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Abstract

Mixture of Gaussians (MOG) is the most popular tech-
nique for background modeling and presents some limita-
tions when dynamic changes occur in the scene like camera
jitter and movement in the background. Furthermore, the
MOG is initialized using a training sequence which may be
noisy and/or insufficient to model correctly the background.
All these critical situations generate false classification in
the foreground detection mask due to the related uncer-
tainty. In this context, we present a background model-
ing algorithm based on Type-2 Fuzzy Mixture of Gaussians
which is particularly suitable for infrared videos. The use of
the Type-2 Fuzzy Set Theory allows to take into account the
uncertainty. The results using the OTCBVS benchmark/test
dataset videos show the robustness of the proposed method
in presence of dynamic backgrounds.

1. Introduction

Many video surveillance systems in visible spectrum
[7, 38, 28] or infrared (IR) [10, 18, 3] need in the first step
to detect moving objects in the scene. The basic operation
used is the separation of the moving objects called fore-
ground from the static information called the background.
The process is called the background subtraction. In the
literature, many background modeling methods have been
developped and the most recent surveys can be found in
[12]. These background modeling methods can be classified
in the following categories: Basic Background Modeling
[19, 23, 41], Statistical Background Modeling [36, 29, 11]
and Background Estimation [32, 25, 6]. Reading the lit-
erature, two remarks can be made: The most used models
are the statistical ones due to their robustness to the critical
situations. The first way to represent statistically the back-
ground is to assume that the history over time of intensity
values of a pixel can be modeled by a single Gaussian (SG)
[36]. However, a unimodal model cannot handle dynamic

backgrounds when there are waving trees, water rippling
or moving algae. To solve this problem, the Mixture of
Gaussians (MOG) has been used to model dynamic back-
grounds [29]. This model has some disadvantages. Back-
ground having fast variations cannot be accurately modeled
with just a few Gaussians (usually 3 to 5), causing prob-
lems for sensitive detection. So, a non-parametric technique
[11] was developed for estimating background probabili-
ties at each pixel from many recent samples over time us-
ing Kernel density estimation (KDE) but it is time consum-
ing. In [27], Subspace Learning using Principal Component
Analysis (SL-PCA) is applied on N images to construct a
background model, which is represented by the mean image
and the projection matrix comprising the first p significant
eigenvectors of PCA. In this way, foreground segmentation
is accomplished by computing the difference between the
input image and its reconstruction. These four models de-
fine the first category using basic statistical model. The sec-
ond category uses more sophisticated statistical models as
Support Vector Machines (SVM) [22], Support Vector Re-
gression (SVR) [35] and Support Vector Data Description
(SVDD) [31]. The third category generalizes the models of
the first category as the single general Gaussian (SGG) [17],
the mixture of general Gaussians (MOGG) [2] and subspace
learning using Incremental Component Analysis (SL-ICA)
[34] or using Incremental Non-negative Matrix Factoriza-
tion (SL-INMF) [5] or using Incremental Rank-(R1,R2,R3)
Tensor (SL-IRT) [21]. The Table 1 shows an overview of
the statistical background modeling. The first column in-
dicates the categories and the second column the name of
each method. Their corresponding acronym is indicated in
the first parenthesis and the number of papers counted for
each method in the second parenthesis. The third column
gives the name of authors and the dates of the first related
publication. We can see that the MOG (∼100 papers) is
the most used and improved due to a good compromise be-
tween robustness and time/memory requirements.
In the MOG initialization, an expectation-maximization
(EM) algorithm is used and allows to estimate MOG param-
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Categories Methods Authors - Date
First category Single Gaussian (SG)(5) Wren et al. (1997) [36]

Mixture Of Gaussians (MOG)(∼100) Stauffer and Grimson (1999) [29]
Kernel Density Estimation (KDE)(21) Elgammal et al. (2000) [11]
Subspace Learning using PCA (SL-PCA)(15) Oliver et al. (1999) [27]

Second category Support Vector Machines (SVM)(3) Lin et al (2002) [22]
Support Vector Regression (SVR)(2) Wang et al. (2006) [35]
Support Vector Data Description (SVDD)(5) Tavakkoli et al. (2006) [31]

Third category Single General Gaussian (SGG)(3) Kim et al. (2007) [17]
Mixture of General Gaussian (MoGG)(3) Allili et al. (2008) [2]
Subspace Learning using ICA (SL-ICA))(1) Tsai and Lai (2009) [34]
Subspace Learning using NMF (SL-INMF))(2) Bucak and Gunsel (2009)[5]
Subspace Learning using IRT (SL-IRT))(1) Li et al. (2008) [21]

Table 1. Statistical Background Modeling: An Overview

eters from a training sequence according to the maximum-
likelihood (ML) criterion. The MOG is completely certain
once its parameters are specified. However, because of in-
sufficient or noisy data in training sequence, the MOG may
not accurately reflect the underlying distribution of the ob-
servations according to the ML estimation. It is problemat-
ical to use likelihoods that are themselves precise real num-
bers to evaluate MOG with uncertain parameters. To solve
this problem, we propose to model the background by using
a Type-2 Fuzzy Mixture of Gaussians Model (T2F-MOG)
recently developed by Zeng et al. [39] to introduce descrip-
tions of uncertain parameters in the MOG.
The rest of this paper is organized as follows: In the sec-
tion 2, we present briefly related works on MOG’s im-
provements. In the section 3, the T2-FMOG is used for
background modeling. In the section 4, experiments on
OTCBVS datasets show that T2-FMOG outperforms the
crisp MOG when dynamic changes occurs.

2. Related works
The original MOG for background modeling was pro-

posed by Stauffer and Grimson [29] and presents several
advantages. Indeed, it can work without having to store an
important set of input data in the running process. The mul-
timodality of the model allows deal with multimodal back-
grounds and gradual illumination changes. Despite it, this
model presents some disadvantages: the number of Gaus-
sians must be predetermined, the needfor good initializa-
tions, the dependence of the results on the true distribution
law which can be non-Gaussian and slow recovery from
failures. Others limitations are the needs for a series of
training frames absent of moving objects and the amount
of memory required in this step. To alleviate these limita-
tions, numerous improvements have been proposed over the
recent years as shown by the different acronyms found like

AKGMM [14], TLGMM [37], STGMM [40], SKMGM
[30], TAPPMOG [15] and S-TAPPMOG [8]. A recent com-
plete survey of these improvements can be found in [4].
However, none of these improvements of the first category
consider the uncertainty related to insufficient or noisy data
in training sequence. Nevertheless, due to this uncertainty,
the MOG may not accurately reflect the underlying distri-
bution of the observations according to the ML estimation.
Allili et al. [2] introduced this notion using Bayesian based
estimators such as the minimum message length and the in-
finite Gaussian mixtures. Another way to take into account
this uncertainty is to use fuzzy concepts with the MOG.
A first approach developed by [33] consists in the fuzzy
MOG (FMOG) that estimates its parameters based on the
modified fuzzy C-means algorithm. So, the FMOG focuses
on the precise parameter estimation of MOGs using fuzzy
approaches rather than modeling MOGs uncertain param-
eters. On the other hand, Type-2 fuzzy sets (T2-FSs) [24]
provide a theoretically well-founded framework to handle
MOGs uncertain parameters. Their recent success achieved
in pattern recognition has been largely attributed to their
three-dimensional membership functions (MFs) for model-
ing uncertainties. Recently, Zeng et al. [39] introduce the
Type-2 fuzzy sets in the MOG and called it Type-2 Fuzzy
Gaussian Mixture Model (T2-FMOG). Experimental vali-
dations made in [39] show the superiority of T2-FMOG in
pattern classification. In this context, we propose to apply
the Type-2 FMOG for background modeling to take into ac-
count the uncertainty.

3. Background Modeling using Type-2 FMOG

Each pixel (x, y) is characterized by its IR intensity. So,
the observation Xt at time t is a scalar. Then, the crisp
MOG is composed of K mixture components of multivari-
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ate Gaussian as follows:

P (Xt) =
K∑
i=1

ωi,tη (Xt, µi,t, σi, t) (1)

where the parameters are K is the number of distributions,
ωi,t is a weight associated to the ith Gaussian at time t with
mean µi,t and standard deviation σi, t. η is a Gaussian prob-
ability density function:

η (Xt, µ, σ) =
1

σ
√

2π
× exp

(
−1

2

(
Xt − µ
σ

)2
)

(2)

To take into account the uncertainty, we propose to
use T2 membership functions which represent multivari-
ate Gaussian with uncertain mean vector or covariance ma-
trix, and replace the corresponding parts in (Equation 1)
to produce the T2-FMOG with uncertain mean vector (T2-
FMOG-UM) or uncertain variance (T2-FMOG-UV) as in
[39].

For the T2-FMOG-UM, the multivariate Gaussian with
uncertain mean vector is defined as:

η (Xt, µ̃, σ) =
1

σ
√

2π
× exp

[
−1

2

(
Xt − µ̃
σ

)2
]

(3)

with µ̃ ∈
[
µ, µ

]
.

For the T2-FMOG-UV, the multivariate Gaussian with un-
certain variance vector is given in the following formula:

η (Xt, µ, σ̃) =
1

σ̃
√

2π
× exp

[
−1

2

(
Xt − µ
σ̃

)2
]

(4)

where σ̃ ∈ [σ, σ].
µ̃ and σ̃ denote the uncertain mean vector and the standard
deviation respectively. Because, there is no prior knowledge
about the parameter uncertainty, practically we assume that
the mean and standard deviation vary within intervals with
uniform possibilities, i.e., µ̃ ∈

[
µ, µ

]
or σ̃ ∈ [σ, σ]. Each

exponential component in Equation 3 and Equation 4 is the
Gaussian primary membership function (MF) with uncer-
tain mean or standard deviation as shown in Fig.1. The
hatched region is the footprint of uncertainty (FOU). The
thick solid and dashed lines denote the lower and upper
MFs. In the Gaussian primary MF with uncertain mean,
the upper MF is:

h (Xt) =


η
(
Xt;µ, σ

)
, if Xt < µ

1, if µ ≤ Xt < µ

η (Xt;µ, σ) , if Xt > µ

(5)

where η
(
Xt;µ, σ

)
= exp

[
− 1

2

(
Xt−µ
σ

)2
]

and

η (Xt;µ, σ) = exp

[
− 1

2

(
Xt−µ
σ

)2
]

.

Figure 1. At the left, the Gaussian primary MF with uncertain
mean. At the right, the Gaussian primary MF with uncertain std.
Both of them have uniform possibilities. The hatched region is the
FOU. The thick solid and dashed lines denote the upper and the
lower MFs respectively.

The lower MF is:

h (Xt) =

{
η (Xt;µ, σ) , if Xt ≤

µ+µ

2

η
(
Xt;µ, σ

)
, if Xt >

µ+µ

2

(6)

In the Gaussian primary MF with uncertain standard
deviation, the upper MF is h (Xt) = η (Xt;µ, σ) and the
lower MF is h (Xt) = η (Xt;µ, σ).

The factor km and kν control the intervals in which the
parameter vary as follows:

µ = µ− kmσ, µ = µ+ kmσ, km ∈ [0, 3] , (7)

σ = kνσ, σ =
1
kν
σ, kν ∈ [0.3, 1] . (8)

Because a one-dimensional gaussian has 99.7% of its
probability mass in the range of [µ− 3σ, µ+ 3σ], the
parameters km and kν have been choosen in the intervals:
km ∈ [0, 3] and kν ∈ [0.3, 1]. These factors also control
the area of the FOU. The bigger km or the smaller kν , the
larger the FOU, which implies the greater uncertainty.

Both the T2-FMOG-UM and T2-FMOG-UV can be used
to model the background and we can expect that the T2-
FMOG-UM will be more robust than the T2-FMOG-UV.
Indeed, only the means are estimated and tracked correctly
over time in the MGM maintenance. The variance and the
weights are unstable and unreliable as explained by Greiff-
enhagen et al. [13].

3.1. Training

To initialize the T2-FMOG, we have to estimate the
parameters µ, σ and the factor km or kν . Zeng et al. [39]
set the factors km and kν as constants according to prior
knowledge. In our work, they are fixed depending to the
video (see Section 4). Thus, parameters estimation of
T2-FMOG includes three steps:
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• Step 1: Choose K between 3 and 5.

• Step 2: Estimate MOG parameters by an EM algo-
rithm.

• Step 3: Add the factor km or kν to MOG to produce
T2-FMOG-UM or T2-FMOG-UV.

Once the training is made, a first foreground detection
can be processed.

3.2. Foreground Detection

Foreground detection consists in classifying the current
pixel as background or foreground. By using the ratio =
rj = ωj/σj , we firstly ordered the K Gaussians as in [29].
This ordering supposes that a background pixel corresponds
to a high weight with a weak variance due to the fact that
the background is more present than moving objects and
that its value is practically constant. The first B Gaussian
distributions which exceed certain threshold T are retained
for a background distribution:

B = argminb

(∑b
i=1 ωi,t > T

)
(9)

The other distributions are considered to represent a fore-
ground distribution. When the new frame incomes at times
t + 1, a match test is made for each pixel. For this, we use
the log-likelihood, and thus we are only concerned with the
length between two bounds of the log-likelihood interval,
i.e., H (Xt) =

∣∣ln (h (Xt))− ln
(
h (Xt)

)∣∣. In Fig 1 (left
side), the Gaussian primary MF with uncertain mean has:

H (Xt) = (10)
2km|Xt−µ|

σ if Xt ≤ µ or Xt ≥ µ
|Xt−µ|

2σ2 + km|Xt−µ|
σ + k2

m

2

if µ < Xt < µ

In Fig 1 (right side), the Gaussian primary MF with un-
certain standard deviation has:

H (Xt) =
(

1
1/k2

ν − k2
ν

)
|Xt − µ|2

2σ2
(11)

µ and σ are the mean and the std of the original certain
T1 MF without uncertainty. Both (10) and (11) are increas-
ing functions in term of the deviation |Xt − µ|. For exam-
ple, given a fixed km, the farther the Xt deviates from µc,
the larger H (Xt) is in (12), which reflects a higher extent
of the likelihood uncertainty. This relationship accords with
the outlier analysis. If the outlier Xt deviates farther from
the center of the class-conditional distribution, it has a larger
H (Xt) showing its greater uncertainty to the class model.
So, a pixel is ascribed to a Gaussian if:

H (Xt) < kσ (12)

Method T2-FMOG-UM T2-FMOG-UV MOG
S (A,B) 48% 43% 36%

Table 2. Quantitative Evaluation

where k is a constant threshold determined experimen-
tally and equal to 2.5. Then, two cases can occurs: (1) A
match is found with one of the K Gaussians. In this case, if
the Gaussian distribution is identified as a background one,
the pixel is classified as background else the pixel is classi-
fied as foreground. (2) No match is found with any of theK
Gaussians. In this case, the pixel is classified as foreground.
At this step, a binary mask is obtained. Then, to make the
next foreground detection, the parameters are updated using
the same scheme as in [29].

4. Experimental Results
We have applied our algorithms on videos of the

OTCBVS datasets [1] and compared them with the Mix-
ture of Gaussians (MOG) modeling proposed by Kaew-
TraKulPong and Bowden [16]. These three algorithms
were implemented under Microsoft Visual C++ using the
OpenCV library.

4.1. Dataset 01: OSU Thermal Pedestrian Database

The figure 2 shows the results obtained on the Sequence
1 [9] using the MOG [16], the T2-FMOG-UM and the
T2-FMOG-UV on the frame 27. Silhouettes are well
detected by the three algorithms but the T2-FMOG-UM
gives less false detection followed by the T2-FMOG-UV
and the crisp MOG.

Then, to evaluate quantitatively our method, we have
used the similarity measure derived by Li et al. [20]. Let
A be a detected region and B be the corresponding ground
truth, the similarity between A and B can be defined as:

S (A,B) =
A ∩B
A ∪B

(13)

If A and B are the same, S (A,B) approaches 1, otherwise
0 i.e. A and B have the least similarity. The ground truth is
marked manually. Table 2 shows similarity value obtained
for this experiment. It confirms the qualitative evaluation.

4.2. Dataset 05: Terravic Motion IR Database

We have tested the proposed algorithm on the Terravic
datasets [26] too. We have choosen the two sequences
called Uneventful Background Motion because they present
dynamic backgrounds as waving vegetations. In this se-
quence, nothing must be detected. The figure 3 shows the
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Figure 2. Sequence OSU - First row: The current image, the
ground truth. Second row: Results with T2-FMOG-UM and the
T2-FMOG-UV respectively. Third row: Result with the MOG

Figure 3. Sequence IRTR01 - First row: The current image, Result
with the MOG [9]. Second Row: Result with T2-FMOG-UM,
Result with T2-FMOG-UV

result obtained using the MOG, the T2-FMOG-UM and the
T2-FMOG-UV on the frame 150 of the sequence IRTR01.
The figure 4 shows the same experiments on the frame 150
of the sequence IRTR02. For these two experiments, the
learning rates is the same for each method. km =2 for
the T2-FMOG-UM and kν = 0.9 for theT2-FMOG-UV.
The motion causes substantial false positive detection in
the MOG. The more robust is the T2-FMOG-UM followed
by the T2-FMOG-UV. These results confirm the robustness
of the proposed method in the presence of dynamic back-
grounds.

5. Conclusion
In this paper, we have presented background modeling

algorithms using the Type-2 Fuzzy Mixture of Gaussians.

Figure 4. Sequence IRTR02 - First row: The current image, Result
with the MOG [9]. Second Row: Result with T2-FMOG-UM,
Result with T2-FMOG-UV

Experiments in infrared video datasets show that the T2-
FMOG-UM is more robust than the crisp MOG in the case
of dynamic backgrounds (waving vegetations). One future
direction of this work is an adaptive version of the T2-
FMOG-UM which allows to determine dynamically the op-
timal number of Gaussians. Future developments of this
work concern two directions: the first one concerns a com-
plete study on the parameter estimations of the T2-FMOG
and the second one focuses on an adaptive version of the
T2-FMOG which allows to determine dynamically the op-
timal number of Gaussians.
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