
Abstract 

Associating image content with their geographic locations 
has been increasingly pursued in the computer vision 
community in recent years. In a recent work, large 
collections of geotagged images were found to be helpful 
in estimating geo-locations of query images by simple 
visual nearest-neighbors search. In this paper, we 
leverage user tags along with image content to infer the 
geo-location. Our model builds upon the fact that the 
visual content and user tags of pictures can provide 
significant hints about their geo-locations. Using a large 
collection of over a million geotagged photographs, we 
build location probability maps of user tags over the 
entire globe. These maps reflect the picture-taking and 
tagging behaviors of thousands of users from all over the 
world, and reveal interesting tag map patterns. Visual 
content matching is performed using multiple feature 
descriptors including tiny images, color histograms, GIST 
features, and bags of textons. The combination of visual 
content matching and local tag probability maps forms a 
strong geo-inference engine. Large-scale experiments 
have shown significant improvements over pure visual 
content-based geo-location inference. 

1. Introduction 
Human beings, over the years, have constructed rich 

vocabularies to describe sceneries, objects, people, and 
places captured in pictures. Most such words instantly 
strike geographical associations in our minds. These 
geographical associations may vary from being rather 
specific (e.g., for Paris) to being fairly general (e.g., for 
beach). For human beings, building such associations is 
natural and results from conditioning and education. 
Additionally, humans possess the unique capability to 
analyze the visual content of pictures and draw 
conclusions as to its geographical location. In fact, Google 
has recently introduced an online game “Where in the 
World” (Fig. 1) to tap this human potential.  

Figure 1: Google “Where in the World” game. Here, a user 
scores 161 points when the guess is 2171 km away. 

Making and preserving these geographical associations 
with pictures is an age-old process. During the “film-
camera” days, people would write the place where the 
picture was taken on the back of the print. Today a user 
can map his pictures precisely using community image 
management systems such as Google™ Picasa™, Google 
Earth, and Yahoo® Flickr.  

A fast-emerging trend in digital photography and 
community photo sharing is geotagging. The phenomenon 
of geotagging has generated a wave of geo-awareness in 
multimedia1,2 [5][7][10][12]. Yahoo Flickr has amassed 
about 2.5 million photos geotagged in the month this paper 
was written3. Geotagging is the process of adding 
geographical identification metadata to various media such 
as websites or images and is a form of geospatial metadata. 
It can help users find a wide variety of location-specific 
information. For example, one can find images taken near 
a given location by entering latitude and longitude 
coordinates into a geotagging-enabled image search 
engine. Geotagging-enabled information services can also 
potentially be used to find location-based news, websites, 
or other resources. A current key limitation to geotagging 
in photo-sharing websites is the manual labor involved 
(even though automatic geotagging using GPS receivers is 

1 http://zonetag.research.yahoo.com 
2 http://tagmaps.research.yahoo.com/ 
3 http://www.flickr.com 
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gaining attraction among early adopters). In other words, 
geotagging cannot proceed without human intervention 
and any process that depends on manual labor entirely is 
not scalable. However, participation of millions of people 
in the process gives rise to an interesting solution to this 
problem, as discussed below. 

With the massive volume of digital imagery being 
captured and shared on the Web, and the phenomenon of 
geotagging having acquired phenomenal proportions, it 
has become a recent research trend to explore computer 
vision algorithms to link user-tags, visual content of 
pictures, and community knowledge with the geographic 
locations where the pictures were captured. An important 
research question that motivates our current work is how 
this massive volume of community geotagged image data 
can be leveraged to geotag or assign geographic locations 
to images, especially legacy pictures that were taken 
before the GPS days. 

In a work published in [14], a methodology based on 
simple K-nearest-neighbor visual search to infer geo-
association of images was described. The basic premise 
explored in the aforementioned work was that visual 
content of pictures and their geographic locations are 
correlated. The strength of the system lay in a simple 
technique and the availability of a very large-scale image 
database (~6 million images) for search. In our work, we 
take guidance from [14] and explore how user-tags can be 
leveraged in addition to K-nearest-neighbor visual search 
to refine the geo-inference. We work with an image 
database roughly one-sixth the size of that used in [14] to 
build location probability maps for user-tags, which will be 
described in Section 3. Pure tag-based geo-inference forms 
a baseline against which we compare pure visual search 
(K-nearest-neighbor) based geo-inference. Finally, we 
propose a new method where local tag probability maps 
are exploited to improve the location inference using pure 
visual search alone. It would be interesting to compare 
human geo-location prediction performance (as in 
Google’s “Where in the World” game) with that of 
automatic algorithms. 

2. Related Work 
Content understanding in images has been studied for 

decades in the vision research community. Content 
understanding in images can translate to understanding 
scene semantics [20][21] or event semantics [21][22]. 
Invariably, image content understanding algorithms 
involve building classifiers for a finite number of semantic 
categories. A potent application of image understanding is 
image retrieval. However, learning-based retrieval is 
constrained by the cardinality of semantic categories. 
Another line of research has, for a long time, explored 
unsupervised similarity-based search and retrieval using 

low-level visual features alone [23]. Recent interest in 
brute force searches using massive image databases has 
been shown to be useful for image understanding tasks as 
well [16]. Such methods, which rely on retrieval for 
semantic understanding, complete a full circle in 
connecting the fields of image retrieval and image 
understanding. However, all of the above systems still 
focus on only the image content. With rapid advances in 
technologies related to digital imaging, digital cameras 
also bring with them a powerful source of information 
little exploited previously for scene classification: camera 
metadata embedded in the digital image files. Camera 
metadata (or “data about data”) records information 
related to the image capture conditions and includes values 
such as date/time stamps, subject distance, and GPS 
coordinates. They contain rich contextual information that 
is usually complementary to the image features for the 
purpose of semantic understanding. The research 
community increasingly turns to metadata and picture-
taking context in the pursuit to solve the semantic 
understanding problem [1][2]. 

Important metadata can be collected also as a result of 
user participation. Online photo-sharing websites such as 
Flickr have witnessed a surge of collaborative tagging 
from users, resulting in folksonomies [26][27]. Recently, 
there have been research efforts to understand user image 
tagging behavior [3] and to characterize this behavior over 
time [6]. When users associate geographic content with 
media on the Web, it becomes an instance of geotagging. 
With the growing popularity of geotagging, mining, 
organizing, and making sense of georeferenced data and 
linking geo-content to visual content has become essential. 
Initial attempts to identify geo-relevant content on Web 
pages in order to assign a geographic focus to pages were 
made in [4]. Retrieval of geographical landmarks from the 
Flickr dataset was studied using a combination of visual 
features and geotags in [9]. An algorithm to create 
summaries of georeferenced collections was proposed in 
[8] to improve browsing and visualization of images. 
Season and location context was found to be useful for 
region labeling in [11]. The problem of finding
associations between places and picture semantics was 
studied in [13][28].  

While location context has been used for image 
understanding, the inverse problem of inferring location 
from image content is still novel and difficult to address 
[14][24][25]. An impressive system relying on simple 
visual search over a massive image database demonstrated 
good performance for geo-localization task in [14]. Geo-
location in a known urban environment was accomplished 
by matching 3D building facades using SIFT features 
while the camera pose is recovered [15]. The 
distinguishing aspect of our work from these two 
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references lies in the novel use of user-tags along with 
image content for improved geo-localization.  

3. Mapping User Tags over the Globe 
We build a collection of Flickr images containing geo-

location metadata. Our goal is to investigate the 
relationship between user-tags, geo-location, and image 
content (appearance). To this end, we want a collection of 
interesting images that contains both user-tags and geo-
locations. Our collection contains 1.2 million images 
download from Flickr as follows: We observed that geo-
located images are nearly always also annotated with user-
tags. We query Flickr for the 2500 most interesting geo-
located images captured on a specific day, and repeat this 
process for 504 specific days. Unlike [14], we have no 
requirements for user-tags except for a set of negative 
query terms that prevent low-quality (e.g., camera phone) 
or otherwise objectionable images from being gathered in 
our query. Note that using the interest level as a filter 
ensures that the quality and content of the images in the 
collection are reasonable thanks to the implicit human 
filtering by Flickr users. 

Geo-locations of pictures and the user-tags assigned to 
the pictures are correlated. This naturally follows from the 
fact that human vocabulary is countable and only a subset 
of the vocabulary is likely to be used to tag pictures taken 
in a given geographic region. Pictures taken in a particular 
region are also likely to capture similar scenes or objects 
of interest, hence further limiting the vocabulary used to 
tag them. For example, pictures taken around the Eiffel 
Tower are far more likely to be tagged “Eiffel Tower,” 
“Paris,” and “France” than are pictures taken in New York 
City. At the same time, it is intuitive to think that pictures 
bearing different user-tags are distributed differently 
across the globe. If the entire globe is quantized to 
represent a finite number of regions, it is possible to 
probabilistically associate user-tags and geographic 
regions.  

We define the following terms with respect to a corpus 
of images with user-tags and with known geographic 
locations. Let },....,,{ 21 NtttT =  denote the set of user-tags 
and },....,,{ 21 MrrrR = denote a set of geographic regions. 
Let us assume that the regions represent roughly equal 
sized segments on the earth’s surface. If )( ir tN is the 
number of pictures bearing tag it  and whose geo-locations 
fall in region r , �=

tt
irr tNN )( is the total number of 

pictures bearing any tag and whose geo-locations fall in 
region r , we define a location probability map for tag it , 

)|( itrp over the entire region set },....,,{ 21 MrrrR = such that 
the probability )|( itrp  represents the likelihood of a 

picture-bearing tag it  to be found in region r . This can be 
readily estimated from the corpus as  
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A limitation of the above estimation procedure is that the 
probabilities can be highly unreliable when the 
denominator is very small (especially for tags with low 
presence in the corpus). Therefore, we regularize the 
probability using )(rp , the probability of finding a picture 
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Here the factor Λ is a combination factor used to ensure 

that in the limiting case when �
=

M

r
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1
)( is very small, the 

estimate )|( itrp�  approaches )(rp� . 
The usefulness of such location probability maps (with 

respect to common user-tags) lies in their ability to be used 
to infer the geographic region of a picture with user-tags. 
Inferring geo-location involves computing the probability 
that an image I  bearing a set of tags },...,{ 21

I
k

II ttt  was 
photographed in a region r . Probabilistically, this is 
written as 
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In order to find the most likely region, we treat the 
factors ),...,( 21

I
k

II tttP and )(rP as constants and impose a 
Naïve Bayes model that assumes conditional independence 
across tags mainly for computational simplicity, resulting 
in the reduction of the above to computing the following 
product 
  
    ).|()......|()|(),...,|( 2121

I
k

III
k

II trPtrPtrPtttrp ≈            (4) 

In order to visualize geographic patterns for user-tags, 
we divide the entire globe into 900 × 1800 regions (900 
bins along latitudes, 1800 bins along longitudes) such that 
each region captures 0.2 degrees of granularity in latitude 
and longitude. For each of the 1500 most frequently 
occurring user-tags (with respect to our corpus), we 
estimate the frequencies )( ir tN  with respect to the above 
regions. These location frequency maps can be directly 
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visualized as images to see the geographic spread of 
pictures bearing different tags.  
   

Figure 2: Global location frequency map for all tags. 

First, it is interesting to observe the geographical 
distribution of all pictures regardless of their tags 
(i.e., �=

tt
irr tNN )( ). This frequency map is shown in Fig. 

2. In Fig. 3, we show the frequency maps for eight specific 
user-tags having varying distributions over the globe. In 
these figures, each pixel along the Equator represents an 
area of approximately 22 km2. Since the frequency maps 
are expected to be very sparsely distributed over the 900 ×
1800 regions, we binarize the images for better 
visualization. The black regions in Figs. 2 and 3 represent 
regions in the world where 0)( >ir tN . While we do not 
overlay the frequency maps on a world map, the readers 
can naturally extrapolate the information and visualize the 
entire globe, e.g., the continents.  

It is clear that the map in Fig. 2 (being the cumulative 
frequency across all user tags) has more non-zero dark 
regions than any of the tag-specific maps in Fig. 3. In Fig. 
2, one can clearly see that the densest regions lie within the 
continental USA and Europe. Most of the other continents 
are sparse except for the coastlines. To some extent, Fig. 2 
represents the present-day state of picture-taking activities 
in the world. The predominance of North America and 
Europe among the denser regions in Figs. 2 and 3 is also 
testimony to the fact that these continents presently form 
the hubs of the world’s geo-tagging activity. 

                   Beach                                 Italy

                     City                                   Sea 

               Architecture                         Church

                  Mountain                           Pacific

Figure 3: Global location frequency maps for certain 
selected tags. 

Not surprisingly, the maps for “beach” and “sea” (Fig. 
3) are dense mainly along the coastlines all over the world. 
The maps for “Italy” and “Pacific” are localized to Italy 
and the North American Pacific coast, respectively. The 
map for “city” is dense at most of the major cities (mainly 
in North America and Europe). Map for “mountain” 
concentrates mainly in the Alps in Europe, the Rockies and 
the Appalachians in North America, and the Andes in 
South America. Maps for “church” and “architecture” bear 
a similarity in their geographic spreads. Both are mainly 
concentrated in Europe where it is not unusual to find 
historic architectures and old churches.  

4. Visual Features and Matching 
In our work, we adopt visual feature extraction and 

matching methodologies from [14]. While [14] used six 
sets of visual features, here we limit ourselves to using 
four features only (partly due to computational 
limitations). Our choice of features was guided by 
controlled experiments to determine the visual and geo-
coherence of individual features on a subset of our training 
corpus. The four features that we have selected are widely 
used in computer vision and are effective for matching a 
large spectrum of visual content. 

1. Tiny Images: Downsampled (or tiny) images are 
trivial but useful features. Tiny images were 
popularized by Torralba et al. [16] for scene 
classification and object recognition tasks. In our work, 
similar to [14], we employ 16 × 16 RGB images as one 
of our features.

2. Color Histograms: Use of CIE L*a*b color 
histograms has been very popular in image retrieval. 
Similar to [14], we construct histograms with 4, 14, and 
14 bins in L, a, and b dimensions, respectively, to form 
a 784-dimensional feature histogram for each image.
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3. GIST Descriptor: GIST descriptors encode structural 
information and have successfully been used for scene 
categorization and retrieval tasks. As in [14], a 5 × 5 
spatial resolution GIST descriptor is created for each 
image. Each bin is a 24-dimensional (6 orientations and 
4 scales) filter response for the respective image 
region, resulting in a 600- dimensional feature vector 
for the entire image.

4. Texton Histograms: Our texture features consist of 
histograms over a 120-word texton dictionary extracted 
from the training corpus. Responses to the 24-
dimensional filter response (as in GIST descriptor) are 
quantized to the nearest texton dictionary word to form 
texton histograms.

A K-nearest-neighbor search is employed for visual 
matching and geo-inference. Distances between images are 
computed differently for different features. The GIST 
descriptors are compared across images using Euclidean 
distance. The tiny images are compared using normalized 
cross correlation. We employ a 2χ distance measure to 
match color histograms and texton histograms as these 
features are inherently probability distributions. A 
combination of distances using multiple features is 
performed linearly by using feature-specific weights 
learned from a small set of controlled data. The feature 
weights are based on the geometric spread of distance 
values computed using different features such that distance 
ranges using different features are comparable. 

5. Geographical Location Prediction 
We investigate three different approaches to geographic 

location prediction based on two modalities: visual content 
and user tags.  

5.1. Tag Baseline 
Our tag-only baseline assesses the extent of 

geographical precision we can achieve by employing user-
tag location probability maps alone. For an image with 
user tags },...,{ 21

I
k

II ttt , the product ),...,|( 21
I

k
II tttrp is 

computed for each of the 900 × 1800 geographic regions 
and the region *r  with the highest probability is selected. 
The geographic center of region *r  constitutes the geo-
location assignment to the image. 

5.2. Visual Baseline 
Our visual baseline is constructed along the lines of 

Hays method employing only visual information [14]. 
Once the K-nearest neighbors are retrieved for the query 
image, their geographical locations are represented as 
(longitude, latitude) pairs. To predict the geographical 

location, the mean-shift algorithm [19] is used to segment 
the data into different clusters. The mode of the cluster 
with the highest cardinality is predicted as the 
geographical location of the query image. This is a natural 
choice in the absence of additional information. The next 
method we propose draws on additional cues from user 
tags to achieve improved geo-location inference.  

5.3. Integrating Visual Content and Tags  
We propose a new method that uses both tag and visual 

information to find the geographical location of an image. 
The method draws its power from similarity search in both 
visual and semantic domains from a database of about 1.2 
million images. We do not propose direct fusion of visual 
and tag baselines for two important reasons: 
1. We constructed user-tag location probability maps for 

only the 1500 most frequent user-tags. The total 
number of user-tags in the 1.2 million Flickr images is 
expected to be much higher than 1500. As a result, use 
of tag location probability maps directly for fusion is a 
limitation.  

2. Tag location probability maps have been built using 1.2 
million images. Hence they capture global distributions 
of images and user-tags. For image-specific geo-
assignment, a visually local location distribution map is 
expected to be more useful. In our case, local location 
distribution maps are constructed by using a composite 
tag and visual similarity in the K-nearest-neighbor 
search. 

For any two images, a composite distance measure is 
defined as ),(),(),( jidjidjid TV += , where ),( jidV is the 
distance measure between the visual content of images i
and j, while ),( jidT describes the similarity of the tag sets 
associated with the two images. Measuring the semantic 
distance between tags or tag sets is an active research topic 
in its own right. The tf-idf method has been widely used to 
build ranking functions in information retrieval and text 
mining tasks. However, it cannot be simply adopted for 
our problem because tags of the same image are not 
repeated. Normalized Google Distance [17] measures the 
semantic correlation of two words by measuring their co-
occurrence in web page search results. WordNet can be 
used to derive the semantic distances from two words 
based on ontological knowledge [18]. Methods using 
external knowledge, such as NGD and WordNet, do not 
suit our task mainly because of extra computational cost. 

In this paper, we use a text retrieval-based method to 
measure the tag similarity efficiently 

�
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Here MAX is a constant that is larger than the upper 
limit of the visual distance ),( jidV , e.g., 10100.  

Clearly, sorting the combined distances of the query 
image to all of the images in the database is equivalent to 
i) first ranking the visual distances of all of the images that 
share at least one tag as the query image, and ii) then 
ranking the visual distances of all of the images that do not 
share any tag with the query image.  

Integrating visual and tag information using the above-
mentioned method has several advantages:  
1. Complimentary information is extracted from the tags, 

which significantly improves the inference compared 
with using the visual content alone;  

2. The text-retrieval-based distance is more efficient than 
other state-of-the-art text distance measures; 

3. For a K-NN based method, the number of images 
needed to evaluate the visual similarity to the query 
image is greatly reduced if more than K images have 
the same tags as the query image; and 

4. Our system can be readily incorporated with text search 
engines, which also use this method as the front end. 

6. Experiments and Analysis 
To evaluate the performance of our methods, we test 

them on two image data sets and use our 1.2 million geo-
tagged images for training. The results are quantitatively 
analyzed in the following way: If the distance of the 
predicted location of a query image to the ground truth 
location is within a specific range, it is considered a hit, 
otherwise a miss. The accuracy is defined as the number of 
hits over the total number of query images. The ranges are 
set to 200, 300, 500, and 1000 kilometers, respectively. 
The neighborhood size K is set to 20 in this study.  

6.1. Experiments on Image2GPS Test Set 
The Image2GPS test data set in [14] contains 237 

images. In Fig. 4, we show the local location distribution 
maps using combined tag and visual similarity for two 
selected query images.  
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Figure 5: Prediction accuracy for Image2GPS data set.  

The geo-prediction accuracies of the two baselines and 
the combined method are shown in Fig. 5. We also include 
the performance from [14] as the red bar, which is 
reported for the 200 km range. One can notice that our 
visual baseline is not as strong as that reported in [14] for 
the 200 km range. The reasons are as follows:  
1. The training database in our experiment is smaller than 

that used in [14] (1.2 million versus 6 million images).  
2. In [14], all of the training and test images are pre-

filtered such that only images from 500 metropolitan 
areas in the world and bearing tags corresponding to 
these cities are included. In our work, the images are 
collected from all around the globe without any such 
restriction, thus further reducing the concentration of 
images in urban areas. As a result, the image-matching 
problem that we address is much less constrained and 

Figure 4: Visualization of the geo-location inference results. Green dots are the top ranked images based on combined visual and tag 
similarity matching. The blue circles represent the predicted locations of the query images while the red asterisks are the ground truth. 
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thus more challenging.  
.  Each of these factors has the effect of reducing the 
accuracy of the visual matches. This result corroborates 
[14] Figure 4, in that a smaller search space reduces the 
visual match quality, from 14% on 6 million reference 
images to around 7% on 1 million ones. Despite the effect, 
our key result is that the combination of text and visual 
matches outperforms the previous result in [14]. In 
essence, this shows that by using tags, we gain the 
advantage that the training database does not need to be so 
large to achieve equivalent or better performance. 

In all of the prediction ranges, the integration of visual 
content and tags achieved significant performance 
improvement over the visual baseline. In the 200 km 
range, it outperforms the accuracy reported in [14] by 
16%. In all prediction ranges, it performs better than the 
tag baseline.  

6.2. Experiments on Flickr Image Test Set 
In this experiment, we test our methods on 2000 

interesting images downloaded from Flickr. They are 
independent from the training set.  
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The result in Fig. 6 indicates that it is very difficult to 

infer the geographical information from the visual baseline 
because of the extremely rich content of the query images 
(as they are not limited to 500 metropolitan cities). 
Compared with the visual baseline, the tag baseline 
predicts the geographical location of the images more 
precisely. Most importantly, the integration of visual 
content and tags significantly improves the prediction 
accuracy. 

Figure 7 (a) shows a few cases when tags may provide 
more precise geographical information than visual content, 
and vice versa. For example, the visual baseline performs 
poorly for the inconspicuous street scene in Fig. 7 (a). As 
demonstrated in Figs. 7 (b) and (c), integrating visual and 
tag information significantly improves geo-prediction 
performance over the visual and tag baselines. Overall, 
tags and visual content provide complementary 
information that is leveraged by the fusion of the two 
modalities. 
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Figure 7: Examples of query images, predicted distances, and the 
nearest neighbors by the integration of visual content and tags.  
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7. Discussions and Conclusions 
In this paper, we explored the benefit of employing user-
tags along with image content to infer geo-location of Web 
images. We constructed global location probability maps 
for common user-tags using a large collection of 1.2 
million geotagged photographs. Visual content matching 
was performed using multiple image features and K-
nearest-neighbor similarity search. The combination of 
brute force visual content matching and local tag 
probability maps is shown to outperform baselines based 
on single modalities. An important future direction will be 
to integrate more advanced feature descriptors for visual 
matching and scalable image-matching methods. We also 
plan to incorporate tag co-occurrences into tag-based geo-
inferencing.  
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