature on shape representation
and shape analysis in Computer Vision and Medical
Imaging as shape understanding is one of the most
fundamental task in Image Analysis. A 2-dimensional
shape is generally defined as an equivalence class of
smooth 1-dimensional submanifolds of R2 modulo sim-
ilarity [13]. Computational representations, ranging
from the simplest to the most sophisticated, have been
suggested in the past, e.g. point set distributions [9, 1],
linear point distribution models (PDM) [4], paramet-
ric representations via B-splines, levelset representa-
tions [16], and their adaptation, as for example, spe-
cific shape constraints, soft priors, etc..., for an ever
growing amount of tasks.

Manual annotations of anatomical structures in
medical images, such as X-rays, Ultra Sound, are rou-
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tinely performed by radiologists and other experts in
many clinical studies, resulting in the encoding of
shapes as point set distributions. Point set distri-
butions for shape representation and analysis are of
tremendous importance in Medical Imaging. Deriv-
ing such distributions presupposes consistent annota-
tions, which is not always the case: the following fig-
ure shows two annotated vertebra shapes from X-ray
images, during a clinical study on vertebra fractures,
the first vertebra is annotated with 31 points, the sec-
ond with 32. Moreover the number of points between
corner landmarks (the circular ones) do not match for
corresponding pairs. This is caused by the absence
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Figure 1. Two annotated vertebrae from a clinical study.
The number of annotation points differ.

of clear ground truth landmarks along the endplates of
the vertebrae. In order to tackle this somehow common
situation, a resampling is necessary; pseudo-landmarks
should be placed such that the resulting model is more
compact, no additional variation caused by points slid-
ing along the outline should be modelled. Some recent
approaches for curves and surfaces were proposed for
instance by Davies et al . [5] using minimum descrip-
tion length to solve this problem, while, for surfaces,
Cates et al . used an entropy based particle system ap-
proach in [3].

For curves, which are the objects of interest in
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this paper, a way to do it is to first impose a fixed
number of pseudo-landmarks between landmarks, reg-
ularly distributed along the outline between the land-
marks. This regularity often takes the form of an
equidistance constraint for pseudo-landmarks situated
between consecutive landmarks. This can be formu-
lated as setting the variance of the distribution of of
planar distances (or square-distances) between consec-
utive pseudo-landmarks to 0. In a figurative way, a seg-
ment between two consecutive landmarks is similar to
a segment of a bicycle chain, for the links that consti-
tute a bicycle chain have the same length! This has the
nice property of minimizing the variability due to the
annotation process. But once this resampling has been
performed, forgetting this variance constraint induces
apparent extra variability which may be difficult to
handle due to the non linearity of the constraint. This
is illustrated in Figure 2 where the Euclidean mean
of the upper and lower curves does not have equidis-
tant pseudo-landmarks introducing extra variability on
the horizontal placement of the pseudo-landmarks. We

Figure 2. Two 3-point curves and the Euclidean mean.

propose to handle this situation by introducing the con-
straint explicitly in the descriptions of our preshape
spaces. This null-variance can be reformulated as a
series of simple quadratic constraints on the pseudo-
landmarks and will, for shapes determined by n points
in Rd, define implicitly a submanifold of the point set
spaces (Rd)n. Endowed with the metric that comes
from the standard Euclidean structure of (Rd)n, it be-
comes a Riemannian manifold. In order to obtain point
distributions models, Generalized Procrustes Analysis
(GPA) [8] should be performed with the induced met-
ric, leading to what we will call Geodesic Generalized
Procrustes Analysis (GGPA), while Principal Compo-
nent Analysis should be replaced by Principal Geodesic
Analysis (PGA) [7] in order to take into account the
curved structure of the manifold. In the rest of this
paper, we will focus to point set configurations in R2.

This will simplify the presentation. Extension to 3D
curves can be carried out easily.

So as to be able to compute GGPA and PGA, we
need tools for computing Riemannian exponential map,
geodesics, and log map on implicitly defined submani-
folds. By extending computations of exponential map
to provide not only geodesic, but corresponding mov-
ing frames, we propose a shooting method for com-
puting Log maps. When it fails, we replace it by a
path straightening algorithm based on local properties
of geodesics.

This paper is organized as follows. In the next sec-
tion we introduce the preshape manifolds that we use
as well as the geometric tools needed for our statisti-
cal analysis: Geodesic Generalized Procrustes analy-
sis and Principal Geodesic Analysis. Exponential and
Log maps are discussed in Section 3. In Section 4 we
present experiments; the first one on the 3-points toy
example and the second on a data set of vertebra com-
ing from a clinical study on vertebra fractures. Finally
we conclude in Section 5.

2. Preshape manifolds

In point based models, a typical object consists of q
landmark points and nk, k = 1, ..., q − 1 (k = 1, ..., q,
for closed configurations) pseudo landmarks between
consecutive landmark points. A segment of this ob-
ject consists of nk + 2 points, nk pseudo-landmarks
Pi, i = 2, ..., nk + 1 between 2 landmark endpoints
P1, Pnk+2. The objects we consider consist of such con-
figurations with equal (squared) Euclidean distance be-
tween the neighboring points in each of the segments.
This characteristic distance will generally vary from
segment to segment and objects to objects, even when
the sequence of numbers (q, n1, . . . , nq−1) is fixed. We
start by describing constraints on segments.

2.1. n-Links Bicycle Chain Manifolds

Here onwards we work on one segment with nk =
n−2 pseudo-landmarks between 2 landmark endpoints.
Then the equidistant constraint can be written as a
simple quadratic constraint F : R2n → Rn−2 given as

Fi(P1, ..., Pn) = di+2,i+1 − di+1,i, i = 1, .., n− 2 (1)

where di,j = (xi − xj)2 + (yi − yj)2 is the squared
euclidean distance between points Pi and Pj , The
configuration space is the subspace of R2n given by
An = F−1(0)\∆, where ∆ is the “diagonal” ∆ =
(P, . . . , P ) ∈ (R2)n consisting of segments reduced to
a single point, for, while ∆ ⊂ F−1(0), the rank of F
breaks down exactly along ∆. This ensures that An is
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a submanifold of (R2)n = R2n [2] The tangent space of
An at a segment x is given by

TxAn = ker(JF (x))

the kernel (or null space) of the Jacobian of F at point
x ∈ An ⊂ R2n. By restricting the scalar product of R2n

to TxAn, An is endowed with a Riemannian Metric [2].
We may call An a n-links bicycle chain segment
manifold.

More general point configurations are then built by
concatenating these n-links bicycle chain segments, im-
posing endpoint matching which are linear constraints.
When the number q of landmarks points and the num-
bers nk, k = 1, . . . , q− of pseudo-landmarks points are
fixed, corresponding configurations form a Riemannian
submanifold of the product manifold

∏q
i=1Ank+2, and

this manifold has also the metric inherited from the
embedding space (R2)N with N = q +

∑q−1
k=1 nk.

Having a Riemannian metric, we can compute
length of paths in these manifolds, define geodesic and
geodesic distances [2].

2.2. Removing Translation and Scaling

In the following, we denote by M such a configu-
ration manifold. To work with preshapes in the sense
of [9], we need to quotient out translations and scal-
ing from points in M (although in some applications,
scale could be an important feature of the shape). Re-
moving translations is as usual easy. If M′ denotes
the submanifold of M of configurations with centroid
at the origin of R2 then M ' M′ × R2, by sending
a configuration S = (S1, . . . , Sn) to (S − S̄, S̄ where
S̄ = 1

n

∑n
i=1 Si is the centroid of S. This decomposes

M into two orthogonal factors, which imply that a
geodesic path in M between centered objects in M′
will be in fact a geodesic path in M′. From now on
we therefore assume that all our configurations have
centroid at 0 ∈ R2. Following [9], we remove scale by
imposing ‖S‖2 =

∑n
i=1 ‖Si‖2 = 1, i.e by intersecting

M′ with the unit sphere of the embedding space. This
defines a new submanifold S of M′, and S is our pre-
shape manifold.

2.3. Geodesic Generalized Procrustes Analysis

Given a sample set (Si)i=1...n ∈ S, our GPA follows
[9], but is performed on S. It attempts to compute a
set of planar rotations Rθ̄i

, i = 1, . . . , n and a preshape
µ̄ ∈ S minimizing the misalignment criterion

E(θ1, . . . , θn, µ) =
n∑
i=1

d(Rθi
Si, µ)2. (2)

where d is the geodesic distance in S. This will result
in an aligned preshape sample (S̄i := Rθ̄i

Si)i=1...n, µ̄
being the Fréchet mean ([10]) of this sample and the
distances d(S̄i, µ̄) should represent the true shape dis-
tances to this mean.

The minimization procedure for (2) is sketched in
Algorithm 1. We describe briefly the loop steps. A
first guess for the rotations is computed by standard
Euclidean rigid registration [8] providing candidate ro-
tation angles for each shape. Then we search for the
rotations angles that minimize the true geodesic dis-
tances in a neighborhood of the previously obtained
angles. The Fréchet mean is then computed by adapt-
ing the procedure described in [7] to our case. In Fig-
ure 3 the need for the minimization search after the
initial Euclidean registration is illustrated by showing
a base preshape, and rotation of a second preshape
with respect to Euclidean and submanifold distances.
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Figure 3. A base preshape and Euclidean and manifold reg-
istration.

Algorithm 1 Calculate the mean shape µ′ and the
aligned shapes S′′i
Require: Si ∈ S, i = 1, ...,m
µ′ = S1 {initial guess}
repeat

Set µ = µ′. S′i = Si shapes aligned to µ using
Euclidean distances.
S′′i = S′i shapes aligned to µ using geodesic dis-
tances.
µ′ = Fréchet mean of (S′′i )

until d(µ, µ′) < Threshold.
Output: Mean µ′, aligned shapes S′′i .
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2.4. Principle Geodesic Analysis (PGA)

PGA is a generalization of Principal Component
Analysis (PCA) to nonlinear manifolds [7]. We seek
to compute a minimum number of tangent vectors at
the mean, which generate geodesics that represent as
much variability in the data on the manifold as pos-
sible. Thus PGA is PCA done on the tangent space
of the mean. Unfolding the manifold to this tangent
space is performed by the Riemannian Log map. The
algorithm can be summarized as:

• Given m preshapes in S and the mean preshape µ,
compute vi = Logµ(Si), i = 1, ...,m, the tangent
vectors for each preshape in the tangent space at
the mean.

• Compute the covariance matrix C = 1
m

∑m
i=1 viv

T
i

• Compute the eigenvectors and eigenvalues (ei, λi)
of C.

The geodesic paths corresponding to the tangent vec-
tors ei ∈ TµS are the principle geodesic components.

Computing the Fréchet mean and PGA use Expo-
nential map, Log map and geodesics on implicitly de-
fined Riemannian manifolds. They are described in the
next section

3. Geodesics on the manifold; the Exp-
and Log-map

Geodesics are fundamental to the theory of Rieman-
nian manifolds ([2]). They are closely related to the
Exponential map Exp : TM → M in the sense that
a geodesic γ trough the point p with initial velocity
vector v is given by the curve

γ(t) = Expptv .

The map Expp is invertible in a sufficiently small neigh-
borhood of 0 in TpM . When U is such a neighborhood
we denote by Logp : Expp(U)→ U the inverse of Expp.

The distance between two elements of the manifold
is given by

dM (p, q) = inf
{
l(c)
∣∣c is a curve joining p and q

}
.

Here l(c) denotes the length of the curve c. Since
geodesics are critical points of the length functional,
it is in the case of a complete manifold M sufficient
to consider geodesics when computing the distance.
Therefore, if p and q are sufficiently close so that only
one geodesic joins them,

dM (p, q) = ‖Logpq‖ . (3)

In general we cannot be sure that a given geodesic join-
ing p and q is length minimizing. In such cases, we de-
fine Logpq to be the initial direction of some geodesic
joining p and q and use (3) as a guess on the distance.

Computing Expp amounts to solving an initial value
ODE problem. This can be done neatly numerically,
confer [6]. Computing Logpq is substantially harder.
We make use of a shooting method ([12], [14]) for com-
putation of Logp for input values close to p, and a path-
straightening method for non-local input.

3.1. Shooting method

A shooting method iteratively improves an initial
guess by repeatedly computing a residue or error cor-
rection, and updates the initial guess using that. Based
on the fact that Logp is the inverse of Expp, our basic
algorithm is presented in Algorithm 2. The ability to

Algorithm 2 Calculate v = Logpq on S by shooting
Require: p, q ∈ S
v ⇐ projection of q − p to TpS {initial guess}
repeat
q̃ ⇐ Exppv {shot based on guess}
r̃ ⇐ projection of q − q̃ to Tq̃S {residue at q̃}
r ⇐ par. transport of r̃ to TpS {residue at p}
v ⇐ v + r {update v}

until ‖q̃ − q‖R2n is sufficiently small.

compute length and direction in Euclidean space and
the implicit representation of S as a submanifold of
Euclidean space enables us to compute both the initial
guess, update v, and compute the Euclidean error of
our guess. When q is close to p these estimates work
well and improve the situation in [14] where the embed-
ding space approximations are not at hand and e.g. the
update of v therefore is based on numerical estimates
of the gradient of a cost functional.

We use the projection of the vector q − p in em-
bedding Euclidean space to the tangent space TpS
as our initial guess. In each iteration we compute
Exppv and express the error by the Euclidean distance
‖q−Exppv‖. We update v by projecting the Euclidean
residue q−Exppv onto the tangent space TExppvS, par-
allel transport the resulting vector to TpS and add it to
v; this procedure is the natural manifold generalization
of error correction in Euclidean space.

The parallel transport is computed using a paral-
lel frame along the curve t 7→ Expptv. We compute
the parallel frame by using the fact that parallel vec-
tor fields have zero intrinsic acceleration, introduce a
Lagrange multiplier, and solve the resulting ODE. The
computation of the frame can be nicely coupled with
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the computation of Exppv when using the method of
[6].

The shooting method relies completely on the qual-
ity of the initial guess and updating residues. Both are
determined by how well the projections on the tangent
spaces approximate the paths on the manifold, or, in
other words, how close to linear the manifold is; in an
Euclidean manifold the shooting method converges in
one iteration whether as it on a torus might not con-
verge at all. It will though always converge locally due
to the smoothness of our manifold.

An additional drawback of the shooting method is
its sensitivity to numerical errors in the computation of
Expp. This can especially be a problem if the curvature
around the target element q is large, confer [11].

3.2. Path straightening

When the shooting method fails to converge due
to large curvature of the manifold, we apply the path
straightening method of [15]; we update an initial curve
by repeatedly shooting between pairs of points on the
initial curve close to each other. The closeness assures
the convergence of the shooting method. In each it-
eration the curve is a piecewise geodesic and by re-
peatedly changing the points between which we shoot,
the non-smooth bends of the curve are removed. Since
geodesics are critical points of the length functional, we
stop the process when we get no signification reduction
of length on each iteration.

Path straightening requires an initial path. In prac-
tice we get this path by shooting until we detect non-
convergence of the shooting method. We then restart
the shooting method with the best guess from the pre-
vious run as our new starting point. In practice we
always obtain convergence of the shooting method in
the second run. Now concatenating the geodesics ob-
tained from the two runs gives a piecewise geodesic
connecting the points which can serve as input to the
path straightening algorithm. In case this method fails,
we explicitly make an initial path.

As noted in [15] we may need to extract a subse-
quence in order for the path straightening algorithm to
convergence to a geodesic. In practice we do not ex-
perience such situations, and we accept the possibility
of this happening in the same way as we accept that
geodesics might not be length minimizing.

4. Experiments

We present two examples illustrating the effect of
our manifold setting. We start by discussing the di-
mensionality reduction gained in a small 3-point exam-
ple and then progress to study a dataset of vertebrae

shapes.

4.1. Illustrative example

In Figure 4 we see three 3-point preshapes with
equidistant points. They are all normalized and hence
reside on the manifold S. The middle preshape is the
Fréchet mean of the upper and lower preshapes, and
hence the mean of all three preshapes.

Figure 4. Three 3-point preshapes on the manifold.

The manifold S has two dimensions. Doing a Princi-
pal Geodesic Analysis on the set of the three preshapes,
we get one mode of variation. The geodesic corre-
sponding to this mode connects the three preshapes
as illustrated in Figure 5. Note that in the figure the
preshapes have been placed in the plot as to have zero
mean.

Figure 5. The geodesic corresponding to the only mode of
variation obtained from PGA.

Now suppose we disregard our manifold notion and
attempt to do Euclidean Principal Component Analy-
sis in the embedding Euclidean space. The Euclidean
mean of the three preshapes will again be a straight
line, but in this situation the points on the mean will
not be equally spaced and hence the mean will not be
in S. When computing the PCA we get two modes
of variation; one mode representing vertical motion as
illustrated in Figure 6, and one mode representing hor-
izontal motion. The latter mode arises from the place-
ment of the points on the straight line mean and is
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thus irrelevant. Therefore, in this example the PCA
captures only 97.5 percent of the variation in a mode
giving relevant information. This contrasts that PGA
captures all variation.

Figure 6. One of two modes of variation for PCA.

4.2. Vertebra shapes

Our dataset of vertebrae consists of 304 manually
annotated vertebra shapes on lateral X-rays. For each
vertebra, outlines have been manually drawn by choos-
ing points along the contours, assuming a simple linear
interpolation between them. Corner points of the ver-
tebra endplates are indicated but do not always match
the outlines perfectly. New corner points have been de-
fined as the points of the contour that are closest to the
manually annotated corners. This divides the outline
into 3 segments, the upper, left and lower ones. For
resampling, we fixed the number of pseudo-landmarks
per segment to 16, leading to 52 points per shape. The
pseudo-landmarks positions were computed segment-
wise so as to minimize a squared-distance between the
original outline and the new one. Given an n-tuple
P = (P1, . . . , Pn) of equidistant-spaced points, with P1

and Pn being the fixed corner points of this segment,
let CP(t) be the piecewise linear curve joining them,
and C0(t) the piecewise linear curve formed by join-
ing the original annotated points for the corresponding
segment. We minimize the squared-distance

E(P) =
∫

(CP − Co)2 dt.

We start with a configuration P on the straigth line seg-
ment joining P1 to Pn and perform gradient descent on
the corresponding preshape manifold S using the ex-
ponential map. The result of applying the redistancing
procedure to the manually annotated vertebra in Fig-
ure 7 is shown in Figure 8.

In our illustrative example it is clear that we in-
troduce non-linearity when restricting to the manifold.
In order to illustrate that we have significant curva-
ture also in the relatively high dimensional manifold

Figure 7. Manually annotated vertebra.

Figure 8. Result of applying redistancing procedure.

used for the vertebrae, we compute the Fréchet mean
vertebra and measure an approximate distance from
each vertebra to the tangent space of the mean; we
let vm denote the mean and for each vertebra v we
compute w = Logvm

v. We then let x be the distance
‖v − (vm + w)‖ between the vertebra and an approxi-
mated projection to Tvm

S, and record the relative dis-
tance x/‖w‖. A non-curved manifold would result in
zero relative distance. We see a mean relative distance
of 12 percent clearly indicating that the manifold is
curved. Performing the same computation on the non-
normalized manifoldM′ gives a mean relative distance
of 9 percent indicating that not all curvature arises
from the normalization to the unit sphere.

Figure 9 illustrates how PGA provides a more com-
pact description than PCA. The figure shows the nor-
malized sum of the first n eigenvalues as a function of
n. It can be seen that in order to capture say 99.5
percent of the variation, we will need 25 eigenvectors
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when doing PCA as opposed to only 20 eigenvectors
when doing PGA.
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Figure 9. Accumulated spectrum of PGA and PCA.

5. Conclusion

In this paper we have introduced manifolds of pre-
shapes built by constraining distributions of pseudo-
landmarks between pairs of consecutive landmarks.
This endows these preshape manifolds with a structure
of Riemannian manifolds. We have developed tools for
computing Exponential maps, Log maps, geodesic dis-
tances, allowing us to define a Geodesic GPA and adapt
PGA to that situation. We have shown on examples
that PGA captures variability better that PCA.

Although we have built our models for planar point
configurations, they are clearly not restricted to this
case. Other types of length and position constraints
can also be used. We are also not restricted to shape
manifolds. The techniques presented in this work can
be used to perform statistics on other submanifolds of
a linear configuration space implicitly defined by a set
of smooth constraints. This is the subject of ongoing
work.
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