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Abstract

Echocardiography is often used to diagnose cardiac dis-
eases related to regional and valvular motion abnormali-
ties. Due to the low resolution of the imaging modality,
the choice of viewpoint and mode, and the experience of
the sonographers, there is a large variance in the estima-
tion of important diagnostic measurements such as ejection
fraction. In this paper, we develop an automatic algorithm
to estimate diagnostic measurements from raw echocardio-
gram video sequences. Specifically, we locate and track the
left ventricular region over a heart cycle using active shape
models. We also present efficient ventricular localization
in video sequences by automatically detecting and propa-
gating echocardiographer annotations. Results on a large
database of cardiac echo videos demonstrate the use of our
method for the prediction of left ventricular dysfunction.

1. Introduction

Echocardiography is often used to diagnose cardiac dis-
eases related to regional and valvular motion abnormal-
ities. It provides images of cardiac structures and their
movements from which echocardiographers extract impor-
tant measurements to estimate heart performance such as
ejection fraction and ventricular volume at specific points
in the heart cycle.

However, due to the low resolution of the imaging
modality, the choice of viewpoint and mode, and the sub-
jective judgment of sonographers, many of these measure-
ments lack precision in diagnosis. Table 1 illustrates this
lack of precision through sample ejection fraction (EF) esti-
mates computed from various sources for a few patients.
Ejection fraction measures the ratio of stroke volume to
the end-diastolic ventricular volume [7]. In Table 1, the
columns indicate ejection fraction measurement made in
four-chamber view, two-chamber view, M-mode, and the
bi-plane method of disks[7]. The corrected measurement

recorded by the cardiologist in the actual echocardiogram
report is shown in the sixth column. Thus we can see con-
siderable variation in the manual estimates of this measure-
ment.

Such variance can lead to diagnosis errors as physicians
continue to make judgments based on evidence from a sin-
gle patient’s data. The goal of our research has been to mine
large pre-diagnosed patient exam data collections to capture
the statistical correlation between the diagnosis and the vari-
ance in measurements, for more informed decision support.
To enable such mining for cardiac echo video datasets, it
should be possible to automatically derive various diagnos-
tic measurements from raw video sequences. This can be a
challenging problem, requiring segmentation of the video
into different imaging modes (M-mode, Doppler, video
cineloops, etc), the recognition of echocardiogaphic view-
points (four-chamber views versus two-chamber views, for
example), and the isolation of cardiac regions within each
viewpoint (see Figure 1, left). While echocardiographic
viewpoint recognition has been addressed lately by sev-
eral researchers[13, 3], completely automatic isolation of
cardiac regions and measurement of diagnostic parameters
from such regions, is still not well-explored.

In this paper we address the automatic estimation of
diagnostic measurements such as ejection fraction from
raw echocardiograms. Specifically, we process a raw
echochardiogram video sequence to find the relevant views
depicting the left ventricular region. We then track the
changes in appearance of the ventricular region through
the heart cycle using active shape models (ASMs). Ac-
tive shape models are nonrigid shape models that can cap-
ture shape and textural information within a region. As de-
scribed in [3], they are generated from training across a
large collection of sample region appearances under var-
ious disease conditions. Due to the flexibility offered in
these models, they can cause false positives and confusion
with other heart chambers. To reduce the false positives
as well as to avoid the computational expense of localiz-
ing the shape models within each echo video frame, we
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Table 1. Illustration of variance in ejection fraction estimates by manual measurement.
S.No. Apical 4-Chamber Apical 2-Chamber Biplane Method-of-disk M-mode Report Corrected Auto-estimated

1. 59.1 60.9 59.9 67.3 55-60 57.098
2. 64.7 66.9 65.7 75.2 60-65 61.088
3. 82.4 86.4 84.6 61.2 60-65 65.377
4. 47 57.3 53.1 54.8 45-50 53.6
5. 47.8 52.4 48.7 36.9 40-45 49.848
6. 46.4 60.6 51.8 55.2 50-55 62.423
7. 63.2 64.2 61.4 46.7 60-65 64.934

restrict the analysis to those clips/sequences that are adja-
cent to a manually annotated frame. These annotations typ-
ically outline a heart region and make measurements within
these regions as shown in Figure 3a. We automatically ex-
tract such regions, and derive templates for detecting can-
didate left ventricular regions within adjacent video clips
using correlation. Active shape models are then applied to
accurately localize the ventricle and to track it over a heart
cycle. This allows us to estimate not only conventional mea-
surements such as ejection fraction, but also new diagnos-
tic measurements that show the variation of ventricular vol-
ume continuously through the heart cycle. We show that our
method computes ejection fraction estimates that are within
the range of estimates produced by manual measurement.

The rest of the paper describes our method in detail. In
Section 2, we review relevant literature pertaining to the au-
tomatic computation of diagnostic measurements. In Sec-
tion 3.1, we describe active shape models for modeling and
tracking ventricular regions. In Section 3.2, we describe
left ventricle (LV) localization using annotations. In Sec-
tion 3.3, we discuss the measurement of ejection fraction
within the regions modeled by ASMs. In Section 4, we
present results of comparison of LV assessments produced
by our method with those collected by echocardiographers
on a large collection of cardiac echo videos.

2. Related Work

The automatic estimation of diagnostic measurements
such as ejection fraction has been attempted by a num-
ber of researchers [2, 14]. Some of this work has been
done using cardiac MRI or SPECT (as against echocardio-
grams) [9, 15, 16, 19]. Different algorithms for EF esti-
mation have been compared as well [11]. The visual es-
timation of EF was studied across various echocardiogra-
phers in [1]. State-of-the-art algorithms can now be found
in echo machines to automatically localize the left ventricle
and estimate the ejection fraction [4, 12, 18]. For example,
in [4], an LV region was localized using template matching
with a large collection of previously acquired templates. A
shape model for the region and its contour was then cre-
ated using a database of normal and abnormal LV shapes
as a guide [8]. In [10], a semi-automatic segmentation al-

gorithm was proposed to outline the endocardium in apical
views of echocardiograms. More recently, an active contour
based approach was used to segment the LV region in [17].

Our work differs from those in the literature in several re-
spects. Prior work attempts to estimate diagnostic measures
within echo frames where the viewpoint is already known.
Our work, on the other hand, does not assume that the view-
point is known and works with an unannotated video se-
quence. Secondly, we use a more flexible model of shape,
appearance and texture derived through feature correspon-
dence between candidate training region samples, to build
a model for the LV region. This is unlike other approaches
that are based on affine deformations of regions from stan-
dard stored templates.

3. System for estimating LV dysfunction
Our overall approach to automatic assessment of LV dys-

function is summarized in Figure 1. The input to our sys-
tem is the complete set of videos and still images in an echo
study. The raw sequence depicts various imaging modes
such as CW Doppler, M-mode, as well as different view-
points such as A4C views and A2C views. From this raw
sequence, we first try to detect sonographer annotations of
the left ventricle. If present, we leverage the annotation to
find nearby LV cine loops in the raw sequence and to ini-
tialize an ASM fit in these cine loops (upper pipeline in
Figure 1). If sonographer annotations are not present, then
we use the approach described in [3] to segment the modes
and to recognize the A4C views. An LV detector initializes
ASM fits in A4C cine loops in this case (lower pipeline in
Figure 1). Finally, once the LV ASM models are fit, impor-
tant diagnostic measurements are extracted as explained in
Section 3.3.

3.1. Modeling LV region using shape models

To extract the left ventricular region and to track its
changes within the heart cycle, we model the LV region us-
ing an active shape model. Our approach to using active
shape models (ASMs) for locating and tracking the LV re-
gion is similar to the one used earlier for recognizing view-
points in echo videos[3]. ASMs are an appearance-based
modeling approach that are particularly adept at handling
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Figure 1. Flowchart of our system for evaluating LV dysfunction.

nonrigid classes of objects [6]. ASMs divide the appear-
ance of an object class into a shape vector s and texture
vector t. Shape s is a concatenation of the (x, y) coordi-
nates of n feature points, and, texture t is a concatenation
of pixel values from patches centered on each of the feature
points. The mean shape and texture vectors obtained using
principle component analysis (PCA) are used to form the
active shape model as:

s = S a + s S =

 | | |
es1 es2 . . . esp
| | |


t = T b + t T =

 | | |
et1 et2 . . . etq
| | |

 (1)

where p eigenshapes es1, e
s
2, . . . , e

s
p and q eigentextures

et1, e
t
2, . . . , e

t
q are retained in the PCA. The p-dimensional

vector a and the q-dimensional vector b are the low dimen-
sional representations of shape and texture (from [3]).

To model the LV region using active shape models, we
collected a number of training images covering different pa-
tients, diseases, and time offset within the cycle for a known
viewpoint (in our case, A4C views). The LV region was
then represented by the shape and texture information for
a set of feature points in the LV outer walls and LV en-
docardium. While the feature points are manually isolated
during training stage, they are automatically identified dur-
ing matching.

Assuming a candidate LV region can be isolated in an
echo video frame, fitting an ASM model to that region in-
volves finding a similarity transform Γsim and vectors a and
b that align well with the content in the region. Using an

analysis-by-synthesis approach, we alternately update the
shape and texture models as described in [3]. Once fitting
has converged (see Fig. 2(b) for an example), the fit is eval-
uated using

fit(a,b,Γsim) = aTΣ−1
shpa + bTΣ−1

texb + 2R2/λq+1
tex , (2)

where R = ‖t − TTT t‖, t = I(Γsim(x, y)), λq+1
tex is the

(q+1)th texture eigenvalue, and Σshp and Σtex are diagonal
matrices with PCA eigenvalues (see [3, 5]).

In the absence of any annotations to guide the selec-
tion of the LV region, we first apply an LV detector. We
use a “distance-to-eigenspace” approach based on a set of
training examples with annotated LV shapes. In an offline
training step, the mean LV shape is computed and all the
examples warped to a “shape free” representation at mean
shape. PCA is applied to this normalized set, and the eigen-
images with larger eigenvalues retained. At run-time, the
LV detector first tests different translations for the eigen-
image model, sliding a window over different (x, y) off-
sets and computing the distance from the input window to
the eigenspace. Offsets with a distance below a threshold
are further examined, but generalizing the transform from
translation to a full similarity transform. At a hypothesized
window seeded by the initial distance-to-eigenspace, we it-
erate between PCA projection, reconstruction, and similar-
ity transform update using motion templates. This gener-
ates a set of LV detection boxes as shown in Fig. 2(a). ASM
fitting is used to track the LV for each hypothesis through
the cardiac cycle, and the ASM track with best fit (eqn 2)
averaged over the cycle is chosen as the A4C track for the
clip. To process an entire echo study, we are presented with
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a) LV detector b) ASM model fit

Figure 2. (a) LV detection results and (b) ASM fitting results.

a number of clips, most of which are not A4C. LV detec-
tion and A4C tracking are applied to all non-Doppler video
clips that are not zoomed in (e.g. zoomed in on a valve).
The clip with the best A4C fit is taken as the most repre-
sentative A4C view and subsequently used for computing
ventricular volume and EF.

3.2. Processing echocardiographer annotations

During an echo study, a sonographer often annotates re-
gions (left ventricle, right atrium, etc) in an A4C or A2C
viewpoint “still image” as part of using the method-of-disks
technique for estimating the regional volume. An example
is shown in Figure 3(a) where the LV region is marked by
the major axis and is divided into orthogonal parallel lines
for measuring the ventricular volume. This annotation is
captured in the resulting echo video sequence for the patient
as a still image intermixed with the cine loops. We now de-
scribe the automatic isolation of such regions to serve as a
prior for faster localization of LV regions for ASM fitting
within A4C cine loops.

The first temptation is to search for the straight lines,
using edge detection and Hough transform. However, the
noise in echo images, the very thin, short lines and high
intensity echo regions in the background degrade the ro-
bustness of both edge detection and Hough transform. To
achieve a robust detection, a different approach is needed.

Our approach is composed of a number of steps, as il-
lustrated in Figs. 3-8. First, pixels along thin lines are de-
tected using image processing in local neighborhoods (Fig-
ure 3(b)). Next we use mathematical morphology to remove
most false positives, grow regions, and detect the annotated
region, as shown in Figure 3(c). The region mask is then
used for robust and accurate lines detection (Figure 3(d)),
and OCR of image text is used to label the detected heart
chamber (LV vs. LA vs. RA, see Figure 6). Finally, a tem-
plate from a “cleaned” LV detection is used to locate the LV
in nearby A4C cine loops (Figure 7) and initialize an ASM
fit (Figure 8).

(a) (b)

(c) (d)

Figure 3. a) Original image, showing annotated LV at end of di-
astolic period, b) difference image, Il, c) detected region, and, d)
detected region and lines, superimposed on the original image.

3.2.1 Detecting thin line components

To isolate the annotated region, we use morphology oper-
ations to detect local pieces of thin bright lines and fill-in
the intervening regions. For this, we observe that the lines
in the annotated region are single-pixel wide, and brighter
than their background. To extract these lines, we first form
a background image by applying a median filter. Let I , Im
denote the original frame and the 5x5 Median filter of it,
respectively. The background image, Ib, denotes the frame
where all the locally bright thin features are removed.

Ib(i, j) =

 Im(i, j) I(i, j) > Tb and
I(i, j)− Im(i, j) > Tc

I(i, j) otherwise
(3)

where Tb and Tc are brightness and contrast thresholds. Val-
ues of Tb = 180 and Tc = 30 were found to be sufficient to
separate the true line pixels from the background.

The foreground image If , or complement of Ib, is found
by thresholding the difference of Ib and the original image:
If (i, j) = 1 if I(i, j) − Ib(i, j) > Tc, and, otherwise,
If (i, j) = 0. This captures thin lines and any other thin
and bright features in the image.

Next we will use morphology operations to isolate thin
lines in the foreground image. Let 	,⊕, •, ◦, \ and ⊗ de-
note image erosion, dilation, opening, closing, set subtrac-
tion and xor operations, respectively. Lines with orientation
lower than 30◦ (or above 60◦) are detected as regions con-
taining horizontal (vertical) elements but no vertical (hori-
zontal) ones, that is I1 = (If ◦Sa)⊗(If ◦Sb) where Sa and
Sb are 2× 2 pixel structuring elements, shown in Figure 4.
Similarly, thin lines with slope of roughly 30− 60◦ (nearly
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Figure 4. Structuring elements, used for thin-lines detection.

diagonal) are detected as regions containing diagonal ele-
ments of one diagonal direction and excluding elements of
the other diagonal direction: I2 = (If ◦ Sc) ⊗ (If ◦ Sd).
Finally, Il = I1 + I2 includes thin lines of any orienta-
tion, as shown in Figure 3(b). Note that any non-thin re-
gions are filtered out through this process, as they are not
significantly affected (eroded) by opening with any of the
four small structuring elements, Sa, Sb, Sc and Sd. This
method of detecting the lines is more robust than using a
conventional edge detector or the Hough transform due to
their short length and small thickness.

Next, to thicken the lines and connect them into a single
region we apply a few dilation and close operations. Other
image structures, such as text, may also form into regions.
We compute connected components and select the largest
component as the annotated region of interest Mroi. The
region of interest (ROI) mask image so detected for the still
frame of Figure 3(a) is shown in Figure 3(c).

The eigenvectors of the annotated region could be used
to denote its orientation. However, due to the irregular
shape of the left ventricle in diseased cases, it is preferable
to rely on the orientation indicated by the echocardiogra-
pher. We now describe a robust method to estimate this
orientation.

3.2.2 Region-based normalized Hough transform

For the orientation estimation, we restrict the analysis to
the annotated region as Ifroi = If · Mroi, where · is a
pixel-wise multiplication. A standard Hough transform,
H(θ, ρ) = Hough(Ifroi) may detect some of the lines.
However, when the region is very narrow the lines are short,
and the corresponding peaks in Hough space are too low to
be reliably detected, leading to many misses and false pos-
itives. To achieve a more robust line-detection within the
region of interest, we define the region-based normalized
Hough transform, as

Ĥ(θ, ρ) = H(θ, ρ)/(Href (θ, ρ) +Hc) (4)

The term Href is a reference Hough transform, of the
mask itself. That is, Href (θ, ρ) = Hough(Mroi), where
each pixel in the mask area is counted as an edge pixel for
the Hough transform. Hence each cell in Href (θ, ρ) con-
tains the number of pixels (or length) expected in a cor-
responding line of the masked image. The region-based
normalized Hough transform is thus a ratio between two

Figure 5. Region-based normalized Hough transform, marked with
a line at θg and a circle around the point corresponding to the major
axis.

Hough transforms, Ĥ(θ, ρ) = H(θ, ρ)/(Href (θ, ρ) + Hc)
where Hc = 10 is a smoothing factor, to eliminate false de-
tection of very short ”lines” (a few pixels long), where the
mask is narrow. By definition, for any ρ and θ, the region-
based normalized transform is bounded 0 ≤ Ĥ(θ, ρ) ≤
L/(L + Hc) ≤ 1.0, where L is the total line length un-
der the mask M . It approaches 1.0 for ideal lines of long
lengths. We refer to it as a normalization in Hough space
- a useful property as our lines of interest greatly vary in
length, according to the shape of the region.

3.2.3 Extracting line parameters

A structure made of a group of parallel lines has a special
appearance in Hough space. It shows as a set of peaks, shar-
ing the same θi = θg where θg denotes the group slope,
and having different ρi values. The line detection is made
very robust by simultaneously detecting the parallel struc-
ture. Let S(θ) =

∑
ρ (C(θ, ρ) where C(θ, ρ) = 1 if and

only if Ĥ(θ, ρ) > TH , where TH = 0.45 is the single-line
detection threshold. We first find θg = arg maxθ{S(θ)}.
We then look at the two adjacent θ-s, to compensate for
quantization errors, and detect the lines one by one by find-
ing the peaks for rhoi.

Lastly, we detect the major axis as orthogonal to the par-
allel lines. We limit the search for it in the Hough space to
θ ± π/2. This is illustrated in Figure 5. The detected lines
are shown in Figure 3(d).

3.2.4 Identifying the annotated chambers

Since the echocardiographers annotate other regions beside
the left ventricle, the identity of the isolated region needs
to be established. Fortunately, the identity can be inferred
from the measurements which are included in the captured
sequence. A popup box, usually in the lower right corner of
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Figure 6. Popup text on annotated frames describes chamber (LV,
RV, RA), position in cycle (diastolic, systolic), and, indirectly,
viewpoint (A4C, A2C).

the image, displays summary information about the cham-
ber region, including its area, volume, and major axis as
shown in Fig. 6. To extract and recognize the text in such
regions, we use an optical character recognition (OCR) en-
gine (Tesseract). From the recognized text, we can infer the
name of the chamber (LV, LA, RA) as well as the position
within the cycle (diastolic, systolic), which will be useful in
locating the LV region in adjacent clips as described next.

3.2.5 Propagation of annotations for LV localization

A typical echo study sequence consists of hundreds of cine
loops intermixed with still frames depicting annotated re-
gions. In most practical cases, it is sufficient to attempt LV
localization within a neighborhood [i−10, i+ 10] of an an-
notated still frame i (see Fig. 7). To isolate candidate frames
for locating the LV region in these sequences, we use the
background image of Equation 3 as a template. By moving
the template over the frames of the neighboring cineloops,
we try to find the best similarity transform-based alignment
of the template with the candidate region. The video frames
where the normalized correlation coefficient of the template
is over a threshold, are retained as candidate frames to lo-
calize the LV region. Figure 7 illustrates the registration of
annotated images with frames of neighboring clips.

The registration step has set up a similarity transform
between clips i and j based on image-image matching of
grey levels. We now use the same transform to map the
annotation mask in Fig. 8(b) to (d), effectively transferring
the annotation to the video clip. Next, the boundary of the
transferred mask (d) is computed, as this corresponds to the
boundary of the endocardium with the blood pool. Once the
mitral valve attachment points are estimated (blue/red dots
in (d)), we bring the endocardial boundary into correspon-
dence with the same features in the ASM model. The ASM
model can be initialized from these correspondences, pro-
ducing initial estimates for a normalizing similarity trans-
form and nonrigid shape (Fig. 8(e)). The final result of
ASM fitting (see section 3.1) is shown in Fig. 8(f).

annotated

graphics removed

clipi clipi-10

clipi+10

video clips

similarity
transforms

low
correlation

Figure 7. To transfer the view label and map image of an annota-
tion, we register a clean template of the chamber against nearby
video clips using image-image registration techniques.

a) annotated clipi b) annotated clip: mask

d) transferred maskc) matched video clipj

e) initial ASM fit f) final ASM fit

similarity
transform

Figure 8. Using the annotation in clipi to initialize an ASM fit in
clipj . Please refer to the main text for details.

3.3. Automatic assessment of LV function

LV function is a measure of the pumping ability of the
heart. To estimate the volume of blood being pumped on
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each heart cycle, sonographers look at the boundary be-
tween the blood pool, which appears dark in the echo im-
age, and the endocardium, the inner boundary of the cardiac
muscle. While in 2D echo, this chamber region is just an
area, there are established techniques, notably the method
of disks, for estimating the 3D volume of the chamber[7].
In 2D echo, it is common to measure volume at two points
in the cardiac cycle: end diastole (max volume) and end
systole (min volume). EF, or ejection fraction, looks at the
fraction of the volume that is pumped out on every cycle

EF =
EDV − ESV

EDV

where EDV is end diastolic volume and ESV is end systolic
volume. The normal range for EF is in the 65-100% range,
while an EF below 30% indicates severe LV dysfunction.

With the automatic isolation of annotated regions, it
could be argued that there is sufficient information to au-
tomatically compute the ejection fraction. However, doing
so will again have consistency problems as indicated earlier
in Table 1. Further, continuous estimation of chamber vol-
ume within the heart cycle would not be possible. Since our
ASM model uses features derived from the endocardium
and the outer wall boundary of the LV, we can now auto-
matically apply the method of disks to the region enclosed
by the inner ASM contour. As shown in Fig. 9, the major
axis of the region is first connected from the apex of the
heart to the midpoint of the segment connecting the mitral
valve wall attachments. Then the LV chamber is divided
into 20 disk segments, with each segment perpendicular to
the major axis, and the estimation in 3D done by sweep-
ing out each disk as a surface of revolution. The estimated
volume is

LV Volume =
π

4

20∑
i=1

d2
i ×

L

20

where di is the diameter of the ith disk, and L is the length
of the major axis. For the disk diameters and L, we can
map from pixels to cm using an automated procedure for
finding the calibration markers on the side of the echo sec-
tors. Fig. 9(top) shows the major axis and disks generated
from an ASM LV track, and the figure bottom shows a vol-
umetric trajectory within the heart cycle by instantaneous
estimation of chamber volume. The computed EF from this
ASM LV track is 59%, compared to a physician report range
of 65-70%, which is within 6% of the physician range.

4. Results
We now report on the results of automatic computation

of ejection fraction from whole echocardiogram sequences.
A large database of 1771 cardiac echo video studies were
collected from 1178 cardiac patients from a large hospital

LV Volume
(ml)

frame

Method of disks: diastolic Method of disks: systolic

Volumetric Trajectory

Figure 9. (top) Method of disks applied on an automatic A4C LV
track for end diastolic and end systolic frames, and (bottom) a
complete volumetric trajectory.

network in our area. Each echo study on the average, had
between 50-100 clips depicting multiple viewpoints. Each
clip was 30-60 video frames long giving rise to over 5 mil-
lion image frames.

4.1. Annotation region detection accuracy

We first evaluated the accuracy of automatic extraction
of annotation regions from the videos. Our annotation algo-
rithm was found to be very robust and failed on detecting the
region in only 0.1% of the dataset. Almost all these cases
occurred when the textual measurements were directly over-
laid on the annotated regions, occluding the parallel-line
groups and interfering with the morphological operations.

4.2. Improvement of performance using annotation

Next, we compared the search performance during ASM
model fitting with and without the propagation of annota-
tions. The generation of ASM fit candidates using ASM
models for A4C views on the entire data set of 5 mil-
lion frames took a week of processing. In comparison,
using the annotated regions, the corresponding processing
time was only a few hours. In addition, using the location
prior supplied, automatically computed EF estimates agreed
with physician-corrected estimates in reports in 9.4% more
cases. The EF estimates computed for a subset of patients
of Table 1 are shown in the last column of this table. As
can be seen, the estimates produced are within the range of
manual estimates.
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4.3. Estimation of LV dysfunction

Finally, we tested the performance of prediction of LV
dysfunction using our automatic estimation method based
on ASMs in comparison to the manually determined val-
ues. Specifically, the LV dysfunction was divided into three
ranges, namely, normal-mild, moderate and severe corre-
sponding to the ejection fraction ranges of (L1, U1) =
(0, 0.3), (L2, U2) = (0.3, 0.6), and (L3, U3) = (0.6, 1.0),
respectively. Since the manual measurements show con-
siderable variation, an interval was made using the mini-
mum and maximum values of manually computed EF esti-
mates and was denoted as the reference interval (Lr, Ur).
The overlap of the reference interval with the LV dysfunc-
tion ranges above was noted as O(r, j) = min(Uj , Ur) −
max(Lj , Lr), and the patient was classified as having
mild, moderate or severe dysfunction based on the range
with the maximum overlap with the reference interval,
O(r, j)max = maxjO(r, j). The prediction accuracy for
our automatically computed estimate fp for a patient is then
determined as

prediction accuracy =
|fp|fp ∈ O(r, j)max|

N
(5)

Of the 1771 cases, Automatic EF estimation gave no out-
put for 167 cases or 9.4%. For the prediction of severe LV
dysfunction (EF < 0.3), the algorithm agreed with at least
one human interpretation (by any mode) in 256 of the 256
cases or 100% For the prediction of mild to moderate LV
dysfunction (EF, 0.3-0.6), the algorithm agreed with at least
one human interpretation in 381 out of 722 cases or 53%
For the prediction of normal LV function (EF > 0.6), the
algorithm agreed with at least one human interpretation in
393 out of 626 cases or 63%.

5. Conclusions
This paper presents an automatic method for unsuper-

vised computation of ejection fraction from raw echocar-
diogram videos. In particular, active shape models were
used to capture the shape and textural information within
LV region. The localization of the LV region was made ef-
ficient by propagating the annotation of echocardiographers
in nearby still frames. Results on a large database of cardiac
echo videos demonstrate the use of our method for predic-
tion of left ventricular dysfunction.
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