
Towards Unlocking Web Video: Automatic People Tracking and Clustering

Alex Holub*, Pierre Moreels*, Atiq Islam*, Andrei Makhanov*, Rui Yang*
Ooyala Inc, 800 W. El Camino Real, Suite 350, Mountain View, CA 94040

*All authors contributed equally to this work

Abstract

This paper describes a system for automatically extract-
ing meta-information on people from videos on the web. The
system containsmultiple modules which automatically track
people, including both faces and bodies, and clusters the
people into distinct groups. We present new technology and
significantly modify existing algorithms for body-detection,
shot-detection and grouping, tracking, and track-clustering
within our system. The system was designed to work effec-
tivty on web content, and thus exhibits robust tracking and
clustering behavior over a broad spectrum of professional
and semi-professional video content. In order to quantify
and evaulate our system we created a large ground-truth
data-set of people within video. Finally, we provide actual
video examples of our algorithm and find that the results are
quite strong over a broad range of content.

1. Introduction
Automatically extracting meaning from rich media con-

tent, such as images and video, on the web remains one of
the great challenges for computer vision. The use of me-
dia content online is becoming ever more prevalent, further
necessitating compelling solutions. Successful algorithms
could enable many applications including inter and intra-
media search, clickable and interactive content, and more
effective monetization methods based on the content of me-
dia. However, both the difficulty of the problems as well
as the infancy of the field, have resulted in relatively little
research and progress in the area. Notable exceptions in-
clude [5, 15] and Google Image Search [6].
There are many challenges when working with web con-

tent compared to data-sets which have been collected and
filtered for evaluating computer vision algorithms. In gen-
eral, the data encountered on the web exhibits a large degree
of variability when compared with data-sets which are more
prevalent within the computer vision community. The Cal-
tech101/256 [7] are good examples of data-sets which do
not exhibit a high degree of variability yet are frequently
used to assess object recognition performance (see [11] for

Figure 1. Examples of automatically detected people in both pro-
fessional and semi-professional content on the web. Our system
automatically finds and clusters images of similar people within
video. The outlines shown correspond to both the body and face
of individuals which were found automatically. The ‘id’ keyword
and color of the outlines corresponds to the cluster which the per-
son was assigned to within this video.

a good discussion surrounding data-set issues in computer
vision). Web variability includes lighting, pose, image qual-
ity, and image resolution.
This paper describes a complete system for automati-

cally parsing and extracting meta-information from online
video. The system focused on people, both because solid
technology exists for locating some aspects of people (for
instance faces [16]) and also because a large percentage of
video encountered on the web contains people within it.
Our system focuses not only detecting people, but taking
steps towards recognizing their identity within video con-
tent by automatically grouping together frames containing
images of the same person.
We chose to focus on clustering together images of the

same person, rather than the more traditional recognition
problem, due to the variability of the content we encoun-
tered on the web. Quite simply, no scalable solution exists
for recognition of arbitary people in web content. In ad-
dition, even if a solution did exist the identity of individ-
uals in video content is often not known. However, effec-

47978-1-4244-3993-5/09/$25.00 ©2009 IEEE

tively clustering together images of the same person within
a video, makes the identity assignment process easy. One
label assignment can be propagated to every occurance of
the individual within the video if accurate people-clusters
have been identified.
Since our system relies on clustering together images of

the same person within a video, we chose to utilize a frontal
face detector to initiate our automatic tracking process in or-
der to have somewhat aligned features to compare. Solid re-
search and implementation exist for frontal and near-frontal
face detection, including [16, 14, 13] resulting in good pre-
cision and recall.
There has been some work automatically tracking and

extracting information about people. Perhaps most interest-
ing is the recen work from Everingham et al. [3] which
demonstrates the automatic identification of speakers in
video using the captions of the video along with face de-
tections. Although intriguing work, we note that captions
are not easily available for most professional and semi-
professional content on the web.
The paper is organized as follows. We first describe the

various components of our system. Then we describe the
large ground-truth data-set collected for evaluation and the
results of evaluating our system on that data.

2. System Overview
Our system is composed of numerousmodules described

below. The modules can be broadly broken into the follow-
ing categories: (A) Detection modules which detect faces,
bodies, and shot-boundaries. (B) Tracking modules which
act to both create coherent ‘face tracks’ and increase the
recall and precision of the raw face detector. (C) Cluster-
ing modules which group together the ‘face tracks’ to form
homogenous groups of characters from a video and group
together similar shots.

2.1. Object Detection: Faces

Consider the set of fk frames within a video V , V =
f1, f2.... Our face-detection module runs the Viola and
Jones [16] face-detector on every frame fk of the video.
We changed the parameters of the detector to increase the
overall recall of the detector, i.e. we generated more detec-
tions for each image than typical parameter settings gener-
ate. In addition we ran a detector trained on both frontal
and side-views of faces. The frontal face-detector was su-
perior in both recall and precision to the side-view face-
detector. The frontal and profile detector often fired in sim-
ilar regions of images. If the overlap betwen detections was
greater that 40%, we combined the detections by keeping
only the frontal detection and disregarding the profile detec-
tions. We chose to keep the frontal detections as they were
found empirically to be more accurate in describing the true

location of a face. We use tracking to increase the preci-
sion as described in the sections below and found that, in
the context of our complete face-tracking system, increas-
ing face-detector-recall increased the overall recall and per-
formance of the system significantly.

2.2. Object and Image Representation
Images and regions in images are represented by color

histograms in HSV color space. Each color channel is di-
vided in 16 bins. Separate histograms are computed for the
region of interest, in the H, S, and V channels. These 3
histograms are concatenated, to form our representation of
images or regions. Prior to concatenation, each histogram
is smoothed by a low-pass filter in order to reduce boundary
issues caused by discretizing into histogram bins.
In contrast with a ‘straight’ representation in HSV space,

this representation is significantly less sparse, as we are
dealing with a 16 × 3 = 48-dimensional space instead of
a 163 = 4096-dimensional space. Decreased sparsity helps
when matching regions representing the same object but
subject to different lighting conditions. One can observe
that concatenated histograms do not define a proper proba-
bility density as they sum to 3, this can easily be corrected
by normalizing all representation vectors by 3.
While easy to compute and quite efficient, such a his-

togram representation has limitations and is easy to fool
since it does not incorporate any geometric structure. For
example, shuffling sub-regions of the object of interest will
not modify the histograms. This ‘shuffled regions’ case can
occur when the object of interest is part of a texture, like a
tree in a forest or a cow in a herd. In order to enrich the rep-
resentation with some geometric information, regions are
divided into four quadrants. Histograms are computed in-
dependently in each quadrant, then concatenated to form
our final representation.

2.3. Tracking Algorithm
Our tracking system is extremely simple - it consists of

template matching at the nodes of a grid, and selects the
candidate location that provides the best match. Starting
from the reference position of the object at time t, at t + 1
we compare it to the histograms obtained at shifted posi-
tions along a grid, as well as scaled and stretched outlines.
The grid density varies from 2 to 20 pixels, with the highest
density about the reference position from time t.
Letmt the region tracked at time t. Our template at time

t incorporates a component that relates to the ‘ground truth
model’ m0 at time t = 0, and a component that expresses
the temporal evolution:

mt = α ·m0 + (1− α) ·mt−1 (1)

We varied α and obtained the best tracking results for α =
0.7. Low values of α lead to drift, while values of α too

48

close to 1 are too sensitive to variations in pose or lighting
conditions.
The distance used to compare representation vectors is

an important component of the tracking system. We ex-
perimented with the Bhattacharya distance, the Kullback-
Leibler divergence, the Euclidean distance and Histogram
Intersection. Themost robust tracking results were obtained
using Histogram Intersection.
Efficiency of the tracking algorithm. The tracking sys-

tem described above seems to be significantly more com-
putation intensive than, for example, the ‘mean-shift’ algo-
rithm from Comaniciu et al. [1]. The main computation
bottleneck is the computation of histograms. In order to
compute histograms quickly, we use ‘integral histograms’,
the multi-dimensional equivalent of the classical integral
images [12]. Thus, computing a single histogram requires
only 3 additions/subtractions for each histogram channel.
The tracking system, implemented in C++, runs at about 20
frames/second on DVD-quality sequences (frame resolution
720x480 pixels)
Evaluation of the tracking algorithm. In order to tune

the various parameters of the tracking algorithm mentioned
above, 40 video sequences of moving objects were col-
lected from two different sitcoms. These video sequences
are available upon request. They range from easy-to-track
objects (guitar hanging on a white wall while the camera
is panning), to difficult objects (cigarette moving quickly
in various directions). Ground truth was defined manually
by outlining boxes around the object of interest every four
frames. The accuracy of the tracking system was measured
by computing the overlap between the tracked box and the
ground truth box, using the definition of overlap used in the
Pascal challenge [4]:

overlap(B1, B2) =
area(B1 ∩B2)

area(B1 ∪B2)
(2)

where B1 and B2 are the two outlines to be compared.
Tracks are reinitialized whenever their overlap with ground
truth is lower than the arbitrary value 0.4. This replicates
the realistic scenario with a user monitoring the tracking
system. Whenever the match between the outline found by
the trackin system and the ground truth becomes poor, the
user reinitializes the tracker.

2.4. Detecting and Groupings Shots

Most video content consists of series of shots which
make up a scene. Each shot can be defined as the video
frames between two different camera angles. In other
words, a shot is a consistent view of a video scene in which
the camera used to view the scene does not change. Often
a sequence of shots contains the same camera angle multi-
ple times within the sequence. These shots contain almost

identical objects within them. For instance, consider a con-
versation between two actors in which the camera toggles
between the two actors depending on who is speaking. Fig-
ure 2.4 illustrates the concept of shots. We describe an algo-
rithm which both detects shot boundaries as well as groups
consistent shots together to form scenes.
Consider a video j which consists of a set of consecutive

frames: Vj = f1, f2...fk. In order to determine whether
a shot boundary is present we consider a function S which
returns a boolean value, S(fk, fk+1) ∈ {0, 1}, depending
on whether or not there is a shot boundary between any two
frames. By stepping through all the frames within a video
we obtain a boolean vector with non-zero values indicating
a shot detection.
Next we consider how to compare two consecutive im-

ages in order to assess whether a shot boundary is present.
Each image is initially divided into a m × n grid, result-
ing in a total of m × n different bins. We consider cor-
responding bins from consecutive images and determine
how different they are. Consider the function T , where
T (fk, fk+1) =

∑
m,nD(fk

m,n, fk+1
m,n) > T and D is the

histogram difference for a particular color channel. We
are counting the number of grid entries whose difference
is above a patricular threshold. If the percentage of differ-
ent bins is too large, we deem the two frames to be different
and declare a shot boundary. In practice we divded our im-
age into 4×4 bins for a total of 16 unique areas and declare
a shot-boundary if more than 6 of these areas are deemed
different (D > T).
Using the algorithm just described we can step through

an arbitary video Vj and find all the shot boundaries. We
would also like to determine which shots are the same.
We leverage the shot-detection algorithm described above
in order to group similar shots together. Consider any two
shot boundaries and let us demark the indices of the frames
which contain the shot boundaries as fh and f j . Now con-
sider the 5 frames at the end of fh, namely fh−1...fh−5 and
the 5 frames after f j , namely f j+1...f j+5. For every pair
of these frames we consider whether S == 1, thereby indi-
cating that there is a shot boundary. If none of the compar-
isons yields a shot boundary then we declare the two shots
to be the same and we group them within the same cluster.
We use the word shot cluster and scene interchangeably. A
scene is composed of a set of similar shots.
Note that the threshold on histogram similarity is a trade-

off. If it is chosen too low, separate shots will never be
connected as there is usually some movement of the actors
or the camera between shots. If it is set too high, irrelevant
shots will be clustered together.
The result of running our shot detection and shot group-

ing algorithms are a set of shots, where each shot belongs
to a particular scene. For typical content each scene will
continue multiple shots. By leveraging scenes as groups of

49

shots we are able to drastically increase our effectiveness in
creating clustered groups of people within a video.

2.5. Creating Face-Tracks

Our system benefits heavily from the use of video as we
are able to utilize the temporal continuity between frames.
Consider a particular face-detection dk

i in frame fk. Our
goal is to grow this detection into a homogenous ‘face track’
which follows the face of a particular actor over consecutive
frames of within a video.
Consider again the detection dk

i . We use the tracking al-
gorithm described in Section 2.3 to predict the location of
the track in frame fk+1. Now consider the set of n face-
detections in frame fk+1

n . If any of those n detections is
close to the location predicted by tracking, we use that de-
tection as the location of the track in frame fk+1. We con-
tinue in this manner both forwards and backwards in frame
indices, thereby building up a homogenous ‘object track’
which specifies the location of an object over time. Figure 3
illustrates the procedure of choosing between a predicted lo-
cation from tracking and a face-detection. Figure 4 draws a
schemtic diagram containing more details of the face track-
ing procedure.
Why do we favor the face-detection, when available,

over the predicted location by tracking? All tracking al-
gorithms suffer from drift unless they are re-initialized. We
use the face-detections as a re-initialization of the tracking
algorithm by noting that they tend to be more reliable in-
dicators of the true location of the face than the predicted
locations from tracking.
Track termination. There are two possible criteria we

use to terminate a track. (A) Consider a face-track whose
outline in frame k is denoted by i, dk

i . If the predicted re-
gion from tracking is below a specified threshold and there
is no face-detection near the predicted region (as defined
above), the track is deamed terminated. (B) If the face-track
continues to grow for a long period of time without encoun-
tering a face-detection, the track is deamed lost. We found
this to be useful to avoid drift with tracking. For instance
the face-track can grow over many frames by tracking an
innapropriate object. By enforcing that a face-track period-
ically contains a face-detection, we are able to obtain more
homogenous tracks with little drift.
Track Collisions. Consider that two tracks may cross

one another. This happens when one person walks in front
of another. We split each track into two separate tracks at
the point of collision. This results in 4 unique tracks being
created. In Section 2.6 we show how the tracks are grouped
together again as a post-processing step using a clustering
algorithm.
Tracking across shot boundaries. In section 2.4 we de-

scribed how we group together similar shots within a video.
This allows us to do tracking across ‘shot-jumps’, i.e. track-

Figure 3. Overview of Face-Auto-Tracking. This figures shows
the key-step within our tracking algorithm: the decision of where
to place an outline in a succeeding frame. The outline from time
t is tracked at time t + 1. If the face detector generates results
at time t + 1, the detection leading to the best overlap with the
tracked outline is selected as outline for frame t + 1, provided this
overlap is above a pre-defined threshold. If no detection meets this
threshold, the tracking result is selected as the new outline.

ing continues after the camera moves away and comes back
to a similar shot. For video content that switches regularly
between several cameras (e.g. sitcoms, talk shows), this
drastically extends the length of tracks.
Filtering resulting tracks. One final post-processing

consists of removing face-tracks which did not incorporate
enough face detections. We found that this reduced our false
positive rate significantly. We require at least 5 detections
within a track. Besides, for tracks over 25 frames, we re-
quire that at least 10% of the frames making up the track
contain a face-detection.
The result of the tracking as described above is a set of

face-tracks, where each face-track contains a homogenous
set of faces corresponding to a particular individual over
consectuive frames. In the process we have removed many
of the spurious face-detections found as they were never in-
cluded witin a face-track.

2.6. Track Clustering

This section describes our procedure for clustering to-
gether tracks of the same person. The result of the face-
tracking performned in Section 2.5 is a set of tracks of peo-
ple within a piece of video content. In this section we show
how to group those tracks into homogenous clusters where
each cluster is a unique individual. We first compute a sim-
ilarity matrix between tracks, then use hierarchical agglom-
ertative clustering to cluster the tracks.
Distance between tracks. The distance between two

tracks is taken as the minimum pairwise distance between
faces belonging to these tracks.
Distance between faces. Faces are first normalized in

order to align their features. Face features are detected us-
ing [9], and each face is rotated and scaled so that the cor-
ners of the eyes have a constant position. Note that this
rectification preserves the shape of the face: a long or round

50

Figure 2. Example of shot clustering within a video. A video is composed of consecutive shots. A representative frame for each shot is
shown above the timeline. Notice that shots 1,3,6 are all similar and shots 2,5 are similar as well. Our shot grouping algorithm, as described
in Section 2.4 should group together these shots.

Run face-detector on

all frame

Detect shot

boundaries

Video Stream

Cluster

shots

Initiate new track with first detection that

is not yet part of a track

Track to next frame

Looks through detections for the outline that has best overlap with

tracking prediction

-if best_overlap > Threshold, select outline

- if no outline exceeds threshold, select tracked outline

shot

jumping

Is track

alive ?

Yes - keep tracking

No - start new track

Figure 4. Schematic diagram describing how the face-tracking
module creates tracks. A face-track is considered ‘alive’ if it
was not lost during tracking and contains enough face-detections.
Body-detection and Face-Track-Clustering are performed after the
set of face-tracks has been generated.

face stays long and round. Rectified faces are also normal-
ized by the sum of their squared pixel values in order to
reduce the influence of lighting conditions. The distance
between two rectified and normalized faces, is simply taken
as the Euclidean distance between these images.
Agglomerative clustering. The distance described

above allows us to compute a similarity matrix be-
tween tracks. Hierarchical agglomerative clustering [8]
is well suited to form clusters using this distance matrix.
Complete-link clustering, where the similarity between two
clusters is defined as the similarity betwene their most dis-
similar elements, provided the best results in our experi-
ments (as opposed to single-link, group-average and cen-
troid clustering).
A delicate parameter is the threshold that determines

how close tracks need to be in order to be clustered together,

i.e. when clustering stops. This threshold was determined
empirically, as a fixed percentile of the sorted values in the
tracks similarity table.

2.7. Body Detection

This section describes how to attach a body outline to
each frame within a face-track. The extension of the face
outline to the body results in a large interactive region for
clickable applications. We note that having the face detec-
tion as a prior for the location of the body drastically re-
duces the possible locations of the body within a particular
frame. In addition, the knowledge that a face exists at a
particular location is a strong indication that a body exists
below it. We utilize this information in the algorithm de-
scribed below.
The problemwe are addressing, namely detecting a body

below the face is ill-posed and underconstrained: a per-
son can be wearing anything and the body can often be
in a position that is not directly below the face-track. We
make use of two implicit priors in our algorithm below: (1)
We assume that the body is composed of homogenous re-
gions which can be segmented using traditional segmenta-
tion methods. (2) We assume that the body is in some area
below a detected face
We begin by taking a region of interest ROIbody below

the face that is multiple of 3 to 4 times the width and height
of the face outline within the face-track. The region of inter-
est is large enough to account for varying body sizes, poses,
and the possibility of the body not lying directly below the
face (as occurs, for instance, when a person is leaning for-
ward).
We segment ROIbody into regions ρk of pixels that are

similar in color using the Adaptive Clustering Algorithm
(ACA) [10]. This algorithm essentially begins with the pop-
ular K-Means clustering algorithm and extends it to incor-
porate pixel location in addition to color.
We consider a subregion of ROIbody that is the same

width as the face and 1/2 the height of ROIbody that is at
the center of ROIbody . We will call this region ROIhist

51

Figure 5. Typical Body-Detection Performance. Outline around each person indicate the tracked face with a body detection attached below
it. Examples a-h show strong detection results which exhibit a high degree of overlap with the actual body. Examples i-k show detections
which are not as accurate. In particular the algorithm has some difficulty when two bodies are overlapping (i,k) as well as when the face is
not in a frontal pose (j).

because we take the histogram of the ρk that fall within this
subregion. We define the colors Cρ0

and Cρ1
as two colors

that occupy the most area withinROIhist. Let PC0
and PC1

be the sets of pixels in ROIbody who’s R, G, and B values
are within 25 of those of either Cρ0

or Cρ1
. Furthermore,

we define the ratio

α =
|PC0

|

|PC0
|+ |PC1

|
(3)

as the relative importance between the top two represen-
tative colors. Because these colors were found within
ROIhist which is a region just below the face, these two
colors are assumed to represent the two dominant colors of
the upper torso.
Our final task is to find the largest rectangle in ROIbody

that maximizes a scoring function S.

S{Bw ,Bh,Bx,By} = α|PC0
|+ (1− α)|PC1

|

−γ(pix /∈ {PC0
∨ PC1

})
(4)

Here, a good value for γ was emperically determined to be
1.4. Bw and Bh are the candidate rectangles’ width and
height, while Bx and By are the (x,y) positions of the can-
didate rectangles’ centers. Maximizing S in essence finds
the largest rectangle that has the highest density of pixels
that belong to either PC0

or PC1
, maintaining their relative

importance and the the fewest of the other pixels.
Evaluation. To find the optimal parameters in the many

phases of the above algorithm (including parameters passed
into the ACA algorithm) , we collected a dataset of about
4, 000 frames in which bodies were labeled with rectagles.
We ran the body detection algorithm on the data set using
several hundred different permutations of the parameters to
find the parameters that made it match closest to the human
annotations. Using the overlap equation defined above, the

best parameters yielded an overlap of 65% with the human
annotations.
Using the algorithm described above we are able to ac-

curately identify the position of the body given a face-
detection as a prior. Figure 5 shows some examples of de-
tected bodies and the results are, in general, quite strong.

3. Data-Set
One of the main challenges in constructing a complete

computer vision system with the goal of deployment in a
production environment, is the proliferation of parameters
and the difficulty in evaluating the performance of the sys-
tem as a function of those parameters. In order to test dif-
ferent system-level parameter settings we constructed a test-
ing paradigmwhich allowed us to quickly iterate and assess
performance as we varied parameter values. Such a testing
paradigm also allowed us to evaluate the relative importance
of each parameter by judging the effect of the parameters on
system performance.
In designing our test content suite, we chose video con-

tent which exhibited different statistical properties. Differ-
ent dimensionswhich we were concernedwith included: (a)
the length of the content, (b) the type of content as in drama,
action, or comedy, (c) the date when the content was created
- for instance ‘Breakfast at Tiffanies’, released in 1961, con-
tains long scenes with few cuts when compared with some
modern content which exhibits jerky camera motions and
quick shot cutting, (d) the production-quality of the content,
for instance professional or semi-professionally made con-
tent. The different videos for which we collected ground-
truth data are shown in the first column of Table 1.
In collecting the ground-truth data-set we employed the

following methodology. For every video, we marked faces
in every 5th frame. Since consecutive frames are often
quite similar in their visual appearance, it was not neces-

52

sary to collect information on every frame within the video.
We marked every face within a frame with two points in
the upper right of the face and lower left of the face. We
distinguished between faces which were frontal, profile, or
‘difficult’. Our ground-truth annotations thus contain the
position, height, width, and pose of the faces. Table 1 tabu-
lates the various videos we collected data on as well as the
percentage of the different face-types which were found.

4. System Evaluation
We present results of evaluating the performance of our

system over the content listed in Table 1 in Table 2. In gen-
eral our system had very high precision at the face-track
level: most tracks created (in the 95%+ range) were actu-
ally face-tracks. In addition it was very rare to observe our
face-tracks switching identity or terminating while the actor
was still visible. The recall varied more across our different
content. In particular, our system tended to perform bet-
ter with sitcoms and comedies when compared with action
movies which exhibit quick-scence cutting, jerky camera-
movements, and unusual camera view-points. Consider that
if the view-points is consistently changing from one scene
to another we cannot exploit our ability to track across
shot boundaries. In addition, face-track clustering becomes
more difficult as the faces exhibit more variability in light-
ing and pose across different camera angles. Notably, our
system should be robust to the latter type of content as there
is an increasing proliferation of ‘fast’ content on the web
and in the media space. The track length for the face-tracks
tended to be lower for short-form content such as trailers as
this type of content tends to have frequent shot changes thus
breaking a face-track every 30-40 frames.
In additon to the empirical evaluation of the system we

invite the reader to view the actual outlines, tracks, and clus-
ter obtained with our system on video content in the supple-
mentary material for this paper. The supplementary mate-
rial contains numerous videos of actal face and body tracks.
These videos, and more, will be made available on the web.
The most time-consuming steps of the system are the

modules which run the face-detector on all frames as well
as the module which determines the shot-boundaries and
grouping of similar shots. These modules are easily par-
allelized within a MapReduce framework [2], and the re-
sulting system runs at approximately a factor of 2 times
the length of the video. Shorter videos tend to exhibit less
gain as we have some non-linear dependencies on the video-
length.

5. Conclusion
In this paper we showed a complete system which uses

real video data from the web which is able to automatically
detect, track, and cluster together images of people in video.

We would like to stress that the nature of media content on
the web is such that our system must be robust to many dif-
ferent types of content. We have performed extensive eval-
uation, both empirical and subjective, on the system with
different types of content and found it to yield quality re-
sults over large sets of video.
Future avenues of exploration include increasing the ro-

bustness of tracking by leveraging the body detections dur-
ing tracking, making more use of context, and extending
the system to objects other than people. Note that the lat-
ter is especially challenging given both the relatively poor
performance of arbitrary object-detectors. In addition, most
objects do not appear universally in web video (the notable
esception being people and perhaps cars), making the appli-
cations of an object-based system more restrictive.

References
[1] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking

of non-rigid objects using mean shift. CVPR, 2:142–149,
2000. 3

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. OSDI’04: Sixth Symposium on
Operating System Design and Implementation, 2004. 7

[3] M. Everingham, J. Sivic, and A. Zisserman. Hello! my name
is... buffy – automatic naming of characters in tv video. Pro-
ceedings of the British Machine Vision Conference, 2006. 2

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.
3

[5] R. Fergus, A. Zisserman, and P. Perona. Learning object
categories from google’s image search. ICCV, 2:1816–1823,
2005. 1

[6] Google. Google image search. http://images.google.com/. 1
[7] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. Technical Report 7694, California Institute of
Technology, 2007. 1

[8] C. Manning, P. Raghavan, and H. Schutze. Introduction to
information retrieval. 2008. 5

[9] S. Milborrow and F. Nicolls. Locating facial features with
an extended active shape model. ECCV, pages 1746–1759,
2008. 4

[10] T. Pappas. An adaptive clustering algorithm for image
segmentation. IEEE Transactions on Signal Processing,
40:901–914, 1992. 5

[11] J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth,
M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C.
Russell, A. Torralba, C. K. I. Williams, J. Zhang, and A. Zis-
serman. Dataset issues in object recognition. In J. Ponce,
M. Hebert, C. Schmid, and A. Zisserman, editors, Toward
Category-Level Object Recognition, volume 4170 of LNCS,
pages 29–48. Springer, 2006. 1

[12] F. Porikli. Integral histogram: A fast way to extract his-
tograms. CVPR, 1:829–836, 2005. 3

53

Video Total Num Faces Num Frontal Faces Num Profile Faces Num Hard Faces
The Smiths 1139 639 330 170
Sophia 465 376 35 54

Trailer: Ocean13 1316 773 358 185
Trailer: No Country For... 538 472 28 38
Models on Catwalk 949 809 24 115

Trailer: Love in the Time of ... 424 226 68 130
Ground Hog Day 1848 1006 809 27

Trailer: Golden Compass 558 425 36 97
Breakfast at Tiffanies 1518 526 830 162

Friends 2603 1558 701 340

Table 1. Ground Truth Data. We collected ground truth data on a wide variety of video content ranging from short 2 minute ‘MTV’ quality
content to sitcoms to movies filmed 5 decades ago. Columns 1: The name of the video. Column 2: Total number of faces found in the
video. Column 3: Number of frontal faces. Column 4: Number of profile faces. A detection is considered a profile face if it is more than
45 degrees out of the frontal plane. Column 5: Number of faces which are hard to recognize due to lighting, face-size, occlusions, and
resolution. Note that the sum of Columns 3-5 should equal the value in Column 2.

Video Faces Precision Faces Recall % True Tracks Track Length
The Smiths 0.75 0.24 0.52 33
Sophia 0.79 0.55 0.90 55

Trailer: Ocean13 0.91 0.48 0.92 41
Trailer: No Country For... 0.75 0.43 0.18 33
Models on Catwalk 0.87 0.95 0.34 31

Trailer: Love in the Time of ... 0.99 0.36 1.0 22
Ground Hog Day 0.86 0.67 0.90 151

Trailer: Golden Compass 0.73 0.60 0.72 25
Breakfast at Tiffanies 0.64 0.48 0.74 134

Friends 0.80 0.54 0.76 72

Table 2. Results from Evaluating our system on the ground-truth data-set. Column 1: The name of the video evaluated. Columns 2:
Precision of face recall. We measure the overlap between the position of faces within a face-track and the ground-truth data collected in
Table 1. If the overlap for any face is over 40% we deem the ground-truth face to have been detected by one of our face-tracks. The
precision is the actual number of detections within a ground-truth frame divided by the total number of detections in the frame. A higher
precision is better. By and large our tracks contained actual faces thus leading to a high value for precision. Column 3: The recall measures
our ability to find all the faces marked in our ground-truth set. It is measured as the number of overlapping detections divided by the total
number of ground truth faces found. A higher percentage is better as it indicates that more of the ground-truth faces were contained within
the face-tracks. In Columns 4-5 we asses performance on the level of tracks, rather than on the level of individual detections. We consider
a track to be legitimate, i.e. tracking a face, if there are at least 3 ground-truth faces within the track. Column 4: Of the tracks found by
our system, what percentage of those tracks were actually tracks (contained enough ground-truth faces within it to be deemed a track).
Higher is better. Ideally we would like all found tracks to be of faces. Note that the numbers are somewhat deceptive. Some detected
face-tracks deemed, by our criteria, not to be valid tracks, were indeed of faces when we inspected the results visually. This discrepency
is due both to imperfections in the criteria used to evaluate whether a track was an actual face-tracks as well imperfections within our
ground-truth data-set: not all faces were consistently marked within frames. However, the metric was still quite useful in determining the
relative performance of our system across different parameter settings. In practice, rarely observed more that 3% false-positive face-tracks.
Column 5: The average number of frames over which a face-track existed. Larger indicates a longer track. Long form content like ‘Ground
Hog Day’ and ‘Breakfast at Tiffanies’ contained quite large tracks. In patricular, ‘Breakfast at Tiffanies’ has long drawn-out scenes due to
the filming style of the day. Many of the trailers have quite short tracks do to the quit context switching within them.

[13] H. Schneiderman. Feature-centric evaluation for efficient
cascaded object detection. CVPR, 2004. 2

[14] H. Schneiderman and T. Kanade. A statistical method for
3d object detection applied to faces and cars. CVPR, pages
1746–1759, 2000. 2

[15] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny

images: a large data-set for non-parametric object and scene
recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 30:1958–1970, 2008. 1

[16] P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 2001. 1, 2

54

