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Abstract

In this paper we propose a machine learning approach
for the detection of gaseous traces in thermal infra red
hyperspectral images. It exploits both spectral and spa-
tial information by extracting subcubes and by using ex-
tremely randomized trees with multiple outputs as a clas-
sifier. Promising results are shown on a dataset of more
than 60 hypercubes.

1. Introduction
In this paper we propose a supervised machine learning

approach for the detection of specific gaseous traces in ther-
mal infra red (TIR) hyperspectral images. Although invis-
ible to the human eye, different materials (gases, liquids,
solids) exhibit unique spectral signatures. Automatic de-
tection of these traces is of great importance, for example
for environmental monitoring where possible applications
include the detection of oil slicks in the sea after a ship-
wreck [7] or the detection of industrial gaseous pollutants
[5]. In the biomedical field, hyperspectral image analysis
approaches could help to detect abnormalities such as skin
tumours [2, 6] or other malignancies in tissues [10].
Our proposed approach uses both spatial and spectral

information. It takes its inspiration from the methods of
Marée et al. [9, 8] and Dumont et al. [3] respectively pro-
posed for the automatic classification and annotation (se-
mantic segmentation) of conventional 2D images. Their
method was based on the extraction of local subwindows at
random positions in images, their description by raw pixel
values, and the use of an ensemble of decision trees tech-
nique, namely the extremely randomized trees [4].
In this work, we extend the method of [3] to work with

hyperspectral data cubes where a given pixel has tens of
wavelengths instead of only the three red, green, and blue
components in conventional color images. We also high-
light one interesting built-in feature of tree-based algo-
rithms, namely the possibility to rank variables according

to their importance for discriminating classes, which allows
implicitely to perform spectral band selection without the
need of explicit pre-processing or dimensionality reduction
techniques. We illustrate the potentials of the approach for
the detection of simulated gaseous traces incrusted in real-
world scenes under several scenarios.

2. Method
We address the problem of knownmaterial detection as a

supervised segmentation task: given a sample LS of hyper-
cubes with every pixel (in the x-y position plane) labelled
with one class among a finite set of predefined classes (gas
types or non-gas), build a classifier able to predict as accu-
rately as possible the class of every pixel of a new, previ-
ously unseen, hypercube.
Contrary to many other approaches dedicated to hyper-

spectral image segmentation, we do not explicitely perform
dimensionality reduction or band selection (typically using
ICA, PCA, or MNF like in [12] ) neither apply any trans-
forms to the hyperspectral images (such as wavelet packet
transform in [11]). Instead, we work with raw data and the
task of selecting the relevant spectral bands is left to the
learning algorithm. Another important aspect in the anal-
ysis of hyperspectral images is the exploitation of spatial
information for pre-processing or learning [1].
In our work, we propose to adapt the image annotation

approach of [3] for the segmentation of hyperspectral im-
ages. The main idea of the training stage of this method,
transposed to hyperspectral images, is to extract smaller lo-
cal hypercubes of fixed sizes (called subcubes in what fol-
lows) from the learning sample of hypercubes and to use a
multiple output learning algorithm to learn a subcube anno-
tation model. Predictions for a new test hypercube is then
obtained by aggregating the predictions given by this anno-
tation model for all possible subcubes that the test hyper-
cube contains. Like in the conventional 2D image context,
we expect that the use of a multiple output method and the
averaging effect at the prediction stage should contribute to
provide spatially smooth predictions.
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The description of the method below has been adapted
from [3]. Although rather straightforward, the extension to
hyperspectral images proposed here is novel.

2.1. Generation of the learning sample of subcubes
The learning sample is obtained by extracting N sub-

cubes of size w × h (in the x− y position plane) at random
positions in the (bigger) training hypercubes. Each of these
subcubes is described, at the input, by w × h × l numerical
values (where l is the number of spectral bands), and, at the
output, by the class of each of its w × h pixels. By ran-
domly sampling subcubes, we are able to cover large area
proportions of hypercubes at a lower cost than exhaustive
sampling.

2.2. Learning the subcube annotation model
An annotation model for subcubes is then obtained by

using multiple output extremely randomized trees [3].
In (single output) classification, the basic Extra-Trees

method [4] grows an ensemble of M (typically M ∈
[10; 100]) unpruned trees, each one being created in a top-
down fashion. With respect to other tree-based ensemble
methods such as Tree Bagging or Random Forests, Extra-
Trees select cut-points at random and use the whole learning
sample rather than a bootstrap replica. Their node splitting
algorithm depends on two parameters, namely the size K
of the random subset of attributes considered at each split,
and the minimal (sub)sample size to split a node, nmin. The
default value recommended in [4] is K equal to the square
root of the total number of attributes and nmin = 2 (corre-
sponding to fully developed trees).
This algorithm can be adapted to handle multiple classi-

fication outputs simply by changing the score measure used
to evaluate splits and by modifying the way predictions are
computed at tree leaves. The score measure used in our ex-
periments is the average of the standard Gini entropy based
score for each output pixel. More precisely, we define:

Score(S, T ) =
1
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where T is the split to evaluate, S the subsample of size
n... associated to the node to split,m is the number of pixel
classes, ni.k(i = 1, ..., m, k = 1, . . . , wh) is the number
of subcubes in S of class i at pixel k, ni1k (resp. ni2k) the

number of subcubes in S of class i at pixel k and which
satisfy (resp. do not satisfy) test T , and n.1. (resp. n.2.) the
total number of subcubes in S which satisfy (resp. do not
satisfy) test T .
Once the tree is built, class probability estimates at each

subcubes position could then be obtained at each leaf simply
by computing class frequencies over all training subcubes
that reach the leaf. However, the size of such a probabil-
ity vector is equal to the number of pixels times the num-
ber of classes and thus the storage of these vectors at each
leaf node could require a lot of memory space. To reduce
this requirement, we follow [3] and keep track only of the
majority class of each pixel together with its confidence as
measured by its frequency.

2.3. Prediction of a new test hypercube
To annotate a new test hypercubes, all of its constituting

(overlapping) subcubes1 are extracted and annotated using
the subcube annotation model. This annotation assigns a set
of tuples (class number,rate of confidence) to each pixel of
the tested hypercubes (one for each tree and for each sub-
cube that covers this pixel). From this set of predictions, a
vector of size m (number of different classes) is computed
for each pixel: its i-th element (i = 1, ..., m) is the sum
of the confidence numbers which are associated to the i-th
class among all predictions. The predicted class for the con-
sidered pixel is then the one that receives the highest overall
confidence.

2.4. Computational complexity
The complexity of the learning stage is

O(MwhlKN log2 N) to grow M trees from N sub-
cubes with the Extra-Trees filtering parameter K . The
computation of a prediction for a subcube with M
trees requires O(M log2 N) tests. The number of sub-
cubes to test in a hypercube of size wi × hi is equal to
(wi − w + 1)(hi − h + 1).

2.5. Variable importance ranking
Several importance measures have been proposed in the

literature to compute from a tree model a ranking of the in-
put features according to their relevance for predicting the
output. In a multiple output context, these measures can be
extended to obtain a ranking for each output pixel. How-
ever, in the context of our application, we are mainly inter-
ested in computing a ranking of the features (ie. spectral
bands) for each class (ie. type of gas), independently of the
output pixel being predicted. To derive such importance for

1Note that the prediction stage can be fasten, at the expense of accu-
racy, by subsampling the subcubes. To get a prediction for the whole hy-
percubes, the only constrain is that every pixel must be covered by at least
one subcube.
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a given class i, we therefore propose to compute at each test
node T the following expression:

Vi(T ) =
1

w.h

w∗h∑

k=1

{ni.k(1 −
ni.k

n...
) −

2∑

j=1

nijk(1 −
nijk

n.j.
)},

(5)
where the notations are as defined in Section 2.2.
Vi(T ) is such that

∑m
i=1

Vi(T ) = n...Score(S, T ) with
Score(S, T ) as defined in (2). A split at a tree node is
thus considered as more important for class i if it concerns
many cases (n... is large) and at the same time discrimi-
nates well this class versus the others (nijk/n.jk $ 0 or
nijk/n.jk $ 1, ∀j, k). The overall importance of a feature
for class i is then computed by summing the Vi(T ) values
for all test nodes T of the ensemble of trees where this fea-
ture is used to split. For the sake of presentation, one usu-
ally normalizes the importances obtained in this way for the
different features so that they sum up to 100%.

3. Experiments
3.1. Training data
In our work, the goal is to detect different types of

gaseous traces. Such an approach can be useful in many
applications eg. chemical accident detection, surveillance
of industries, long term pollution follow-up, etc. The sen-
sor technology used in this project focuses on thermal in-
frared domain, ie. a specific segment of the electromagnetic
spectrum (8 to 12 microns). It presents specificities which
cannot be exploited in the visible or near infra red domain:
traces of gaseous, liquid, or solid chemical materials can
be seen as long as their presence is associated to temper-
ature gradients in the surroundings and their light absorp-
tion bands is adapted to the wavelength range of observa-
tion (which enhances the detection of their presence based
on thermal contrasts).
In our case, the imaging sensors measure the spectral sig-

natures in real-world scenes. 160×100 images are obtained
where each pixel spectral response is described by 94 spec-
tral bands with wavelength ranging from 7.76 m to 12.98
m. Various gases are simulated under various conditions
and incrusted in these cubes, as illustrated in Figure 1. Our
Java implementation works with hypercubes in the ENVI
format and of dimensionswidth× height×wavelengths
= 160 × 100 × 94.
In our experiments, we work with three gases: SF6 (Sul-

fur hexafluoride), Acetone, and Methanol. For each of
them, we have in the training set 21 hypercubes where the
gas was encrusted. Ten of these cubes depict a ground scene
(rock and soil) and were acquired during the middle of af-
ternoon, with an ambient temperature of 28◦C, the sensor
positioned at a height of 12 m compared to the ground, and
a distance between the sensor and the observed ground of

Figure 1. An original scene (top left), the ground truth of two SF6
gas clouds incrusted (top right), and the resulting hypercube (bot-
tom), more precisely the x-position axis and l-wavelength axis (y
axis is fixed at the red line position).

Figure 2. Acetone, Methanol, and SF6 theoretical spectral re-
sponses between 7.76 m and 12.98 m.

50 meters. In these cubes, a gas cloud was simulated with
various concentrations. We also include in the training set
10 other cubes from a landscape scene with various thermal
contrasts. Each of these cubes contains one gas cloud and
was acquired at the end of afternoon. The visibility was 20
km and the sky is cloudy at horizon. The temperature at the
horizon was 19◦C. The first plan is situated at 100 meters.
The second plan is situated at 10 km and the sky, by defini-
tion, is modelled at 100 km. Finally, in the last street scene,
a very big cloud was incrusted. The cube was acquired in
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Figure 3. Original pictures of the three training scenes (left), in-
frared images at 7.76 m (middle), and ground truths (right). In the
training set, for each gas, 10 cubes are generated from the ground
scene (top), 10 from the landscape scene (middle), 1 cube from the
street scene (bottom).

the middle of afternoon. The visibility was 23 km. The tem-
perature at the horizon was 27◦C. The first plan (building)
is situated at 200 m (meters) and the sky, by definition, is
modelled at 100 km. The observed scenes and simulated
gas clouds are illustrated in Figure 3. Before applying the
learning method, the ground truths are binarized and pixels
are annotated as non-gas (black), Acetone (blue), Methanol
(red) or SF6 (white). A multi-class model is then built.

3.2. Ranking of relevant spectral bands
In this first experiment, we illustrate the implicit spectral

band selection of the learning algorithm. As the gases we
are working on are simulated, we know in advance which
spectral bands are specific for each gas (see Figure 2). The
purpose of this experiment is thus to assess if these bands
are ranked first by the learning algorithm (see Section 2.5)
applied to discriminate gas types and non-gas in the training
set of 63 hypercubes.
Despite the various concentrations, temperatures, and

background scenes in the training dataset resulting in rather
different hypercubes, the algorithm succeeds to detect spec-
tral bands specific to these three gaseous traces, as shown
by results in Table 1 in agreement with Figure 2. These
results were obtained using 5000 training subcubes of size
3 × 3 × 94 randomly sampled in each hypercube (thus a
total of 315000 training subcubes), M = 10 trees, and the
Extra-Trees parameter K equal to the total number of in-
put attributes (3 × 3 × 94 = 846). The model has a total
complexity of 438030 nodes and takes 20Mo (3.15Mo if
compressed) on disk.
In some applications, this functionality might be useful

Wavelength Importance
SF6
70 (10.56 m) 16.45%
69 (10.52 m) 9.82%
71 (10.60 m) 9.44%
72 (10.64 m) 8.31%
0 (7.76 m) 5.21%
68 (10.48 m) 2.55%
73 (10.68 m) 1.58%
59 (9.72 m) 1.12%
Methanol
0 (7.76 m) 6.87%
44 (9.52 m) 6.35%
42 (9.44 m) 5.51%
43 (9.48 m) 5.38%
45 (9.56 m) 3.98%
46 (9.60 m) 3.03%
48 (9.68 m) 2.48%
41 (9.40 m) 2.34%
47 (9.64 m) 1.74%
49 (9.72 m) 1.36%
51 (9.80 m) 1.17%
50 (9.76 m) 1.11%
52 (9.84 m) 1.11%
54 (9.92 m) 1.02%
53 (9.88 m) 1.01%
Acetone
11 (8.20 m) 9.08%
12 (8.24 m) 8.10%
13 (8.28 m) 5.21%
10 (8.16 m) 4.16%
0 (7.76 m) 3.37%
14 (8.32 m) 2.17%
9 (8.12 m) 1.90%
44 (9.52 m) 1.07%
46 (9.60 m) 1.05%
43 (9.48 m) 1.05%
71 (10.60 m) 1.04%
70 (10.56 m) 1.02%

Table 1. Variable ranking for each gas class (only variables with
importance > 1% are shown).

to characterize materials for which the spectral signatures
are unknown in advance (e.g. tumors). It might also be
used as a feature selection/dimensionality reduction proce-
dure when the total amount of data is too large.

3.3. Automatic segmentation

We present here multi-class prediction results obtained
automatically on hypercubes that were not included in the
training set.
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3.3.1 Known scenes but unknown conditions

In the first batch of experiments, the test cubes are from the
same scenes (the ground scene and the background scene),
but the gas clouds were simulated under different condi-
tions (namely concentrations or temperatures are different).
Figure 4 illustrates the results obtained with subcubes of
sizes w = h = 1 (left) and w = h = 3 (right). Both
models give good results, probably because the variations
of the test hypercubes compared to the training hypercubes
are not drastic. However, we observe that thanks to the use
of spatial information through 3 × 3 subcubes, predictions
are smoother compared to the case where only individual
pixel spectral signatures are used. Indeed, this latter tends
to produce isolated false predictions and erratic gas cloud
borders. These results were obtained using 5000 training
subcubes randomly sampled in each of the 63 hypercubes,
M = 10 fully developed trees, a number of random tests
equal to the rounded square root of the total number of
input attributes (

√
1 × 1 × 94 = 10 for 1 × 1 subcubes,√

3 × 3 × 94 = 29 for 3 × 3 subcubes). Let us emphasize
here the fact that we are dealing with a training database of
63× 5000× 3× 3× 94 = 266, 490, 000 floating point val-
ues. In our current unoptimized implementation, the Extra-
Trees subcube model is built in slightly less than 9 minutes
on a 2.4Ghz computer and require less than 2Gb of run-
ning memory. The model has a total complexity of 543056
nodes. Loading and predicting a new hypercube is rather
fast (less than 5 seconds) as it only involves propagating
its subcubes through the ensemble of trees where internal
nodes simply test raw spectral responses within subcubes.
It is also worth noting that the method is highly paralleliz-
able. Indeed, tree induction, subcube extraction and their
propagation in trees are processes that could be run inde-
pendently and their results subsequently aggregated.

3.3.2 Unknown scene and unknown conditions

In the last experiment, we use the model built on the 63
training cubes and try to detect two simulated gaseous traces
in an hypercube of an unknown, grass, scene. More pre-
cisely, for this new scene, for each of the three gas we have
one test hypercube where two gas clouds were incrusted
to different concentrations: a cloud with a low concentra-
tion, and a cloud with saturated absorption, as illustrated
in Figure 5. The saturation of gas warps the principal ab-
sorption peak and reveals sometimes secondary absorption
peaks. The cube was acquired in the middle of afternoon.
The ambient temperature during the acquisition was 23◦C.
The sensor is positioned at a height of 12 m compared to the
ground. The distance between the sensor and the observed
grass is 30 m.
Figure 5 show results for the hypercube containing SF6

gaseous traces (similar results are obtained for hypercubes

Figure 4. Predictions for Acetone, Methanol, SF6 test cubes of
known scenes but unknown conditions. Left: 1 × 1 subcubes,
Right: 3 × 3 subcubes.

with Methanol and Acetone). Although results are very
noisy with the 1 × 1 annotation model and the second gas
cloud is mostly missed, the predictions are getting better
with models based on increased subcube sizes. With 10×10
subcubes, the two gas clouds are clearly detected and sepa-
rated from the non-gas background. Regarding confidence
maps, we observe that there is a lot of uncertainty with in-
dividual pixel classifier predictions. With larger subcube
annotation models, the method is more confident (higher
probability estimates) in most of the non-gas regions and
for the cloud with higher concentration, but less confident
for the lower concentration gas cloud and at the borders
of both clouds. Overall, using subcubes allows to reduce
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Figure 5. Top: Original image of the unknown scene, infrared im-
age at 7.76 m, and the ground truth. Middle: predictions obtained
using models built on subcubes of sizes 1 × 1, 3 × 3, or 10 × 10

(from left to right). Bottom: confidence maps (black is the most
confident, white is the less confident).

noise in the predictions and improves spatial coherence, as
well as increases the confidences. Post-processing (e.g. us-
ing thresholds on confidences, constraints on the connected
component sizes, or further spatial smoothing) might be in-
vestigated to further reduce false detections.

4. Discussion

In this paper, we proposed a generic machine-learning
approach for the detection of knownmaterials in hyperspec-
tral images. It was applied for the detection of simulated
gaseous traces in thermal infra red hyperspectral images of
real-world scenes. The method works directly on hyper-
cube raw data without signal pre-processing and exploits
spectral and spatial information. We have shown promis-
ing qualitative results on a database of more than 60 hyper-
spectral cubes as well as the learning algorithm’s capability
to perform spectral band selection, and its low computa-
tional complexity. Future work is needed to evaluate quan-
titatively the approach on even more data and compare its
performances with other methods. Extension of the model
to deal with numerical outputs (to predict gas concentration)
instead of discrete outputs is also thinkable.
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