
Towards Automated Large Scale Discovery of Image Families

Mohamed Aly1, Peter Welinder1, Mario Munich2 and Pietro Perona1

1 Computational Vision Lab, Caltech, Pasadena, CA vision.caltech.edu
2 Evolution Robotics, Pasadena, CA www.evolution.com

{malaa, welinder, perona}@caltech.edu mario@evolution.com

Abstract

Gathering large collections of images is quite easy

nowadays with the advent of image sharing websites,

such as �ickr.com. However, such collections inevitably

contain duplicates and highly similar images, what we

refer to as image families. Automatic discovery and

cataloguing of such similar images in large collections

is important for many applications, e.g. image search,

image collection visualization, and research purposes

among others. In this work, we investigate this problem

by thoroughly comparing two broad approaches for mea-

suring image similarity: global vs. local features. We

assess their performance as the image collection scales

up to over 11,000 images with over 6,300 families.

We present our results on three datasets with di�er-

ent statistics, including two new challenging datasets.

Moreover, we present a new algorithm to automatically

determine the number of families in the collection with

promising results.

1. Introduction

The advent of new image sharing and social net-
working website, e.g. �ickr.com and facebook.com, has
made it quite easy to gather huge image collections
of millions of images [19]. However, such collections
will inevitably contain duplicates and highly similar
images, i.e images with signi�cant visual content over-
lap, with possibly di�erent color, scale, contrast, posi-
tions, and viewpoints. We refer to such similar sets of
images as image families. The automatic organization
and cataloguing of such collections by discovering these
families has many applications: 1) it is desirable for
next-generation image search engines that utilize visual
content for searching large corpora of images, where
organizing images into related families can greatly im-
prove search speed and accuracy [8]; 2) it is useful for
automatic categorization of large personal image col-
lections, e.g. grouping all vacation images having Eif-

fel Tower ; and 3) it is crucial for large scale visual
object/category/scene recognition research which re-
lies on collections of annotated images, and automat-
ing this annotation process is indispensable specially
for millions of images.

This work focuses on the problem of automatically
identifying image families in unprocessed image collec-
tions. We compare two broad approaches for measuring
similarity between images: global descriptors vs. a set
of local descriptors. The global approach represents
each image by one feature descriptor computed from
the whole image. The local approach represents each
image by a set of local feature descriptors computed at
some interesting points in the image [14, 15]. We com-
pare their performance as the number of images scale
up to over 11,000 with over 6,300 families.

We investigate two scenarios for family discovery af-
ter computing image similarities: 1) a semi-supervised
scenario, in which we assume we know the number of
families beforehand. We compare two graph partition-
ing algorithms for clustering: Normalized Cuts [18] and
Agglomerative Clustering [11]. 2) an unsupervised sce-
nario, in which we do not know the number of fami-
lies in advance. We present a new algorithm based on
Connected Component Labeling [4], that automatically
clusters and estimates the number of families.

We present our results on three datasets: 1) a
CD/DVD game covers dataset consisting of 11,431 im-
ages and 6,361 families, 2) Caltech buildings dataset
with 250 images and 50 families, and 3) Oxford build-
ings dataset [17] with 272 images and 11 families.

Image family discovery is related to image cluster-
ing [9, 8] and near-duplicate image detection [2, 12, 6],
however it is di�erent in three respects: 1) We use the
term �family� to indicate groups of images having high
visual similarity with possible change in color, view-
point, scale, .. etc. In that sense it is a special case
of an image �cluster�, which might refer to a visual
category or a type of natural scenes [5], and more gen-
eral than �near-duplicates� as de�ned in [12]. 2) Near-

1

9978-1-4244-3993-5/09/$25.00 ©2009 IEEE

duplicate detection is mostly applied to image retrieval
systems or near-duplicate shot detection in movies [2].
3) Clustering into hundreds or thousands of clusters
was largely not studied. Large collections with millions
of images will have hundreds of thousands of families,
so it is extremely important to scale up automatic im-
age clustering and family discovery to handle such col-
lections.

Our contributions are: 1) we systematically compare
two approaches for measuring image similarity and as-
sess their performance on datasets of increasing com-
plexity, scaling up to over 11,000 images and 6,300 fam-
ilies, 2) we present a new algorithm for automatically
clustering and estimating the number of families, 3) we
present two new challenging annotated datasets that
can be used for benchmarking performance of di�erent
algorithms.

2. Datasets

We present our results on ten subsets from three
distinct datasets of di�erent statistics and complexities.

The �rst dataset, which we call the games set, is a
collection of CD/DVD covers for video games1 on dif-
ferent consoles (e.g. Xbox, PlayStation, ... etc). We
consider as image family the set of all images of the
same game on di�erent consoles and in di�erent lan-
guages. Discovering image families in this collection is
challenging and more general than near-identical im-
ages, see �g. 1. The dataset has a total of 11,431
medium resolution (600 × 400) images. We manually
sifted through the images and identi�ed 6,361 families.
We divided the dataset into 8 subsets of increasing dif-
�culty, see Table 1. Games 16 is the easiest subset
having families with at least 16 members, and contains
210 images and 10 families. Games 01 is the hardest
subset having families with at least 1 members (i.e.
including unique images), and contains 11,431 images
and 6,361 families.

The second set, which we call the caltech set, con-
sists of 250 images of 50 di�erent buildings around the
Caltech campus. We took 5 photographs of each build-
ing, with di�erent scale and camera viewpoint. We
consider as family the 5 images of each building, i.e.
we have 50 families of 5 images each, see �g. 2. Im-
ages were down sampled to 800 × 600 pixels. This set
is challenging because we have considerable change in
viewpoints and scales for each building. We will make
these two datasets and annotations available online for
benchmarking purposes.

The third set is the oxford buildings set2 used in

1Collected from www.freecovers.net
2Available at tinyurl.com/dg32em

Figure 1. Sample images from games set. Row 1 shows two
images from 007 game on Xbox (Eng.) and PS2 (German),
which have di�erent colors, front and back cover undergo
di�erent scaling, and have di�erent languages. Row 2 shows
images from Aeon Flux on Xbox and PS2, which have di�er-
ent colors, di�erent front covers, di�erent parts of the back
cover, and di�erent locations of logos (the Aeon Flux white
logo). Row 3 shows images from Armored Core, which have
di�erent scales, and the right one lacks the back cover. Row
4 shows an English and German version of Atari on PS2,
which have di�erent colors and languages.

[17]. The set originally has 5,062 images obtained from
�ickr.com by searching for 11 Oxford landmarks. We
only used a small subset, those labeled as �good � i.e.
having a nice clear picture of the building. The good

set has 272 images with 11 families (one per landmark).
Images were used in their original resolution, which is
about 1024×768. This set is even more challenging, as
it contains extreme di�erences in lighting conditions,
scales, contrasts, and viewpoints, see �g. 3.

3. Similarity Measures

We compare two broad approaches for measuring
similarity between pairs of images:

10

3.1. Global Features

We de�ne the approach of global features as that in
which each image is represented by a single feature vec-
tor, capturing information from the whole image. No
attention is paid to the constituents of the image, such
as individual regions or objects. Once each image's
feature is computed, we can measure the dissimilarity
between any pair of images using some distance met-
ric, such as L2 distance used in this work. We compare
several popular feature descriptors:
- SIFT: we compute a standard SIFT [14] descriptor

for the whole image, which is then normalized to have
unit norm. We use our Matlab implementation.
- Gist: we compute a Gist3 [16] descriptor for

the whole image, which is further normalized to unit

3Code available at tinyurl.com/ch537q

Subset Min. size # images # families #features

Games 16 16 210 10 207,089

Games 12 12 645 43 586,047

Games 08 8 1,380 127 1,231,072

Games 06 6 2,312 273 2,038,712

Games 04 4 3,961 646 3,459,909

Games 03 3 5,212 1,063 4,476,982

Games 02 2 7,054 1,984 5,882,444

Games 01 1 11,431 6,361 8,524,514

Caltech 5 250 50 246,356

Oxford 5 272 11 423,907

Table 1. Subsets used in the experiments. Top ten subsets
are from the games dataset, then the caltech and oxford
sets. Second column shows min. size of families

Figure 2. Sample images from caltech set. Each row shows
three images for a di�erent building taken from di�erent
angles and distances.

Figure 3. Sample images from oxford set. Each row shows
three images for a di�erent building taken from the good

set.

length.
- HOG: we compute a Histogram of Oriented Gra-

dients [3] descriptor for the whole image. We use our
Matlab implementation.
- Bag-of-words (BoW): The idea is inspired from

natural language processing applications, where each
text document is represented by a histogram of word
occurrences in the document. To get �visual� words, lo-
cal features are extracted from the images and vector
quantized using K-means to create a codebook of visual
words. Each image is represented by a histogram of vi-
sual words present in that image. We used the a�ne
covariant feature detector [15] together with SIFT de-
scriptor4. We compare di�erent sizes of codebooks:
1K, 5K, 10K, 25K, and 50K visual words. We also
compare two variants of BoW:

1. Raw: where we use raw histogram counts of visual
words, and normalize it to unit length.

2. Tf-idf: where the histogram counts are weighted
according to the popularity of the word in the
database [1].

3.2. Local Features

In this approach, each image is represented by a
set of local feature descriptors computed from di�er-
ent points in the image. There are di�erent types of
interest point detectors that can be used, like a�ne co-
variant features [15], di�erence of Gaussian [14] ...etc.
To be consistent with the experiments above, we use
the a�ne covariant feature detector together with SIFT
descriptors. Each image i is represented by a collection
of local SIFT feature descriptors fik

where k = 1, . . . , ni

4Code available at tinyurl.com/detvd2

11

and ni is the number of features in image i. Each de-
scriptor has an associated label lik

= i and location in
the image xik

.
In order to measure the similarity between a pair of

images, we need to match features in image i to fea-
tures in image j. A naive way to do the matching by
exhaustive search blows up quickly, as it scales with
O(n2) where n is the total number of features. To keep
the computation time under control, we use a set of
Randomized Kd-trees [13], called Kd-forest, to do an
approximate nearest neighbor search. First, we add all
the features from all images into the Kd-forest. Then,
for each feature fk we get the nearest neighbor gk with
label lgk

such that lgk
6= lk i.e. it is not in the same

image. De�ne 1{·} as the indicator function that re-
turns a value of 1 when the expression in parentheses is
true and zero otherwise. We then compare 3 methods
to measure similarity, with increasing complexity:

1. Simple: here the similarity between images i and
j, sij , is de�ned as sij =

∑

k∈image i 1{lgk
= j}

i.e. we simply count the number of common fea-
tures between images i & j.

2. Image-a� : �rst, we perform another processing
step. For every image i we process all images that
have at least tc common features, and compute
exhaustive nearest neighbors between image i and
such images. We set tc = 5 features in the experi-
ments. Next, we check spatial consistency of those
matched features. We use a RANSAC algorithm
to �t an a�ne transformation, Hij , that maps lo-
cations of features in image i to the matching fea-
tures in image j [7]. The similarity is de�ned as
sij =

∑

k 1{d(Hij(xik
),xjk

) < δ2} where xjk
is

the location of the matching feature in image j.
This simply counts the number of features that
are consistent with the computed a�ne transform
Hij . We use δ2 = 25 pixels.

3. Region-a� : since some regions of the image can
undergo di�erent transforms (see row 1 in �g. 1),
we can enhance the similarity measure by con-
sidering di�erent a�ne transforms for di�erent
regions in the image. After computing exhaus-
tive nearest neighbors between potential match-
ing image pairs as in image-a�, we divide the
image into 200 × 200 pixels overlapping regions
with a stride of 100 pixels, and �t a separate
a�ne transform Hijl for each such region. We
then count the total number of features consistent
with these individual transformations i.e. sij =
∑

k,l 1{d(Hijl(xik
),xjk

) < δ3}, where δ3 = 10 pix-
els.

4. Clustering & Performance Measures

After computing the similarity/dissimilarity be-
tween pairs of images as explained above, we get an
a�nity matrix S with elements sij de�ning the simi-
larity/distance between images i & j. We investigate
two scenarios for processing this a�nity matrix to clus-
ter images into families:

4.1. Semi-supervised Clustering

Where we assume we know the number of families
beforehand. Here we compare two graph-theoretic al-
gorithms for clustering a weighted graph represented
by an a�nity matrix S:

1. Normalized Cuts (NC): which tries to infer a k-
way partition of S such that the mean normalized
cut is maximized [18, 20]. De�ne links(A, B) =
∑

i∈A,j∈B sij which is the total weighted connec-
tions between subsets A & B, and degree(A) =
links(A, S) which is the total weight of A. Given
a k-way partioning of S into K subsets V1, . . . , Vk,
the mean normalized cut is de�ned as: mncut =
1

K

∑K

i=1

(

links(Vi, V
C
i)/degree(Vi)

)

where V C
i is

the complement of subset Vi. mncut is maxi-
mized by relaxing the problem, converting it into
an eigen-value problem, solving the relaxed one
and then searching for a sub-optimal solution5.

2. Agglomerative Clustering (Ag): which builds
clusters recursively bottom-up. First, each image
belongs to its own cluster [11]. Then at every iter-
ation, two clusters A and B that maximize an ob-
jective function are combined into one cluster. The
objective function used is the Average Linkage, de-

�ned as al =
(

∑

i∈A,j∈B sij

)

/|A| |B| where |A| &

|B| are the sizes of clusters A & B.

4.2. Unsupervised Clustering

Here we assume we do not know the number of fam-
ilies in advance. We present a new algorithm, which
we call Crancle (Clustering with Ranked Connected
Component Labeling), to automatically cluster the im-
ages and estimate the number of families. The algo-
rithm proceeds in three steps:

1. Given the a�nity matrix S, we compute a binary
connectivity matrix C such that cij = 1 i� images
i & j are connected. For each image i, we rank the
images in order of decreasing similarity, by sorting
row i of S. Then, we set cij = 1 for j ≤ r for the
top r ranked images i.e. we connect image i with
its r most similar images.

5Code available at tinyurl.com/d6ynz9

12

function labels = crancle(S, r)

%compute Connectivity matrix C

C = zeros(m,m);

for i=1:m

[s, ids] = sort(S(i,:),'descend');

C(i,ids(1:r)) = 1;

end

%make C symmetric

C = min(C, C');

%get connected components

labels = concom(C);

Figure 4. Matlab code for Crancle algorithm

2. Update C such that cij = cji = min(cij , cji). This
makes sure C is symmetric, in addition to elimi-
nating spurious matches by marking i & j as con-
nected only if j is among the top r most similar
to i and vice versa.

3. Given C, we perform a two-pass Connected Com-
ponent Labeling [4] to identify isolated clusters in
C.

Fig. 4 shows Matlab code for the algorithm, where
we assume S is a similarity matrix i.e. larger val-
ues mean more similarity. The intuition behind step
2 above is that images belonging to the same family
should be ranked higher in each others' list. Step 3
discovers families by identifying the connected compo-
nents, and discovers images that are not directly con-
nected in C but are connected through some other im-
ages, the so-called transitive connectivity. For example,
if image i is connected to j, and image j is connected to
k, but there is no connection in C between i & k, step
3 will identify i & k as belonging to the same family.

The algorithm has some good properties: 1) It does
not depend on the scaling of S, only the relative values
are important; 2) it has only one parameter, r, the
number of top ranked images to consider. Small values
for r result in a lot of clusters, while large values result
in a few clusters. Since the value of r will depend on
the dataset, and we want an automated process, we
use a simple heuristic to estimate r. We use 10% of
the data as a validation set, and check values of r from
1 to 20. The value that returns the best performance
is used for clustering.

4.3. Performance Measure

We report results using two performance metrics:
1. Mean Confusion Matrix Performance

(MCMP): which is used in the semi-supervised sce-
nario, when the number of clusters is known in ad-
vance. The confusion matrix U has entries ufk in row
f and column k such that ufk is the number of im-
ages that belong to ground truth family f but were

0 10 20 30 40 50 60 70 80 90 100

MCMP

(a) Raw Bag−of−words

bag1k−ag

bag5k−ag

bag10k−ag

bag25k−ag

bag50k−ag

Games 16

Games 08

Games 04

Games 02

Caltech

Oxford

0 10 20 30 40 50 60 70 80 90 100

MCMP

bag1k−ag−tf−idf

bag5k−ag−tf−idf

bag10k−ag−tf−idf

bag25k−ag−tf−idf

bag50k−ag−tf−idf

(b) TF−IDF Bag−of−words

Figure 7. Mean Confusion Matrix Performance for varia-
tions of bag-of-words for semi-supervised scenario . (a)
shows results for increasing number of words with raw his-
tograms; (b) shows results for increasing number of words
with tf-idf weighting. Results are shown for sizes of 1K, 5K,
10K, 25K, and 50K words, using Agglomerative Clustering.

classi�ed with cluster k. The MCMP is de�ned as
MCMP = 1

Nf

∑

f uff/ (
∑

l ufl) × 100% where Nf is

the number of families.

2. F-Measure (FM): which is used in the un-
supervised scenario, when the number of inferred
clusters is not necessarily equal to the number of
ground truth families [10]. De�ne ground truth fam-
ilies as F , and the inferred families as K. De-
�ne precision and recall of cluster Kk with respect
to family Ff as: prec(Ff , Kk) = Lfk/|Kk| and
rec(Ff , Kk) = Lfk/|Ff | where Lfk is the number of
images in cluster k that belong to ground truth family
f . Then de�ne FM(Ff) = maxk 2 × prec(Ff , Kk) ×
rec(Ff , Kk)/ (prec(Ff , Kk) + rec(Ff , Kk)) which as-
signs to each ground truth family f the cluster that
best matches it. Finally, the F-Measure is the weighted
average, de�ned as FM = 1

N

∑

f FM(Ff)×|Ff |×100%,
where N is the total number of images.

5. Experiments and Discussion

We performed thorough comparisons of the two ap-
proaches in �3 on the two clustering scenarios in �4.

Semi-supervised Clustering

• Fig. 5 shows results for this scenario on the sub-
sets in table 1. The subsets are sorted in increasing
complexity, and we notice that performance fol-
lows suit and degrades with increasing complexity.
The oxford set yields the worst result, followed by

13

0 20 40 60 80 100

sift−nc

sift−ag

hog−nc

hog−ag

gist−nc

gist−ag

bag50k−nc

bag50k−ag

simple−nc

simple−ag

image−aff−nc

image−aff−ag

region−aff−nc

region−aff−ag

 85

 18

 50

 19

 73

 29

 63

100

100

100

100

100

100

100

Games 16

0 20 40 60 80 100

 68

 20

 61

 21

 62

 23

 90

100

100

100

100

 97

100

 98

Games 12

0 20 40 60 80 100

54

22

60

25

58

33

82

94

93

96

93

94

94

94

Games 08

0 20 40 60 80 100

42

25

43

27

46

30

75

91

87

95

84

94

86

93

Games 06

0 20 40 60 80 100

28

32

28

32

30

34

46

88

81

93

82

92

77

92

Games 04

0 20 40 60 80 100

sift−nc

sift−ag

hog−nc

hog−ag

gist−nc

gist−ag

bag50k−nc

bag50k−ag

simple−nc

simple−ag

image−aff−nc

image−aff−ag

region−aff−nc

region−aff−ag

23

36

21

36

23

39

33

84

75

92

69

90

67

91

MCMP

Games 03

0 20 40 60 80 100

19

43

18

42

20

45

19

81

55

92

45

88

43

89

MCMP

Games 02

0 20 40 60 80 100

33

76

29

75

29

76

13

84

29

91

28

90

25

91

MCMP

Games 01

0 20 40 60 80 100

35

29

39

34

40

31

72

82

74

72

48

57

58

62

MCMP

Caltech

0 20 40 60 80 100

35

17

42

18

28

19

28

68

43

50

39

52

44

45

MCMP

Oxford

Figure 5. Mean Confusion Matrix Performance for Semi-Supervised Scenario. Red bars are the maximum value, green
bars are values within 10% of the max, and blue bars are the rest. Su�x -nc signi�es Normalized Cuts and -ag signi�es
Agglomerative Clustering.

0 20 40 60 80 100

bag10k−cc

bag25k−cc

bag50k−cc

simple−cc

image−aff−cc

region−aff−cc

93

69

46

19

34

35

9

7

4

1

2

3

Games 16 (10 fam.)

0 20 40 60 80 100

95

95

95

48

82

93

56

58

53

22

43

56

Games 12 (43 fam.)

0 20 40 60 80 100

81

83

90

85

87

94

136

145

147

139

165

183

Games 08 (127 fam.)

0 20 40 60 80 100

85

87

86

86

87

88

432

459

359

313

434

462

Games 06 (273 fam.)

0 20 40 60 80 100

83

82

82

86

85

84

915

1252

1278

954

874

1241

Games 04 (646 fam.)

0 20 40 60 80 100

bag10k−cc

bag25k−cc

bag50k−cc

simple−cc

image−aff−cc

region−aff−cc

82

82

82

84

83

84

1662

1642

1630

1266

1585

1597

FM

Games 03 (1063 fam.)

0 20 40 60 80 100

77

77

77

80

78

78

3427

3351

3335

2763

3144

3146

FM

Games 02 (1984 fam.)

0 20 40 60 80 100

81

80

80

78

77

78

7163

6944

6944

5727

6203

6323

FM

Games 01 (6361 fam.)

0 20 40 60 80 100

80

79

87

89

61

64

89

119

57

67

133

124

FM

Caltech (50 fam.)

0 20 40 60 80 100

56

 7

69

63

42

58

28

272

21

17

11

34

FM

Oxford (11 fam.)

Figure 6. F-Measure Performance for Unsupervised Scenario. Red bars are the maximum value, green bars are values within
10% of the max, and blue bars are the rest. Su�x -cc signi�es Crancle clustering algorithm. Ground truth number of
families in each subset is in the title of each subplot, and number of families discovered from Crancle is in blue.

the caltech set.

• Sift, HOG, and Gist perform very poorly with in-
creasing subset complexity. This suggests they are
not useful in this application.

• Agglomerative clustering performs much better
than normalized cuts with increasing number of
families. The reason is that clustering into k fam-
ilies with NC requires computing k eigenvectors,
and this becomes increasingly prone to round-o�
errors and the scaling of the a�nity matrix as k

exceeds hundreds of families.

• Local features tend to fare better on the games
subsets. BoW performs best on caltech and oxford
sets, while remaining within 10% on the games
subsets. This is because the latter two subsets con-
tain much more variability within the family, spe-
cially viewpoint and lighting changes, and BoW
seems more tolerant to such variability, specially
with larger codebooks.

• Performing extra spatial checks with local features

14

Figure 8. Example of discovered families for semi-supervised scenario using bag-of-words with 50K words and agglomerative
clustering . Each row shows three example images from each of three families.

Figure 9. Example of discovered families for unsupervised scenario using bag-of-words with 50K words . Each row shows
three example images from each of three families.

does not increase performance that much. Indeed,
using the simple method is usually better than
the other two methods. This suggests that simple
feature matching with no spatial checks is enough
for this application.

• Fig. 7 shows results for bag-of-words with di�er-
ent codebook sizes and with/without tf-idf weight-
ing scheme for some of the subsets. Without tf-

idf weighting, the performance increases monoton-
ically with increasing the codebook size. With
tf-idf weighting, performance increases and then
decreases sharply when the codebook size is com-
parable to the total number of features used to
create the codebook. This is because in this case
there are not enough features to have good statis-
tics about word/document frequencies. However,

15

for subsets with larger number of features, tf-idf
gives a slight increase in performance over raw his-
tograms.

Unsupervised Clustering

• Fig. 6 shows results for Crancle algorithm. The
algorithm generally overestimates the number of
families to within 25-40% of the ground truth num-
ber. F-measure generally decreases with increas-
ing subset complexity as expected. Performance is
in the 80-90% for the games and caltech subsets,
while again it is much worse on oxford subset with
maximum f-measure of 69%.

• The performance of BoW is comparable to that
of local features, with a slight edge to the former.
This is important as BoW is much more storage
e�cient than local features. With BoW, we only
need to store one feature vector per image, while
with local features we need to store all the local
descriptors for every image. The savings become
signi�cant when we have millions of images. This
makes BoW more attractive when scaling the up
the size of the image collections.

Figs. 8-9 show some sample images from the families
discovered by the BoW method with 50K words.

6. Conclusion

We compared two broad approaches for measuring
image similarity in the context of automated discovery
of image families in unorganized collections. We inves-
tigated two clustering scenarios: semi-supervised using
normalized cuts and agglomerative clustering; and un-
supervised clustering using a new algorithm, Crancle.
We presented results on three datasets, and scaled up
the problem to over 6,300 families and 11,000 images.
Our main �ndings are:

• It is important to have di�erent datasets with dif-
ferent complexities and statistics for the purpose
of comparing performance of di�erent algorithms.
The games dataset has more constrained statis-
tics as it is mostly �at artwork, while the ox-
ford dataset has extreme lighting and viewpoint
changes.

• Sift, HOG, and Gist are not suitable for this task
and provide much worse results.

• Bag-of-words method is more attractive than local
features as it provides comparable if not better
results, while requiring signi�cantly less storage.
It is a good candidate for further study.

• The problem of automatic image family discovery
has not received much attention in the vision com-
munity, specially when scaling up the problem into
collections of millions of images and thousands of
families.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, 1999. 3

[2] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable
near identical image and shot detection. In CIVR, pages
549�556, 2007. 1, 2

[3] N. Dalai and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, volume 1, pages 886�893vol.1,
20-25 June 2005. 3

[4] M. Dillencourt, H. Samet, and M. Tamminen. A general ap-
proach to connected-component labeling for arbitrary image
representations. J. ACM, 39(2):253�280, 1992. 1, 5

[5] L. Fei-Fei and P. Perona. A bayesian hierarchical model
for learning natural scene categories. In CVPR, volume 2,
pages 524�531, 2005. 1

[6] J. Foo, J. Zobel, R. Sinha, and S. Tahaghoghi. Detection
of near-duplicate images for web search. In CIVR, pages
557�564, 2007. 1

[7] D. Forsyth and J. Ponce. Computer Vision: A modern
approach. Prentice Hall, 2004. 4

[8] B. Gao, T. Liu, T. Qin, X. Zheng, Q. Cheng, and W. Ma.
Web image clustering by consistent utilization of visual fea-
tures and surrounding texts. InMULTIMEDIA, pages 112�
121, New York, NY, USA, 2005. ACM. 1

[9] S. Gordon, H. Greenspan, and J. Goldberger. Applying the
information bottleneck principle to unsupervised clustering
of discrete and continuous image representations. In ICCV,
2003. 1

[10] K. Hammouda and M. Kamel. Collaborative document clus-
tering. In SDM, pages 453�463, 2006. 5

[11] A. Jain, M. Murty, and P. Flynn. Data clustering: A review.
In ACM Computing Surveys, pages 264�323, 1999. 1, 4

[12] Y. Ke, R. Sukthankar, and L. Huston. An e�cient parts-
based near-duplicate and sub-image retrieval system. In
MULTIMEDIA, pages 869�876, 2004. 1

[13] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for
real-time keypoint recognition. In CVPR, pages 775�781,
2005. 4

[14] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60:91�110, 2004. 1, 3

[15] K. Mikolajczyk and C. Schmid. Scale and a�ne invariant
interest point detectors. IJCV, 60:63�86, 2004. 1, 3

[16] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. IJCV,
42:145�175, 2001. 3

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial
matching. CVPR, 2007. 1, 2

[18] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE PAMI, 22(8):888�905, Aug. 2000. 1, 4

[19] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. CVPR, 2008. 1

[20] S. Yu and J. Shi. Multiclass spectral clustering. In ICCV,
pages 313�319, 2003. 4

16

