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Abstract

Recent descriptions of algorithms applied to images

archived from webcams tend to underplay the challenges

in working with large data sets acquired from uncontrolled

webcams in real environments. In building a database of

images captured from 1000 webcams, every 30 minutes for

the last 3 years, we observe that these cameras have a

wide variety of failure modes. This paper details steps we

have taken to make this dataset more easily useful to the

research community, including (a) tools for finding stable

temporal segments, and stabilizing images when the cam-

era is nearly stable, (b) visualization tools to quickly sum-

marize a years worth of image data from one camera and to

give a set of exemplars that highlight anomalies within the

scene, and (c) integration with LabelMe, allowing labels of

static features in one image of a scene to propagate to the

thousands of other images of that scene. We also present

proof-of-concept algorithms showing how this data condi-

tioning supports several problems in inferring properties of

the scene from image data.

1. Introduction

Cameras connected to the Internet, webcams, provide a

large and continuous source of images of many locations

around the world. Webcams tend to offer images of the

same scene over a long period of time, offering the poten-

tial to learn more about a scene than is possible from, for

example, a single image uploaded to Flickr. The Archive of

Many Outdoor Scene (AMOS) data set [4] collects images

from a large number of webcams offer an opportunity to

study this problem domain. This data set has been used for

studies in webcam geolocation, geo-orientation, and scene

annotation, but often scenes are cherry picked to avoid prob-

lems caused by cameras which break, move (either drifting

or suddenly as in Figure 1), or otherwise have problems.

In this paper, we report on progress in augmenting the

AMOS database with side information to mitigate these

problems and support additional inference tasks. This in-

Figure 1. Algorithms exist that can extract information from out-

door cameras and the scenes they view by making significant as-

sumptions, such as known camera calibration or the absence of

camera motion. Unfortunately these assumptions are often vio-

lated by real outdoor cameras. This paper presents our extensions

to the ground truth labels available for a large dataset of images

from webcams. We also present results that use the dataset for

several novel applications.

cludes manually specifying, for each camera, temporal in-

tervals when the images are static or nearly static, then au-

tomatically computing the warping parameters for exactly

aligning each image within a segment. Also, we develop

efficient tools to summarize the variability of a camera over

the course of a year. Third, we integrate the LabelMe image

labeling tool to allow features in the scenes to be labeled.

This provides a compelling effort-multiplier effect, because

the label of part of a scene within one image can be propa-

gated to all images of that scene. This allows a quick way to

mark parts of the image with non-visual information (such

as watermarks and time stamps), and makes it easy to get,

for example, thousands of pictures of the same tree under

different lighting, seasonal and weather conditions.

We believe the effort to annotate, stabilize and visual-

ize large webcam archives supports a large collection of in-

teresting computer vision problems, especially in terms of

long term inference over scene appearance and the natural
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causes of change that affect scene appearance. We conclude

this paper with two proof-of-concept demonstrations. First

is an example of image denoising showing dramatic results

in night-time images. Second, we offer an approach to take

a set of images and a side channel of weather information

(such as wind speed or vapor-pressure), create a linear pre-

dictor of the environmental variables directly from the im-

age data. We offer these demonstrations not as complete

or optimal solutions to their respective problems, but rather

to highlight the potential and value of a well conditioned

webcam imagery archive.

1.1. Related Work

Our work is related to many different areas of computer

vision, here we describe work related to large dataset cre-

ation and algorithms designed to operate on webcam image

sequences.

The creation of large labeled image datasets are chal-

lenging efforts and represent a significant contribution to

the community. Recent examples include datasets of many

small images [17], with labeled objects [13], and of labeled

faces [3]. Each of these datasets fills a niche by provid-

ing a different types of labeled images. Most similar to

the AMOS dataset [4] is one with many images, and asso-

ciated meta-data, from a single carefully-controlled static

camera [10]. The AMOS dataset is unique in providing

time-stamped images from many cameras around the world.

No other dataset provides the broad range of geographic lo-

cations and the long temporal duration. This paper presents

new annotations that further increase the value of this large

dataset.

Many algorithms have been developed to infer scene and

camera information using long sequences of images from a

fixed view. Examples include a methods for clustering pix-

els based on the surface orientation [8], for factoring a scene

into components based on illumination properties [14], for

obtaining the camera orientation and location [6, 5, 15, 9],

and for automatically estimating the time-varying camera

response function [7]. We present new results on estimating

meteorological properties from long sequences of images

from a webcam.

Given the vast number of images in the AMOS dataset,

nearly 40 million as of March 2009, it is often challenging

to find the subset of images that are suitable for a partic-

ular algorithm evaluation. Compact summaries can enable

rapid browsing of a large collection of images. One area

of previous work is on image-based summaries of a video,

see [11] for a survey. Another interesting approach uses a

short video clip to summarize the activity in a much longer

video [12]. To our knowledge, all the previous work is de-

signed to work with high frame-rate video. We present vi-

sualizations that highlight the geographic nature and long-

temporal duration while simultaneously handling a very
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Figure 2. (top) A scatter plot of the locations of cameras in the

AMOS dataset. (bottom-left) The distribution of image sizes mea-

sured in pixels. Each circle is centered at an image size with area

proportional to the number of cameras that generate images of that

size. (bottom-right) The distribution of image sizes in kilobytes.

low-frame rate and very long duration dataset.

2. AMOS: Archive of Many Outdoor Scenes

The AMOS dataset [4] consists of over 40 million im-

ages captured since March 2006 from 1000 outdoor web-

cams located primarily in the continental United States (see

Figure 2). This dataset is unique in that it contains signifi-

cantly more scenes than in previous datasets [10] of natural

images from static cameras.

The cameras in the dataset were selected by a group of

graduate and undergraduate students using a standard web

search engine. Many cameras are part of the Weatherbug

camera network [18]. Images from each camera are cap-

tured several times per hour using a custom web crawler

that ignores duplicate images and records the capture time.

The images from all cameras are 24-bit JPEG files that vary

in size from 49×46 to 3400×1600, with the majority being

320× 240. The file size at the 1st, 50th, and 99th percentile

are respectively 3kB, 11kB, and 79kB with a mean of 14

kB. See Figure 2 for more information about the distribu-

tion of image sizes and dimensions. The small image size

is typical of webcam networks, and indicates the dramatic

compression of each image; this motivates the problem do-

main of image denoising considered in Section 5.1.

In addition to a large amount of image data, each cam-

era is assigned latitude and longitude coordinates; in most

cases the coordinates are assigned by a human but in some

cases the coordinates were estimated based on the camera

IP address.
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3. New Data Set Annotations

The value of the AMOS dataset is somewhat reduced by

the high percentage of unsuitable images and cameras. We-

bcams can fail to generate “good” images for many differ-

ent reasons; the AMOS dataset contains examples of many

common and uncommon failure modes. The following two

sections describe annotations and visualizations that we are

adding to help find subsets of images that are suitable for

different potential applications.

3.1. Static cameras “in the wild”

Camera motion is a significant problem for algorithms

that use long sequences of images of outdoor scenes. Long-

term camera stability is a requirement of the algorithms pro-

posed for applications such as camera geo-location [6], geo-

orientation [5, 9], color analysis [15], and radiometric anal-

ysis [7]. We argue, with empirical justification, that truly

static cameras rarely exist “in the wild”.

We are manually labeling all the images in the AMOS

data for the first three years. The labels consist of temporal

intervals with one of the following labels: static for cam-

eras with motion of one-pixel or less, semi-static for cam-

eras with motion of less than 5 pixels (often due to wind,

temperature changes, camera drift), and non-static for all

other cases. We perform this labeling for each camera by

inspection of all images captured at noon. This sparse set

of labels is extended to all images by assuming that if two

consecutive noon images from a single camera were static

(semi-static) then the intervening non-noon images are also

static (semi-static). Any interval that is not manually la-

beled as static or semi-static is considered non-static.

Results on the first 85 cameras of the AMOS dataset

show that 21% of the images were labeled as static, 28%

were labeled as semi-static. More than half of the images

were in temporal intervals which include problems such

as: optical or electrical corruption, multiplexing of images

from many cameras, or continuous camera motion. Only

two cameras were labeled as static for the full three years.

While this labeling will be valuable for algorithm develop-

ers it also motivates the important problem of converting

semi-static intervals to static intervals, in other words, solv-

ing for the camera motion and aligning the images. Sec-

tion 3.2 describes a simple alignment algorithm and shows

the impact of a successful alignment.

3.2. Automatic scene alignment

Alignment of the semi-static intervals would more than

double the number of images in the AMOS dataset available

to algorithms that require a static camera. There is a long

history of work [16] on joint alignment of image sets and

many of these techniques would work well for alignment

of a small set of webcam images. This section describes

(a)

(b) x-t slice (unaligned)

(c) x-t slice (aligned)

Figure 3. Results of the alignment procedure. (a) An image from

the scene with a horizontal line that shows the image location of

the x-t slices shown below. (b) An x-t slice from the unaligned

image sequence. (c) An x-t slice from the aligned image sequence.

a simple algorithm for scene alignment and highlights the

benefits of scene alignment.

Our scene alignment algorithm uses the gradient magni-

tude image to reduce sensitivity to weather and illumination

conditions. The algorithm initializes each image transfor-

mation to the identity and iterates over the following steps

until convergence:
1. compute the average gradient magnitude image of the

transformed images,

2. align each gradient magnitude image to the average

gradient magnitude image using the Lucas-Kanade

method with an affine motion model.
This simple scene alignment algorithm could be improved

in many ways: using better image features for alignment,

using a more robust image distance measure (such as mu-

tual information), automatic support for large camera mo-

tions, and coarse-to-fine alignment. Developing a scene

alignment technique capable of aligning all the images in

the AMOS dataset with reasonable computational require-

ments is an important area for future work.

We qualitatively evaluated the algorithm on several semi-

static intervals from the AMOS dataset. Figure 3 shows

results of the scene alignment algorithm on one scene. To

better understand the impact of this subtle realignment we

compared the principal components of the aligned and un-

aligned sequences. The significant differences in both the

components and the coefficients between the aligned and

unaligned sequences are shown in Figure 4). For this scene,

in the unaligned sequence the 3rd PCA component codes

seems to code exclusively for camera motion. Removing

this effect directly impacts PCA based algorithms for geo-

location [6], and may make algorithms that infer lighting

variation by looking at single pixel locations over time ro-

bust enough to not require hand chosen points.

3.3. Object Labeling

Localized object annotations in images are valuable for

learning-based methods and algorithm evaluation. The
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(a) PCA coefficient scatter plots

(b) PCA components

Figure 4. (a) Scatter plots of the top three PCA coefficients for

the aligned and unaligned sequences. The top two coefficients are

highly correlated. The impact of the alignment step is clearly ev-

ident in the third coefficient (right). (b) The top three principal

component images for the unaligned (left) and aligned (right) se-

quence. The third component of the unaligned sequence (bottom-

left) is significantly different from that of the aligned sequence.

challenge is that it can be time consuming to label images.

We use the stable segment annotations described in Sec-

tion 3.1 to significantly reduce the cost of annotating objects

in the AMOS dataset. We make the observation that object

annotations from a single frame can be extended through

time if the frame is during a stable segment. We have in-

tegrated the LabelMe annotation tool [13] into the AMOS

website. Using this tool it will be possible to annotate static

scene elements and obtain views of the same scene element

in many weather conditions and seasons. Figure 5 shows an

example of one such annotation extended through time. An-

other use for this tool is to label potentially non-interesting

image features such as watermarks and time-stamps.

4. Visualization Tools

Building a system that works with openly available cam-

eras on the web requires an acceptance that cameras may

not be consistently available. Finding times when a camera

has moved is one vital step in preparing long term time-

Figure 5. We use the LabelMe annotation tool [13] to rapidly anno-

tate many images from a webcam. The annotations from a single

image extended through time during periods without camera mo-

tion.

lapses for further use, but there are other scene changes that

may impact further analysis. This section describes effi-

cient tools for creating natural visualizations to summarize

the overall appearance changes over the course of years. We

also present tools to quickly find a representative set of the

most anomalous images.

4.1. Summary Visualizations

Given a set of images I1 . . . In captured with time and

date stamps, creating annual summary images requires sim-

ply converting the irregular sampling of the time and date

into a regular sampling suitable for displaying as an im-

age. We compute the mean RGB values for each image,

and specify a desired regular sampling of the dates and time

(365 days per year, and 48 times per day), and use nearest

neighbor interpolation to find the image sample closest to

each desired sample. If the distance to the nearest neighbor

is greater then or equal to one unit of the regular sampling

(i.e., a day in the date dimension, or half and hour in the

time dimension) then we color that pixel dark red. Dark red

was preferred over white or black or gray because no cam-

eras in our collection ever have a mean image value of dark

red. Figure 6 shows two example cameras and the annual

summaries of those cameras for 2008.

This summary image serves to show gross patterns of im-

age availability, but there may be important image changes

which do not affect the mean image intensity. The follow-

ing is a similarly concise summary visualization tool which

highlights more of the changes within the scene. Each im-

age Ij , j ∈ [1 . . . n] is written as a column vector, and a

data matrix I ∈ R
p×n is constructed by concatenating these

column vectors. This data matrix is quite large (as we have

about 17000 images per cameras), so we use an incremen-
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(a) Two cameras and their summary visualizations

(b) 2008 Summary of camera in Figure 4

Figure 6. The top shows images from two cameras in our database,

and the RGB then the PCA based annual summary image. The

right camera is on the bridge of a Princess Cruise line ship, which

circumnavigated the globe during 2008, explaining the fact that

when night occurs “wraps” during the year. At the bottom is the

visualization of the camera shown in Figure 4. Here is an example

where the RGB shows clearly the day-night distinction, but the

PCA color coded also highlights the fact that the images appear

very different in the morning vs. the evening (the light blue to

yellow variation near the bottom edge), and the fact that the night

image has different appearances, caused by a bright light which is

on at some parts of the year and not others.

tal SVD algorithm [1] to perform the PCA decomposition

to recover the decomposition I ≈ USV . We compute the

top three components in the PCA decomposition, so U is a

p × 3 matrix of component images and V is a 3 × n matrix

of coefficients. We create our false color annual summary

visualization based on the coefficients V . These are linearly

normalized to vary between 0 and 1, and used as the “mean

RGB values” for each image, and the same nearest neighbor

interpolation is used as before (except that missing values

can now be safely coded as black). The bottom of each part

of Figure 6 shows this visualization for 3 different cameras.

4.2. Anomalous Images

Finding and showing exemplar images is a useful visu-

alization tool for summarizing long image sequences [11].

This section describes a simple method that selects the

most anomalous images using PCA and describes a

computationally-efficient improvement that reduces the re-

dundancy of the set of exemplars.

We first compute a PCA basis of a set of images I from a

single camera and assign a score to each image that reflects

(a)

(b)

Figure 7. The most anomalous images often provide an interesting

overview of the activity in the scene. (a) The three most anoma-

lous images in a scene selected using the naı̈ve method. This

method often selects redundant images. (b) Examples, from sev-

eral scenes, of the most anomalous images generated using the

method described in Section 4.2. Note that for the first example

the redundant image with the red flags is not shown.

.

the degree to which the image is anomalous (we use a ten

dimensional PCA basis for this section). The score we use

is the SSD reconstruction error with respect to the basis.

The exemplars are simply the images with the largest re-

construction error, we choose the top three. Figure 7 shows

exemplars obtained using this method for one scene. As

shown in the figure, for some webcams many of the most

anomalous images are similar to each other. Showing many

examples of very similar images may not provide a useful

overview of the anomalous images of a scene.

To address this problem we propose the following

method to select exemplars. We select the top n most

anomalous images Î = {I1, ..., In} as candidate exemplars.

Then we begin by including the most anomalous image in

the set of exemplars. For each subsequent exemplar we

choose the image from Î that is furthest, in Euclidean dis-

tance, from any image already in the exemplar set. Results

using this improvement (see Figure 7) show that the method

reduces the problem of finding redundant exemplars.

5. Applications

In this section we offer two proof-of-concept demonstra-

tions of potential applications made possible by analysis of

long image sequences from a fixed camera. The first appli-
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cation is in image denoising, taking advantage of the stable

camera to efficiently characterize the distributions of local

image appearance; the second explores the relationship be-

tween images and meteorological quantities such as wind

speed and vapor pressure.

5.1. Image Denoising

Because webcams have limited ability to adjust to light

conditions (for example they have small maximum aper-

tures), and because they are often highly compressed (to

reduce bandwidth), they are often extremely noisy. One re-

cently popularized method of image denoising is based on

non-local averaging [2], from which the following descrip-

tion is based.

Given a discrete noisy image, where I(i) defines the in-

tensity at pixel i, the non-local mean image INL(i) is com-

puted for a pixel i as a weighted average of all the pixels in

the image,

INL(i) =
∑

j∈I

w(i, j)I(j), (1)

subject to the conditions that 0 ≤ w(i, j) and
∑

j w(i, j) =
1. Unlike common image blurring algorithms, where

w(i, j) depends on the distance between the pixel locations,

in non-local averaging, the weight function depends on the

difference between the local neighborhood around pixels i

and j,

w(i, j) =
1

Z(i)
e−

||I(Ni)−I(Nj)||

σ2 , (2)

where Z(i) is the normalizing constant and Ni is the local

neighborhood of pixel i.

Non-local averaging gives interesting denoising results

because natural images contain redundant structure. An im-

age patch, for example, along the edge of a roof is likely to

be similar to other patches along the same side of the same

roof, so averaging similar patches gives a noise reduction

without blurring the scene structure.

This is even more sure to be true in the case of static

images captured over a long time period, because one patch

views exactly the same scene elements over time. Thus non-

local temporal averaging uses exactly the same formulation,

except that the non-local temporal average is computed as

the weighted sum of the same pixel (in images taken at dif-

ferent times). Extending the notation above to define I(i, t)
as the intensity of pixel i during frame t, we specify our

non-local temporal average image INLT as:

INLT (i, t) =
∑

t′∈T

w(i, t, t′)I(i, t′) (3)

Figure 8 shows one example of this image denoising, ap-

plied to deblurring night-time image of gate at an airport us-

ing a set of images captured once per day (at the same time

each day), in a scene in which the airplane is often missing

Figure 8. A noisy webcam image, and a version with noise reduced

using non-local (temporal) averaging.

and never in the same place and the jet-bridge often moves.

Although this result is anecdotal, simple averaging would

clearly fail, and the non-local temporal result shows sub-

stantial noise reduction without any blurring of the features

in the scene.

5.2. Using images as environmental sensors

Local environmental properties often directly affect the

images we collect from the webcams; whether it is cloudy

or sunny is visible by the presence of shadows; wind speed

and direction is visible in smoke, flags, or close up views

of trees; particulate density is reflected in haziness and the

color spectrum during sunset. We explore techniques to au-

tomatically extract such environmental properties from long

sequence of webcam images. This allows the webcams al-

ready installed across the earth to act as generic sensors to

improve our understanding of local weather patterns and

variations.

We consider two weather signals for our driving exam-

ples: wind velocity and vapor pressure. These two signals

present unique challenges and opportunities. The effect of

wind velocity is limited to locations in the scene that are

affected by wind (flags and vegetation) while the effect of

vapor pressure on the scene may result in broad, but subtle,

changes to the image. Our method assumes the availability

of images and weather data with corresponding timestamps.

Further, given the localized nature of much weather data it

is most useful if the weather data is collected near the cam-

era.

The first step of our method is to extract significant

scene variations using PCA with 10 components (k = 10).

The coefficients used to reconstruct each image define low-

dimensional time-stamped summaries V ∈ R
k×n of the

scene variation. In the second step, Canonical Correlation

Analysis (CCA) to relate the time-series of a weather signal

with the corresponding coefficients V of the images from

the camera. Unlike PCA which finds projections that maxi-

mize the covariance of a single dataset, CCA finds a pair of

projections that jointly maximize the covariance of the pair

of datasets. In this case, given image principal coefficients

V and weather data Y ∈ R
m,n, CCA finds two matrices

A, B such that AV ≈ BY . The matrices A and B enable
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prediction of weather data from an image and vice versa.

To predict the weather data given a new image Ii we first

project it onto the PCA basis to obtain the principal coeffi-

cients vi. Using these coefficients we predict the value of

the weather signal yi as yi = AviB
−1.

We now consider two examples to evaluate our method.

As input we use images from the AMOS dataset and

weather data from the Historical Weather Data Archives

(HDWA) maintained by the National Oceanic and Atmo-

spheric Administration (NOAA). We use the ground truth

location of the camera to find the location of the nearest

weather station and use the provided web interface to down-

load the desired data. In both cases we solve for PCA and

CCA projections using two hundred images captured dur-

ing midday for approximately two months and evaluate on

one hundred images from the following several weeks.

The first example is in predicting wind velocity. We find

that CCA computes a pair of matrices A, B that approx-

imate a linear projection of the wind velocity. Figure 9

shows results including the linear image projection found

by our method. This projection (the canonical correlations

analogy to a principle image component) is plausible and

clearly highlights the orientation of the flag. The plot shows

the first dimension that CCA predicts from both the webcam

images and the weather data for our test data. The predic-

tion of the second dimension (not shown) is much less ac-

curate which means that for this scene our method is able

to predict only one of two components of the wind veloc-

ity. This result is not surprising because the image of the

flag in the scene would be nearly identical if the wind was

blowing towards or away from the camera. In Figure 10 we

show the relationship of the CCA projection vector and the

geographic structure of the scene. We find that the wind

velocity projection vector is, as one would expect, perpen-

dicular to the viewing direction of the camera.

As a second example we use a different scene and at-

tempt to predict the vapor pressure, the contribution of wa-

ter vapor to the total atmospheric pressure (we note that

since vapor pressure is a scalar the CCA based method is

equivalent to linear regression). Using the method exactly

as described for predicting wind velocity in the previous ex-

ample fails, in other words no linear projection of a we-

bcam image is capable of predicting vapor pressure. We

find that replacing the original images with the correspond-

ing gradient magnitude image achieves much better results.

Figure 11 shows vapor pressure prediction results using the

gradient magnitude images. The results show that vapor

pressure is strongly related to differences in gradient mag-

nitudes in the scene.

6. Conclusion

Collecting and sharing a large dataset of images is a chal-

lenging and time consuming task. This is especially true for
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Figure 9. An example of predicting wind speed in meters per sec-

ond from webcam images. (top) The projection of the gradient

magnitude used to lineally predict the wind speed. (middle) Pre-

dicted wind speed values and corresponding ground truth. (bot-

tom) Each image corresponds to a filled marker in the plot above.

See Figure 10 for further verification of these predictions.

the AMOS dataset due to the numerous common and un-

common camera failure modes. In this paper, we described

additional annotations being added to the dataset. In addi-

tion, we presented several visualization that make it easier

to find suitable image subsets.

The AMOS dataset make possible empirical evaluations

that were once untenable. We believe that inference algo-

rithms are possible to predict many meteorological and en-

vironmental properties directly from image data, and our

proof-of-concept demonstrations in estimating wind speed

and vapor pressure suggest that this is a viable direction of

future work. This motivates our efforts to continue to col-

lect, organize, analyze, and distribute this dataset for the

computer vision community.
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