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Abstract

We have developed methods for segmentation and track-

ing of cells in time-lapse phase-contrast microscopy im-

ages. Our multi-object Bayesian algorithm detects and

tracks large numbers of cells in presence of clutter and iden-

tifies cell division. To solve the data association problem,

the assignment of current measurements to cell tracks, we

tested various cost functions with both an optimal and a

fast, suboptimal assignment algorithm. We also propose

metrics to quantify cell migration properties, such as motil-

ity and directional persistence, and compared our findings

of cell migration with the standard random walk model.

We measured how cell populations respond to the physi-

cal stimuli presented in the environment, for example, the

stiffness property of the substrate. Our analysis of hundreds

of spatio-temporal cell trajectories revealed significant dif-

ferences in the behavioral response of fibroblast cells to

changes in hydrogel conditions.

1. Introduction

Hundreds of thousands of living cells are recorded

in time-lapse phase-contrast microscopy video for re-

search studies in biomaterial engineering [5]. Interpreting

these vast amounts of data via manual analysis is time-

consuming, costly, and prone to human error. In this paper,

we propose image understanding methods that automati-

cally analyze the behavior of live cells as extracted from

time-lapse phase-contrast microscopy video. For this anal-

ysis, we computed the shape, orientation, and movement

characteristics of large groups of cells, as we tracked them

automatically over the course of a day. We used two ap-

proaches to tracking and compared their performance. One

approach solves the two-dimensional data assignment prob-

lem, i.e., the assignment of current measurements to cell

tracks, optimally in a probabilistic, iterative, and online

manner. The other approach is a two-phase batch algorithm

that solves the data association problem in an efficient, but

suboptimal way. We also introduce cost functions that eval-

uate the likelihood of the set of assignment.

Our segmentation and tracking algorithms yielded quan-

titative data about the characteristics of cells and their in-

teractions and enabled us to develop new descriptions of

cell behavior. Our system allowed us to reason about cell

motility, i.e., the cell’s ability to move spontaneously and

actively. The motion of cells, i.e., cell migration, has been

described in the biomaterials research community by a ran-

dom walk model [6, 1]. We show that cell behavior is not

represented well by this theoretical random-walk model and

propose a data-driven approach to quantifying cell migra-

tion.

Since understanding the directed cell migration, i.e., the

directed motion of cells in response to particular stimuli

is of great interest to biomaterial research, we focused

on analyzing the motion of fibroblast cells, i.e., cells that

contribute to the formation of connective tissue fibers, on

hydrogel substrates with different stiffness properties that

mimic the physiological environment. We note that the

few commercial tools for analysis of living cell images re-

quire that fluorescent cell tags are used (that can change

cell behavior, which would be undesirable) or substrates

with glass coverslips. To our knowledge, this paper is the

first to propose an accurate, reproducible, and automated

method that can measure both durokinetic and durotaxic ef-

fects [17, 22, 23] that are due to the stiffness properties of

the substrate. In particular, our method quantifies statisti-

cally significant differences in cell behavior in response to

the level of stiffness of uniformly rigid substrates, as well

as cell movement along a rigidity gradient present in the

substrate.

In summary, our original contributions are

• Cell Tracking Algorithms: We propose a novel cost

function that encodes the response of cells to condi-

tions of their environment.

• Cell Behavior Analysis: We introduce a comprehen-

sive set of metrics for migration analysis.

186978-1-4244-3993-5/09/$25.00 ©2009 IEEE



• Model Building: We reveal the shortcomings of a

widely-used theoretical model of cell migration and

propose an alternative, data-driven way to predict cell

behavior in response to environmental conditions.

Recently, there have been significant efforts by the com-

puter vision community to develop methods for tracking

cells in microscopy video, e.g., [10, 11, 12, 13, 14, 15, 16,

18, 21, 25]. We would like to highlight the seminal work

by Li et al. [13, 14, 15, 16], which resulted in a multi-target

tracking system that used level-set contour tracking, inter-

active multiple-model filters, and trajectory management

modules to compile and link tracks of hundreds of osteosar-

coma cells and thousands of amnion epithelial stem cells

in time-lapse fluorescence microscopy. Notable is also the

cell tracking system by Smith et al. [21], which employs

a Markov chain Monte Carlo batch processing approach to

track a hundred migrating neurons in two-photon excitation

microscopy. Xie et al. [24] recently solved the problem of

tracking Escherichia coli bacteria in microscopy video us-

ing a greedy assignment algorithm [20]. They introduced

a matching criteria that compares intensity histograms of

newly detected and previously tracked cells to address the

issue that the bacteria were imaged with very-low contrast

boundaries.

Unlike previous work, we have focused on developing

measures that can evaluate the activity of cells and quantify

their behaviors. To accomplish this, we developed accurate

methods for segmenting and tracking living cells and then

computed the shape characteristics and motion trajectories

of thousands of sample cells.

2. Methods

Our approach consists of two phases. In the first phase,

our system detects and tracks cells in microscopy video and

outputs shape characteristics and trajectories of groups of

cells. In the second phase, our system reasons about the be-

havior of individual and groups of cells (Fig. 1). The mea-

sured statistics of cell behavior can provide feedback to the

tracking system, allowing adaptation of the techniques for

detection, segmentation, state prediction, and data associa-

tion to the expected migration properties of cells.

2.1. Detection and Segmentation of Cells

Accurate segmentation of fibroblast cells on hydrogel

substrate is challenging, because heterogeneities in the sub-

strate exist and the background of the cells cannot simply be

subtracted. The undesirable inconsistencies in image inten-

sities can be alleviated by a contrast adjustment procedure

that re-distributes the intensity values the middle 1/3 of the

dynamic range of each image. Our segmentation method

then computes the intensity gradient of the adjusted image

and applies adaptive thresholding of the gradient magnitude
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Figure 1. System overview.

image to produce a binary image in which cells and clut-

ter are segmented from the background. In this binary im-

age, small groups of pixels are classified as clutter (< 300

pixels) and disregarded in further processing. Our method

classifies the larger components as cells and produces an

accurate segmentation by closing gaps in their boundaries

and holes within the binary components (Fig. 2). We use

standard techniques [9] to describe characteristics of cells,

such as size, shape, and orientation. Given the binary rep-

resentation of a cell, our method computes its area A, cen-

troid �x = (xx, xy), and axes of least and most inertia, amin

and amax. Computing the sum Emin of squared distances

of cell pixels to amin and the sum Emax of squared dis-

tances of cell pixels to �amax yields a measure for the circu-

larity c = Emin/Emax of the cell.

2.2. Tracking of Cells

In this section, we first formulate of our multi-cell track-

ing problem as a standard Bayesian filtering problem [3],

then briefly describe the algorithms [12, 25] we used, and

then focus on our contribution, the selection of a suitable

cost function for our cell tracking problem.

Given that n(t) cells are in image I(x, y, t), state x
(t)
j of

the jth cell can be assumed to evolve in time according to

the equations

xj(t + 1) = Ajxj(t) + vj(t), for j = 1, ..., nt, (1)

as observed via mt measurements

zi(t) = Hi xj(t) + wi(t), for i = 1, ..., mt, (2)

where vj(t) and wi(t) are independent zero-mean Gaussian

noise processes, Aj is the state transition matrix, and H the

measurement matrix. For each cell, the true-positive detec-

tion rate is Pdet ≤ 1 and the false-positive detection rate is

1/V , where V is proportional to the number of pixels in the

image (e.g., 3%, which corresponds to 3 false detections per

187



Figure 2. Segmented cells with discarded background region

shown in blue. From left to right: a dividing cell, two cells in

close proximity, a single spreading cell.

frame). We add a “dummy” measurement z0(t) to handle

the case of missed detections. In particular, when cell x(t)
is not detected at time t, dummy measurement z0(t) is asso-

ciated with the hidden state of cell x(t). The likelihood that

one of the measurements zi(t) describes object state xj(t)
is given as p(zi(t)|xj(t)), and the corresponding assign-

ment is denoted by the binary variable ai,j(t). A com-

plete assignment of all measurements to states is the set

a(t) = {ai,j(t)|i = 0, ..., mt, j = 0, ..., nt}. The optimal

solution to the two-dimensional data assignment problem,

i.e., the assignment of all current measurements to all cell

tracks, is the complete assignment that maximizes the like-

lihood ratio:

aopt(t) = arg max
a(t)

mt∏
i=0

nt∏
j=0

(
p(zi(t)|xj(t))

p(zi(t)|x0(t))

)ai,j(t)

. (3)

We use two algorithms to solve the assignment prob-

lem in Eq. 3: (1) an iterative probabilistic data association

(PDA) algorithm [12] in combination with the auction al-

gorithm [4], which produces an optimal solution, and (2) a

two-phase batch algorithm [25], which produces a subop-

timal assignment. The iterative PDA algorithm is a modi-

fication of the original PDA algorithm [3], which can only

handle one-track-to-one-measurement assignments. In an

iterative process, the algorithm “redistributes” association

probabilities based on the likelihood of a match and the

iteration number, allowing many-to-one and one-to-many

associations. The batch algorithm is based on the nearest

neighbor approach which, in the first phase of the algorithm,

greedily assigns to each track its “favorite” current mea-

surement, i.e., the measurement that is statistically closest

to the predicted one. In the second phase, the batch algo-

rithm matches tracks and measurements that have not been

assigned in the first phase, including the dummy measure-

ment.

The performance of both algorithms greatly depends on

the selection of a cost function. We define the cost c(t) of

an assignment a at time t to be the negative log-likelihood

ratio:

c(t) =
mt∑
i=0

nt∑
j=0

(
ai,j(t)(− ln

p(zi(t)|xj(t))

p(zi(t)|x0(t))

)
, (4)

which simplifies to three cases: If j = 0, i.e., no cells have

been tracked, the cost is zero. If m = 0, the cost of a missed

detection of a cell is − ln(1− Pdet). If n > 0 and m > 0,

the cost depends on the negative log-likelihood that previ-

ously tracked cells are again detected, which is the product

of the true-positive detection rate Pdet, the inverse false-

positive detection rate V , and the tracker-computed likeli-

hood ci,j(t) of the assignment ai,j .

We propose three cost functions ci,j(t) for our cell tracking

problem:

c
(1)
i,j (t) =

Si,j,cos(t)

Ci,j,dist(t)
, (5)

c
(2)
i,j (t) = λ Ci,j,dist(t) + (1− λ) Ci,j,dir(t), (6)

c
(3)
i,j (t) = λ(ξ) Ci,j,dist(t) + (1− λ(ξ)) Ci,j,dir(t), (7)

where Si,j,cos(t) is the cosine similarity, i.e., the dot prod-

uct, of previously-estimated and currently-measured cen-

troids of a cell [25], Ci,j,dist(t) is the Euclidean distance be-

tween the centroids, and Ci,j,dir(t) is the movement direc-

tion computed from two consecutive frames. We designed

cost function c(2) so that it depends on a fixed regularization

parameter λ, which we set to 0.6 in our experiments. Simi-

larly, we designed cost function c(3) so that it depends on a

regularization parameter that is a function of the level ξ of

physical stimuli presented in the environment. For example,

we used λ(ξ) = 0.1 for a substrate with a high level ξ=150

kPa of stiffness.

2.3. Characterization of Cell Behavior

To analyze cell migration behavior of both individual

cells and groups of cells, we propose to use the set of mea-

sures of cell morphology and spatio-temporal trajectories,

and group behavior defined in Table 1. We use the measures

of cell orientation and area overlap to determine if a cell is

motile or immotile. We compare measures of cell move-

ments, in particular, displacement, path length, speed, and

changes and persistence in movement direction, to describe

cell migration. We are particularly interested in analyzing

migration behavior on uniform substrates with varying stiff-

ness and gradients in stiffness to quantify durokinesis and

durotaxis [22, 8]. Durokinesis is defined as the dependence

of individual movement on a scalar stimulus (in this case,

substrate stiffness), and durotaxis is defined as the depen-

dence of individual movement on a directional stimulus or

signal related to the movement direction. There are a num-

ber of theories that have been proposed to describe cell mi-

gration. By being able to obtain actual measurements of

cell movement, we can evaluate how realistic the random

cell walk model [6] is and develop a data-driven approach

to describe cell migration.

The expected squared displacement of a motile cell for

a time period t has been defined by the following random
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walk model:

E[d2
0→t] = 2 S2

t Tp (t− Tp(1− e−t/Tp)), (8)

where persistence time Tp is the period during which the

cell moved consistently in one direction and St is the aver-

age speed of the cell on the path P0→t. DiMilla et al. [5]

used the model to estimate TP and St of a cell by fitting

Eq. 8 to experimental data, i.e., average measurements of

cell displacement. For sake of comparison, we use our def-

initions for Tp and St from Table 1 to evaluate the validity

of Eq. 8 for our data. Note that we define directional persis-

tence as the longest period Tp during which a migrating cell

does not change its direction by more than β degrees (we

set β = 15o in our experiments).

To analyze cell migration behavior of groups of cells

that are placed in close proximity to each other on the sub-

strate, we propose to use the measure of mean dispersion

distance Dt, which is defined by the mean distance between

each member of the group and the centroid of the group at

time t.

Table 1. Quantitative Measures of Cell Behavior

Measure Definition

Instantaneous Measures of Cell Behavior at Time t

Location �x(t) = (xx(t), xy(t))
Orientation α(t)=atan(amin,y(t)/amin,x(t))
Circularity c(t) = Emin(t)/Emax(t)

Velocity �v(t) = d�x(t)
dt

≈ �x(t)− �x(t− 1)

Speed S(t) = |�v(t)| = p
v2

x + v2
y

Movement Direction θ(t) = arctan(vy(t)/vx(t))

Change in Direction θ̇ = dθ(t)/dt ≈ θ(t)− θ(t− 1)

Measures Computed for Cell Path P0→T

Centroid Displacement d0→T = |�x(T )− �x(0)|
Area Overlap At→t′ = At ∩ A′t
Path Length lT =

PT−1
t=0 dt→t+1

Average Speed ST = 1/t
PT

t=1 s(t)
Mean Direction of θ̄T = acos(X/r) = asin(Y/r),

Movement where X = 1/T
PT

t=1 cos θ(t),

Y = 1/T
PT

t=1 sin θ(t), and

r =
√

X2 + Y 2

Angular Deviation of σθ =
p

2(1− r)
Movement Direction

Period of Time with Tp =arg max{T ′| |θ̇(t′ + i)|<β,
Directional for some t′ ∈ {0, ..., t−1}, and

Persistence all i = 1, ..., T ′, where T ′ ≤ T}
Measures Computed for Group of Cells x1, ..., xN

Group Position at t �g(t) = 1/N
PN

i=1 �xi(t)

Mean Dispersion Dt =1/N
PN

i=1 ‖�g(t)− �g(0)‖
Distance

3. Experiments and Results

Our data includes 75 image sequences of approximately

1,000 Balb/c fibroblast cells on polyacrylamide hydrogel

substrates with varying mechanical properties. The living

cells were seeded on the substrates at a density of 1,000

cells/cm2 [7, 19]. The image sequences were acquired with

a Princeton Instruments D1299421 camera mounted on a

Zeiss Axiovert S100 microscope at 15-minute intervals over

the course of 24 hours. Each sequence consists of 82 frames

with an image dimension of 1300×1030 pixels. Each pixel

has a width of 1.52 μm. There are approximately 15–30

cells per image.

3.1. Detection and Segmentation Accuracy

We verified by inspection of 75 processed image se-

quences of about 1,000 cells that our detection method rec-

ognized every cell and did not misidentify any clutter as a

cell. This means our true-positive detection rate was Pdet=1

and our false-positive detection rate approached zero.

To evaluate the accuracy of our segmentation method, we

compared the computed centroids of migrating cells to the

centers of these cells as hand-marked by an expert observer.

The differences between computed and hand-marked cell

positions were at most 15 pixels for 12 cells in 10 sequences

(12×82 = 984 samples). The cell sizes range from 400 to

700 pixels.

We also compared the estimates of the centers of 7 cells

in 5 sequences (7×82=574 samples) that were hand-marked

by three independent observers: one expert, one skilled and

one novice cell biologist. We found that inter-observer dif-

ferences in marking cell centers was large, i.e., 15–25 pix-

els. Because the differences between observer estimates

were larger than the upper bound on the difference between

the position estimate derived from the segmentation algo-

rithm and the expert observer estimate, we conclude that an

estimate of cell position by the segmentation algorithm was

at least as reliable as an estimate by an expert observer.

3.2. Tracking Accuracy

The rapidly changing state of migrating cells

(alive/mitotic/dead) makes the data association task,

i.e., the task of matching measurements to tracks, chal-

lenging. The success of a tracking approach depends on

its ability to accurately update and link tracks as migrating

cells divide, die, or move into and out of the field of view

of the camera. We show examples of tracked cell paths in

Figs. 3 and 6.

The optimal tracking algorithm performed better than the

suboptimal favorite-matching algorithm (Table 2). Aver-

aging the results for the optimal algorithm across popula-

tion densities and environmental conditions, we obtained a

rate of correct measurement-to-track assignments of 92.8%

when implemented with cost function c(2) and 94.1% when

implemented with cost function c(3). On the other hand,

averaging the results for the suboptimal algorithm with cost

function c(1) across population densities and environmental
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Figure 3. Tracking results for the suboptimal (top) and optimal algorithm (bottom). The optimal algorithm correctly resolves the track-to-

measurement assignments for cell 5 and 16 in frame 36. The suboptimal algorithm causes a track switch.

conditions yields a correct assignment rate of only 73.6%.

The suboptimal algorithm works well for low-density se-

quences with cells that do not occlude each other, or divide

or die in close proximity to one another (100 pixels), achiev-

ing a 95.2% rate of accurate data associations in this case.

Table 2. Accuracy of Data Association. The rates of correct

measurement-to-track assignments for 180 cells in 12 sequences

(i.e., 14,760 samples) are given for low- and high-density cell pop-

ulations and environmental conditions that included two levels of

substrate stiffness.

Method and 500 cells/cm2 1,000 cells/cm2

Cost Function 10 kPa 150 kPa 10 kPa 150 kPa

Subopt. Alg. c(1) 94.2 % 96.1 % 47.7 % 56.2 %

Optimal Alg. c(2) 100 % 98.8 % 85.7 % 86.6 %

Optimal Alg. c(3) 100 % 99.4 % 86.8 % 90.3%

For the optimal algorithm implemented with cost func-

tion c(3), the incorrect associations were due to (1) “track

switching,” where the measurements of positions of cells a
and b were associated to the tracks of cells b and a
(10.2% of incorrect associations), (2) “false track initia-

tions/terminations,” where the measurement of a previously

tracked cell was matched to a new track, ending the previ-

ous track (35.9% of incorrect associations), and (3) “false

lineage identification” (53.9% of incorrect associations),

where cell division was misinterpreted, i.e., daughter cells

were not matched up correctly with their parent cell.

For both tracking algorithms, track switching becomes

more frequent as cell density increases. For sequences with

a seeding density of 1,000 cells/cm2, the ability to perform

complex associations drops to 51.8% for the suboptimal ap-

proach with cost function c(1) and 88.0% for the optimal

approach with cost function c(3).

3.3. Results for Cell Behavior

We analyzed the behavior of cells migrating over a 24

hour period on both stiff (150 kPa) and soft (10 kPa) sub-

strates (Table 3). The purpose of our analysis of these cell

paths was to identify possible migration trends relating cell

motility and directional persistence with substrate stiffness.

Our experiments revealed that cells that migrated across

stiff substrates exhibited a longer persistence time Tp on av-

erage than cells which migrated across non-stiff substrates.

Cells on stiff substrates were more likely to exhibit high di-

rectional persistence as opposed to a random “wandering”

behavior. Our experiments revealed statistically significant

different responses to substrate conditions using the follow-

ing measures of cell behavior: mean displacement d, mean

speed S, deviation of movement direction σθ, and duration

of directional persistence Tp.

Table 3. Analysis of Cell Behavior. Migration properties are pre-

sented for 147 cells in 15 sequences of high-density cell popula-

tions (seeded at 1,000 cells/cm2) and for two levels of substrate

stiffness ξ .

Stiffness ξ 10 kPa 150 kPa

Mean displacement d0→T 203 pixels 463 pixels

Mean path length lT 1,993 pixels 2,129 pixels

Mean Speed ST 21.6 μm/hr 42.7 μm/hr

Angular deviation σθ 78o 57o

Mean persistence Tp 1:12 hr 2:54 hr

The difference in response to the physical stimuli pre-

sented in the environment, here substrate stiffness, applied

not only to individual cells, but also to groups of cells

(Fig. 4). We measured that cells disperse more rapidly on

stiff substrates (D315 min = 225 pixels with standard de-

viation σD = 106 pixels, for 3 cell groups) than on soft
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Figure 4. Dispersion of three cells with mean dispersion distances

D0 = 65 pixels and DT = 213 pixels. The cell trajectories at time

T = 315 min are shown. The initial and final group centroids are

marked as red/white squares.

substrates (D315 min = 72 pixels with standard deviation

σD = 45 pixels, for 2 cell groups).

We also conducted a preliminary test of the behavior of

cells on a substrate with a stiffness gradient. We prepared

the substrate so that it contained regions of increasing stiff-

ness levels, starting from 10 kPa on one side of the substrate

to 150 kPa on the other side in 10-kPa increments. Our test

revealed that the motion of cells accelerated in the direc-

tion of the stiffness gradient. In future experiments, we will

investigate if acceleration is sufficiently sensitive to detect

and quantify a durotactic effect. Our preliminary gradient

trial indicated that out of 10 cells tracked, 8 experienced a

sudden change in acceleration when moving from a soft to

a stiff substrate region.

3.4. The Random Walk Model and an Alternative
Analysis

We verified that β = 15o is a reasonable threshold to de-

fine directional persistence Tp. By analyzing 42 migrating

cells in 6 sequences for which we measured a persistence

period of at least 1 hour, we found that, during their direc-

tionally persistent movement, cells change their directions

by at most ±14o with a mean of 5.44o and a standard devi-

ation of ±3.84o.

We then evaluated the validity of the random walk

model, described in Eq. 8, for our data. We measure the

root mean-squared (RMS) error√√√√1

k

k∑
celli=1

(2S2
T,iTp,i(T−Tp,i(1−e

−
T

Tp,i ))−d2
0→T,i)

2, (9)

of the model given measurements of speed, persistence pe-

riod and displacement of k cells. We computed the RMS er-

ror to be 189,199 pixels2 for k = 14 cells on 11 sequences.

The square of the average maximum displacement of these

14 cells was 2062 pixels = 42, 630 pixels2. The RMS error

was large for both soft and stiff substrates. Our experimen-

tal analysis shows that the random walk model, which has

been used extensively in the literature to describe cell mi-

gration, can produce large errors in predicting cell displace-

ment. In fact the error in the displacement estimate is of the

order of the displacement itself.

An alternative way to describe cell behavior in response

to environmental conditions is to use the measures in Ta-

ble 3, for which we measured statistically significant dif-

ferences in behavior. These include four of the five mea-

sures, angular deviation, mean displacement, mean speed,

and mean duration of the persistence period. Only the mean

path length did not differ statistically significantly. In future

work, we will investigate the relationship between behavior

and level of the substrate stiffness and derive a functional

connection.

The histograms of 550 measured instantaneous velocities

of 10 cells, migrating on soft (10 kPa) and stiff (125 kPa)

substrates, indicate that cells migrated faster on stiffer than

on softer substrates (Fig. 5). The statistics of these distribu-

tions of instantaneous velocities (i.e., the mean and standard

deviation) are significantly different from each other, which

confirms that the velocity metric is sufficiently sensitive to

detect and quantify a durokinetic effect.
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Figure 5. Histogram of instantaneous velocities measured for sub-

strates with two stiffness conditions.

4. Discussion and Conclusions

We have provided algorithms for detection, segmenta-

tion and tracking of large collections of cells and introduced

a comprehensive set of metrics for analysis of cell migra-

tion. Our methods use the measured statistics of cell behav-

ior to provide feedback to the tracking module, allowing

adaptation of the cost function based on the conditions of

the cell environment, in particular, substrate stiffness.

We plan to enhance the functionality of our current sys-

tem so that it can detect a variety of cell types and also

cell organelles. The latter will enable studies in cytoplas-

mic trafficking [2], i.e., studies that monitor the movement

of cell organelles through a cell’s cytoplasm.

Given the discrepancy between the theoretical random

walk model and our experimental results, we suggest that

research studies of cell behavior may benefit from a shift of

191



t = 300 mint = 0 min t =150 min t = 450 min

cell 9

cell 5

cell 4

cell 8

cell 12

Figure 6. Tracking of multiple fibroblast cells on the surface of a

hydrogel. The images (0.47 mm across) show the first 6 1/2 hours

of the tracking process for a subset of 5 cells. The system detected

the cell division and track-initiation event (yellow) and stores that

cell 12 is the daughter of cell 5. The 3D plot visualizes the 5 tracks

over the full imaging period of almost one day. Colors outline the

correspondence between the 3D tracks and the 2D cell trajectories.

Average migration speeds ranged from 5.4 μm/hr (cell 4) to 45.4

μm/hr (cell 9); average changes in direction of motion ranged from

2 to 12 degrees / 15 min.

focus: In the past, without automated image analysis, it was

valuable to investigate the random walk equation, which re-

lates the three key properties, i.e., cell displacement, per-

sistence time, and average speed. Now, given the ability

to analyze large collections of microscopy videos automat-

ically, many more than these three properties, i.e., various

instantaneous measurements and descriptions of the envi-

ronmental conditions, should be used to characterize cell

behavior. One of the goals of this paper was to make a first

step into this data-driven direction by quantifying statisti-

cally significant differences in behavior in response to the

level of substrate stiffness.

Understanding the movements of cells, their interactions,

and their reaction to stimuli is essential for the effective

management of the environments and materials in which

these cells can thrive. Understanding the movement behav-

ior of cell on specific substrates is essential for the devel-

opment of biomaterial scaffolds, one of the central goals of

tissue engineering.

Our work and similar efforts by other computer vision

scientists are likely to have an important impact on biomate-

rial engineering. Because we provide image understanding

tools that work with physiologically relevant substrates, our

work is likely to reduce the barriers for data collection and

significantly accelerate studies that interpret cell behavior

on physiologically relevant substrates.
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G. Fichtinger, and G. Székely, editors, Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2008,

11th International Conference, New York, NY, USA, Septem-

ber 6-10, 2008, Proceedings, Part I, Lecture Notes in Com-

puter Science, Volume 5241/2008, pages 824–832. Springer-

Verlag Berlin Heidelberg, 2008.

[25] X. Zhou, J. Yang, M. Wang, and S. T. C. Wong. A novel cell

tracking algorithm and continuous hidden Markov model for

cell phase identification. In IEEE/NLM Life Science Systems

and Applications Workshop, pages 1–2, July 2006.

193


