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Abstract

In medical applications, segmentation has become an
ever more important task. One of the competitive schemes to
perform such segmentation is by means of pixel classifica-
tion. Simple pixel-based classification schemes can be im-
proved by incorporating contextual label information. Var-
ious methods have been proposed to this end, e.g., iterative
contextual pixel classification, iterated conditional modes,
and other approaches related to Markov random fields. A
problem of these methods, however, is their computational
complexity, especially when dealing with high-resolution
images in which relatively long range interactions may play
a role. We propose a new method based on Kriging that
makes it possible to include such long range interactions,
while keeping the computations manageable when dealing
with large medical images.

1. Introduction

In medical applications, image segmentation tasks be-

come ever more important to aid quantitative analysis. In

this paper, we focus on the application of medical imag-

ing to aid the diagnosis and prognosis of cardiovascular

diseases (CVD) [7]. Images are segmented by e.g. active

contour [18], active appearance [8] or level set models [20].

Competitors to these models, especially in the domain of

medical imaging, are pixel-wise classifiers [23]. To achieve

even better segmentations, in cooperation with pixel-wise

classification, various methods have been developed that

take contextual information in the images into account. Ex-

amples are iterated conditional modes (ICM) [6], iterative

contextual pixel classification (ICPC) [17] or Markov Ran-

dom Fields (MRF) [10].

A pure pixel-wise classification takes only the contribu-

tions of a neighborhood in the image into account when as-

signing the class label to a pixel. It does not consider any

other class labels in its decision. The technique of ICM on

the contrary employs contextual knowledge. It is divided

in two steps: First, the pixels are classified by a pixel-wise

classifier. Second, the neighboring class labels are included

into a label decision. An advanced version of ICM was

presented by Loog and van Ginneken. Their ICPC method

went a step further than ICM by creating a simultaneous de-

pendency of a class label on surrounding image values and

class labels.

A problem of these methods, however, lies in their com-

putational burden when dealing with high resolution images

like medical data. Additionally, if also long range interac-

tions are present in the image, the convergence of the meth-

ods often becomes an issue.

We propose a new model that can be applied after a

pixel-wise classification, Dense Iterative Contextual Pixel

Classification (DICPC). It employs the context of all class

labels and can take long range interactions into account.

We implement this by approximating the contextual inter-

actions in label space with a linear model based on Kriging

[15]. With this approximation it becomes feasible to con-

verge to an optimal segmentation in manageable time, even

for high-resolution images with a long interaction ranges.

The paper is organized as follows: Sect. 2 restates the

problem and gives an introduction to a statistical interpre-

tation of segmentation and Kriging. Sect. 3 introduces the

DICPC algorithm. Sect. 4 introduces the problem on which

we exemplify our method. It concerns the difficult task of

quantifying aortic calcifications. Information on the study

population and the exact classification settings are presented

there as well as evaluation methods. The results can also be

found in Sect.4 while Sect.5 comprises the discussion and
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conclusion.

2. Problem Description
Let an image I be described by its pixels �p =

(p1, . . . , pi). In a pixel classification scheme, there exists

a feature vector �fi for each pixel pi that consists of one or

multiple features, e.g. intensity values or filter responses, at

the pixel location i. The matrix F = (�f1, . . . , �fi) is com-

prised of all the feature vectors. The labels for every pixel

i also shape a vector, �c = (c1, . . . , ci), that consists of the

class label at each pixel location. Class labels are part of the

set Γ = (1, 2, . . . , γ), where γ is finite.

The problem lies now in finding the optimal segmenta-

tion C� for the image I .

2.1. Statistical Interpretation

One can view the segmentation as a statistical process.

To find the optimal segmentation C� one might pursue a

Bayesian minimal risk approach [4]. For the risk function

of all wrong classifications being equally risky this becomes

the maximum-a-posteriori (MAP) method, which we apply

in the following. In a MAP estimation the optimal segmen-

tation is given as

C� = argmax
C∈C

P (C|I) = argmax
C∈C

P (I|C)P (C), (1)

where C is the set of all possible segmentations.

There exist different approaches to solve Eq. 1. Assum-

ing the Hammersley-Clifford theorem [5] holds in the label

space this can be transformed into

C� = argmax
C∈C

∏
i

P (Ci|CNi
, I)

= argmax
C∈C

∏
i

P (I|Ci, CNi
)P (Ci|CNi

),
(2)

where Ci denotes the label for a pixel i and CNi the neigh-

borhood labels of a pixel i. This equation can now be taken

as the starting point to describe the different techniques

mentioned before in a more formal framework.

The technique of ICM is, in addition to Eq. 2, based

on assuming that the observation components Ii are con-

ditionally independent given C and that each Ii has the

same known conditional density function p(Ii|Ci) depen-

dent only on Ci. This leads to

C� = argmax
C∈C

∏
i

P (Ci|CNi)P (I|Ci), (3)

where P (I|Ci) is solved by a pixel-wise classification.

On the contrary, ICPC turns Eq. 2 into

C� = argmax
C∈C

∏
i

P (Ci|CNi , INi) (4)

by assuming that the Hammersley-Clifford theorem holds

in the image space as well. Then it combines image feature

and label space and maximizes P (Ci|CNi , INi) in an itera-

tive manner. Here, INi is the image neighborhood of pixel

i.
But both ICM and ICPC are computationally unfeasi-

ble, when we deal with high-resolution images. Each iter-

ation of ICM or ICPC is computationally intensive. Here,

our proposed method, DICPC, can be seen as an alternative

to ICM and ICPC. We also assume that the Hammersley-

Clifford theorem is valid and that the contributions of the

image and the labels can be considered independently lead-

ing to Eq. 3. First, we use a pixel-wise classifier to max-

imize P (Ci, I). Then instead of using a complete neigh-

borhood model in Eq. 3, we approximate the neigborhood

interactions by a linear model given by Kriging and solve it.

This speeds our calculations up tremendously, since most of

the calculations can be formulated in a filtering formulation,

which becomes apparent in the next subsection.

2.2. Kriging

Kriging [13, 11] is a geostatistical method that is used

to spatially interpolate the value z0 at any location �r0 from

irregularly sampled data �z at N points �rN . This is done by

the local affine model z0 = z(�r0) such that

z0 = w0 +
N∑

1=1

wizi = w0 + �wt�z, (5)

where w0 is an offset and wi is the weight applied to zi. If

we regard the zi as realizations of random variables Zi and

request our measure to be unbiased, E(Z0 − Ẑ0) = 0, we

can define the estimation variance

σ2
E = Var(Z0 − Ẑ0). (6)

Using the linear model we can simplify this to

σ2
E = Var(Z0) + Var(w0 + �wt �Z) − 2Cov(Z0, w0 + �wt �Z)

= σ2 + �wtC�w − 2�wtCov(Z0, �Z),
(7)

where C is the variance/covariance matrix of �Z.

Cov(Z0, �Z) is a column vector of covariances between data

points a locations �ri and �rj that can be calculated based on

the assumption of spatial stationarity from the entries in C.

We minimize the estimation variance after the weights wi

by solving

∂σ2
E

∂ �w
= 2Cov(�Z, �Z)�w − 2Cov(Z0, �Z) = 0. (8)

This results in the simple Kriging system

Cov(�Z, �Z)�w = 2Cov(Z0, �Z), (9)
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which can be solved for the interpolation weights �w and

is in our case expanded to include the necessary condition

0 ≤ wi ≤ 1 in order to avoid negative weights.

2.3. Application of Kriging in DICPC

The same principle of Kriging can with regularly dis-

tributed samples be applied to an image and has been used

for image restoration [21]. Kriging is as stated in Eq. 5

based on a linear estimation model. In the case of a seg-

mentation task where manual segmentations are available,

one can learn the weights that minimize the estimation vari-

ance, σ2
E , from the manual segmentations Sman via the lin-

ear model

z0,man = w0,man + �wt
man�zman. (10)

Then we use these weights to compose a linear model for

the automated segmentations

z0,aut = w0,man + �wt
man�zaut. (11)

This is possible because we may assume that the covariance

structure of the manual segmentations can be transferred

to the automated segmentation. The weights of the linear

model can then be applied to the automated segmentation

Saut in a filtering manner to give a kriged estimate of the

segmentation

K(Saut) = k ∗ Saut, (12)

where k is a 2D-filter built from the weights �wman. Because

our method is based on this type of filtering the computa-

tional cost stays low compared to ICM and ICPC. Using

this formulation of simple Kriging, we now turn to our ap-

plication in pixel-based segmentation.

3. DICPC - Dense Iterative Contextual Pixel
Classification

The solution for an optimal contextual segmentation has

the form of Eq. 2,

C� = argmax
C∈C

∏
i

P (Ci|CNi
, I). (13)

Using Bayes formula this can be transformed into

C� = argmax
C∈C

∏
i

P (I|Ci, CNi
)P (Ci|CNi

)

= argmin
C∈C

∑
i

(
− log(P (I|Ci, CNi

)) − log(P (Ci|CNi
))

)
.

(14)

If we, just as in ICM, assume independence of CNi
and I ,

we can write this as

C� = argmin
C∈C

∑
i

(
− log(P (I|Ci)) − log(P (Ci|CNi

))
)
.

(15)

3.1. Gaussian Distributions

To solve Eq. 15 we need to define P (I|Ci) and

P (Ci|CNi
). For now we assume that both are Gaussian

distributed, but we will relax this assumption later. A prob-

ability prior P (Ci|CNi
) for the segmentation C can be for-

mulated as follows

P (Ci|CNi
) = Gσ(Ci − K(Ci))

=
1√

2πσi

exp
(
− (Ci − K(Ci))2

2σ2
i

) (16)

Furthermore, we define P (Ii|Ci) to be of the form

P (Ii|Ci) = Gσ(Ii − Ci)

=
1√
2πσ

exp
(
− (Ii − Ci)2

2σ2

)
.

(17)

In the case of a Gaussian prior P (Ci|CNi) and a Gaussian

likelihood P (Ii|Ci), the posterior distribution is Gaussian

again and in that case a closed form solution exists for Eq.

15. Plugging in P (Ii|Ci) and P (Ci|CNi) into Eq. 17 leads

to

EG =
∑

i

(
a +

(Ii − Ci)2

2σ2
+

(Ci − K(Ci))2

2σ2
i

)
, (18)

where a = log(2πσσi). We replace K(Ci) with k ∗ Ci

according to the definition of Eq. 12 and get

EG =
∑

i

(
a +

(Ii − Ci)2

2σ2
+

(Ci − (k ∗ Ci))2

2σ2
i

)
. (19)

Due to the Parseval theorem the energy is preserved in the

Fourier transform, so the cost can be equivalently computed

in the Fourier domain. The minimization in the Fourier do-

main is performed by differentiating the energy functional

with respect to the real and imaginary parts of the Fourier

coefficients and setting the result zero. This way we arrive

at

C� = F−1

(
Ĩi

1 + �(k̃′)�(k̃′)

)
, (20)

where � is the ratio between the neighborhood and the

global variance, F describes the Fourier transform and

Ĩ = F(I) as well as k̃′ = F(k′) = F(k − 1).

3.2. Other Distributions

If P (Ii|Ci) and P (Ci|CNi) are not Gaussian, but e.g.

Laplace distributed, the energy function of Eq. 18 changes

to

EL =
∑

i

(
a +

|Ii − Ci|
2σ2

+
|Ci − K(Ci)|

2σ2
i

)
, (21)
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A solution to Eq. 21 can be found via variational meth-

ods by any approach for total variation minimization. In

the case of distributions where the mode of the distribution

is equal its mean this solution is equal to the MAP solu-

tion. Thus, for the Laplacian distribution the MAP solution

is identical to the minimum variance solution. In the case of

other distributions, it depends on the distribution if the total

variation minimization equals the MAP solution.

3.3. DICPC algorithm

All in all, the contextual classification approach that is

proposed looks as follows:

1. Learn the weights �wman from manual segmentations

and construct a 2D-filter k.

2. Define a distribution to be used in the prior

P (Ci|CNi
).

3. Define a distribution to be used in the conditional prob-

ability P (Ii|CNi
).

4. Use a direct or a variational approach to solve Eq. 15.

4. Experiments and Results
Cardiovascular diseases (CVD) are the most common

cause of death in Europe [9] and the United States [1]. This

is the case despite the general knowledge that a healthy

lifestyle and the treatment of risk factors can prevent the de-

velopment of CVD [19]. It is known that abdominal aortic

calcifications (AAC) are strong predictors of cardiovascular

morbidity and mortality [24]. They correlate strongly with

coronary artery calcifications and can hence predict the risk

of coronary artery problems [25]. The early detection of

AAC helps to predict the risk of related coronary diseases

and provides the possibility of intervention. Manual detec-

tion of AAC is tedious and costly, which gives rise to a great

need for reliable automatic detection schemes.

4.1. Study population

The study population used in this paper is the EPI Fol-

lowup population, which was part of the multi-centered

PERF Study [3]. The EPI part of the PERF study was an

epidemiological study addressing the role of a number of

metabolic risk factors in the pathogenesis of CVD and os-

teoporosis [22] and carried out in Ballerup, Denmark, in

1992 and 2001. Three trained radiologists, unaware of the

patients conditions, annotated the vertebrae, the aorta and

the calcifications in the digitized images. They used Sectra

radiological reading units and annotation software imple-

mented in MatLab (Mathworks, MA, USA).

Five images where randomly selected and 18 patches

with one or multiple calcifications as illustrated in Fig. 1

were acquired. The testing of the different methods was

performed on these 18 calcification patches.

4.2. Evaluation Methods

To measure the compliance of an annotation A1 and the

outcome of a classification A2, first the Jaccard index [12] is

used. This is a quantification measure for segmented areas.

The ratio of the number of pixels present in both segmen-

tations to the total number of pixels in the segmentations

is taken. The Jaccard index varies from 0 which equals no

overlap to 1 corresponding to complete overlap.

rJacc =
|A1 ∩ A2|
|A1 ∪ A2| (22)

Furthermore we use sensitivity rSens and specificity rSpec

to evaluate the performance of our contextual classification

methods.

These measurements require the images to have the same

resolution. Furthermore, the errors of rJacc, rSens and rSpec

increase with smaller objects.

4.3. Classification Settings

We use a k-Nearest-Neighbor classifier [2] with k = 25.

Training pixels are selected with a bias toward calcified pix-

els, meaning that 30% of the training pixels chosen are cal-

cified pixels which are defined according to the manual an-

notations. The features used were the intensity, the gradient

magnitude, the Hessian trace, Hessian determinant and Hes-

sian eigenvalues, an adaption of Koenderink’s shape classi-

fication measure [14] and the ratio of the difference and sum

of the Hessian eigenvalues. All features were calculated at

three different scales, corresponding to 2, 5 and 17 mm.

4.4. Kriging Settings

In our method, we learn the Kriging filter for calcifica-

tions from manual segmentations by calculating the weights

for a seven by seven neighborhood in which we krig to the

central pixel. This way we arrive at a seven by seven filter

that is used as k in Eq. 12. In principle one can use any size

neighborhood, since the filtering process is computationally

very fast even for large filters.

4.5. Comparison to other methods

To investigate the performance of our method we com-

pare it to other post-processing methods used for the seg-

mentation of lumbar aortic calcifications.

4.5.1 Disk Morphology

The morphological operations used are an opening and a

closing with a disk of the size of 1 mm. We chose 1 mm in

order to remove pixel noise, but not parts of calcifications.
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Figure 1. The graph displays one of the original images and a manual as well as an automatic segmentation of a calcification.

4.5.2 Biological Morphology

The morphological operations used are an opening and a

closing with structuring elements derived from biological

findings. Larsen et al. showed in [16] that the size of lumbar

aortic calcifications is approx. 5±3 mm in height and 2±1
mm in width. According to these findings the first struc-

turing element was designed to remove everything smaller

than a standard deviation of a calcification in size. There-

fore we used a disk of the size of 1 mm for the opening. For

the closing, we made use of a rectangular structuring ele-

ment of the size of one standard deviation of a calcification

in width (1 mm) and one standard deviation of a calcifica-

tion in height (3 mm).

4.6. Results

The pure pixels classification as well as the pixel clas-

sification in correspondence with the three different post-

processing methods, disk morphology (Fig. 2), biological

morphology (Fig. 3) and DICPC (Fig. 4), were evaluated

for the 18 calcification patches. The average values for the

Jaccard index, sensitivity and specificity for the 18 patches

are given in Tab. 1. Furthermore the statistical significance

of difference between the means of the different methods

was tested via a paired one-sided Student’s t-test. The re-

sults of the tests are shown in Fig. 5, 6, 7.

In general we can observe that the Kriging produces

results that are much closer to the original pixel classifi-

cation than the morphological operations. The morphol-

Figure 2. The result of the disk morphology.

ogy imprints the shapes of its structuring elements onto the

pixel classification result and produces harsh boundaries.

The Kriging, on the contrary, makes the pixel classifica-

tion boundaries finer and even prescinds structures out of

the background around the calcifications.

5. Discussion and Conclusion

When dealing with high resolution medical images that

present long range interactions one runs into computational

problems when trying to use standard contextual classifica-
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Pure Pixel Classification Disk Morphology Biological Morphology Kriging Prior

Jaccard index 40% 35% 34% 41%
Sensitivity 0.40 0.41 0.43 0.62
Specificity 0.96 0.99 0.98 0.95

Table 1. The peak area overlap results for all the populations.

Figure 3. The result of the biological morphology.

Figure 4. The result of our method.

tion techniques like ICM or ICPC. This is why we compare

our new method to other techniques, disk and biological

morphology, which are common post-processing methods

for this application.

We observe that our new method, DICPC, improves

the sensitivity drastically and the Jaccard index slightly,

while it leaves the specificity unchanged. The other post-

processing methods, disk morphology and biological mor-

phology, even lower the Jaccard index while improving the

sensitivity and the specificity inconsiderably. The lowering

of the Jaccard index is caused by the relatively harsh bound-

aries that the morphological operations produce in contrast

Pixel Classification Disk Morphology Simple Morphology DICPC
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
**

*
**

Methods

Jaccard Index

Figure 5. The graph displays the results for the paired student’s

t-tests between the different methods for the Jaccard index. The

stars indicate the outcome of a paired one-tailed Students’ t-test:

� < 0.05, �� < 0.01 and � � � < 0.001.

Pixel Classification Disk Morphology Simple Morphology DICPC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
***

***
***

Methods

Sensitivity

Figure 6. The graph displays the results for the paired student’s

t-tests between the different methods for the sensitivity. The stars

indicate the outcome of a paired one-tailed Students’ t-test: � <
0.05, �� < 0.01 and � � � < 0.001.

to the Kriging.

Kriging and therefore DICPC is only the first step in the

right direction. A weakness of DICPC is the linear model

that underlies Kriging. It implies only pairwise interactions.

The goal is to develop a contextual method that is as fast

and computationally feasible as DICPC, but based on joint

probabilities of the class labels.
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Pixel Classification Disk Morphology Simple Morphology DICPC
0

0.2

0.4

0.6

0.8

1

1.2
*

***
***

Methods

Sensitivity

Figure 7. The graph displays the results for the paired student’s

t-tests between the different methods for the specificity. The stars

indicate the outcome of a paired one-tailed Students’ t-test: � <
0.05, �� < 0.01 and � � � < 0.001.
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