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Abstract

We demonstrate a concept of computer vision as a se-
cure, live service on the Internet. We show a platform to
distribute a real time vision algorithm using simple widely
available web technologies, such as Adobe Flash. We allow
a user to access this service without downloading an exe-
cutable or sharing the image stream with anyone. We sup-
port developers to publish without distribution complexity.
Finally the platform supports user-permitted aggregation of
data for computer vision research or analysis. We describe
results for a simple distributed motion detection algorithm.
We discuss future scenarios for organically extending the
horizon of computer vision research.

1. Introduction
1.1. Background

In recent years, the Internet has become an increas-
ingly important tool for computer vision research. Vast
archives of visual data compiled by services such as Flickr,
YouTube, and Google Images aid research in structure from
motion [9], scene completion [4], and panorama detection
[5], among many other areas. Commoditized human intelli-
gence available through Amazon Mechanical Turk aids re-
search in user interface analysis [12], image tagging [10],
and scene understanding [8, 11]. Online user communi-
ties perform difficult computer vision tasks including opti-
cal character recognition [15] and image segmentation [14].
Researchers have attempted to enable long tail book pub-
lishing through online computer vision services [7]. The
Internet now plays an important role both as a source of raw
data and artifacts of human interaction.

1.2. Motivation

Bob is annoyed by cars speeding through his residential
neighborhood and worried about the safety of children play-
ing on the street. Alice wants to avoid eye-strain and wants
her laptop to remind her if she is staring at the screen for too
long. Jean is an artist and wants to estimate the percentage

of people in the city sitting in front of a computer and wear-
ing bright colored clothes or the frequency distribution of
smiles per person in a day. Can Bob and Alice simply turn
on a webcam and visit a website to get the services they re-
quire? Can Jean write a program and encourage others to
go to a website so he can get real-time feedback?

We aim to provide a distributed computer vision system
in which consumers casually interact with computer vision
algorithms, producers create new algorithms without wor-
rying about how to deploy and gather data from them, and
all users are empowered to share their algorithms and con-
tent. With user and developer permission, the aggregated
real-time streamed data can also be used for tagging, label-
ing, scene understanding, and prediction problems.

1. The system should be trivially easy to use for con-
sumers; they should not have to download or install
a new application or plug-in.

2. Computer Vision developers should not be concerned
about managing the resources required to distribute
their application.

3. Developers should be able to reuse algorithms easily.

4. Consumers should have fine grained control of their
data.

There are many untapped resources relevant to computer
vision on the Internet. One relatively untouched resource is
users’ webcams. We show how a distributed system con-
sisting primarily of website visitors’ browsers can be used
to efficiently gather and process live video data.

The Internet is not only a host for large data sets, free
processing power, and worker communities waiting for
quick tasks. It can also be used as a platform for innovation
through end users [6]. We discuss a future system in which
users are empowered to experiment with and share their
own computer vision algorithms. We propose using sim-
ple web technologies, such as Adobe Flash and JavaScript,
along with commodity webcams to enable a lightweight dis-
tributed computer vision platform.
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Figure 1. A standard computer vision pipeline (a) performs cap-
ture, processing, and display using a single serial workflow. A typ-
ical Internet vision pipeline (b) downloads large amounts of data
from the Internet and then batch processes images to synthesize a
result. Our proposed pipeline (c) distributes capture, processing,
and display into the Internet.

1.3. Contributions, Benefits and Limitations

We present a way to distribute an interactive real time
computer vision algorithm, breaking away from the current
trend in Internet computer vision of simply using the Inter-
net as a large dataset of visual information or a pool of low
skilled labor. We discuss a future computer vision platform
for publishing and organically extending the field of com-
puter vision research through intelligent user interaction.

The field of computer vision research benefits from our
efforts by being exposed to a larger population of creative
individuals. The next major contribution to our field may
not come from our closed community of researchers, but
instead, from the open community of the Internet.

However, the concept has limitations. Only certain tasks
can be performed via a browser window. Computational
tasks are easy but OS or peripheral interaction may be lim-
ited. We require (power and) Internet connectivity, pos-
sibly limiting use in developing countries. The platform
needs an incentive model for general population to keep
the webcams running even when the computers are idle.
We have implemented a working prototype published at
http://visionontap.com, but it is limited. It pub-
lishes content but does not provide a user friendly UI, de-
veloper tools, or any way to foster an active community of
contributors and consumers. Although the implementation
requires more development, we hope the experiments and
the platform are sufficient to motivate further research and
exploration.

1.4. Related Work

1.4.1 Online Programming Platforms

Our system follows in the footsteps of Scratch [6]. We
take the basic concept of Scratch, an online programming
and sharing platform designed to bring programming to
under-served youth populations, and rethink the concept
to fit the needs of the budding computer vision hobbyist.
Scratch requires users to download and install a local appli-
cation. However, our system allows content authoring in the
browser. Scratch uses Java as its publishing language, mak-
ing it difficult to deploy camera-based applications since
standard client installations do not include camera access
features. In contrast, our system uses Flash, which includes
camera access capabilities in the standard client installation.
In addition to adding camera access, our system also allows
programs to interact with services other than our own, al-
lowing third party integration.

1.4.2 Distributed Processing

Our system borrows ideas from Google MapReduce [2].
MapReduce is a programming model for processing and
generating large data sets. In MapReduce, the general pro-
cessing task is essentially split up into many map tasks, and
a large reduce task. Map tasks compute on data in parallel,
and reduce tasks take the output of the map tasks and com-
bine them into a useful output. In our system, the map tasks
can be viewed as the applications that that are run on users’
machines, and the reduce task can be viewed as analyzing
data returned from published applications. Our system is
different in that it performs all of its calculations in real-
time rather than as a parallel batch process.

1.4.3 Human Processing

Our system is inspired by systems such as [13, 14, 15], that
use humans to perform tasks traditionally thought of as dif-
ficult for computer algorithms. However, we look beyond
using users as a computer vision problem-solving commod-
ity and aim to involve them in the innovation process.

2. Distributed Computer Vision

The system for distributed deployment of computer vi-
sion algorithms follows basic client-server architecture.
The client consists of a user implemented as an Adobe Flash
SWF object embedded into an HTML page, both which are
served from Google AppEngine. The server consists of a
heterogeneous system using both AppEngine servers and
dedicated servers.
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Figure 3. Data flow for user’s client consumption. The width of the
arrows is representative of the amount of data traveling between
each component of the system. Most of the data is processed on the
client, which publishes a summarized result set to one or multiple
endpoints. For example, the camera may be capturing images at
30 fps. In most cases, no data is sent back to the server.

2.1. Clients

We refer to a user’s computer and everything it hosts as
the client. As shown in figure 3, the client includes the
webcam, browser, and Flash application. When the Flash
application is downloaded from our servers, a prompt ap-
pears asking for permission to access resources outside of
the client’s privacy and security sandbox. In our case, this
is the camera. When the user accepts, the application’s priv-
ileges are elevated to include camera access and the vision
program runs. In future work, additional privacy concerns
will be addressed.

The vision program that we implemented for initial test-
ing was a simple motion detector. The motion detector ac-
cesses the camera and reports a motion value between 0
and 100 back to a standalone server. The reports are made
once per second per client. All information is currently sent
through URL parameters, but sending additional informa-
tion through alternative communications methods, such as
Jabber or through sockets is also possible.

2.2. Server and supporting architecture

Conceptually, the publishing system consists of three
parts including a pool of servers, job queues, and worker
machines as shown in figure 4. The servers are AppEngine
servers that act as an interface to the client. The job queues
are used to provide a place to keep track of the status of
jobs uploaded to the web server by clients. Workers strive
to keep the job queues empty by compiling uploaded mate-
rial and delivering binaries.

2.2.1 Server

The server handles two primary tasks. It serves applications
to consumers and receives code from publishers. To accom-
plish these tasks, it relies on access to a distributed database
known as Google Datastore and communication over HTTP

to dedicated servers that perform native execution tasks dis-
allowed on the AppEngine platform.

A request to publish begins with a request for the author-
ing interface. Currently the interface is a web form con-
sisting of two text boxes, one for ActionScript, the primary
programming language of Adobe Flash, and the other for
Macromedia XML (MXML), which describes the interface
in Adobe Flex. The user interface will be enhanced in fu-
ture work. Submitting the form sends the code back to the
server, where it is stored in the database.

When the uninterpreted code is stored in the database,
a unique database key is generated that can be used to ac-
cess the related database record directly. This unique key is
passed on to the job queue so that workers will be able re-
trieve the code and return binaries and important messages
back to the server using a remote API. This key is also used
as a URL argument for communicating which application
to retrieve.

A request to view an application begins when a client
submits a Universal Resource Locator (URL) including a
unique key describing the location of the program in our
database. This key is used by the server to query the
database for the associated entry. This entry may contain
a text message detailing errors in compilation or a binary
Flash file. If it contains a text message, the message is dis-
played with an apology. If it contains a binary, then the
Flash application is loaded into the user’s browser. If the as-
sociated entry for the key is not found, an error is returned.

2.2.2 Worker

When building the application, we discovered that the Ap-
pEngine platform does not allow native execution of code.
The goal of the worker machines is to perform all necessary
native execution tasks.

Once initialized, the worker queries the job queue for
available jobs. If a job is available, then it is time-stamped
and the status is changed to being in progress. The worker
then reads the unique database key from the job description.
The key is used to retrieve the code to be compiled from the
database.

When the code is retrieved, it is extracted into a folder
named after the unique key to avoid conflicts with workers
working on the same machine. The contents of the folder
are compiled using MXMLC. Then a remote connection
to AppEngine is made to upload the resulting SWF to the
database and to set a compiled flag to true. If errors oc-
curred during compilation, then the messages are sent back
to the database and the flag is set to false.

Once results are sent back to the database, the worker re-
ports back to the job queue and sets the status of the job to
completed. Then it requests a new job and the cycle contin-
ues.
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Figure 2. The interfaces of two sample applications. The first two images are of an application that reminds the user to take breaks away
from their computer. Two timers are used in conjunction to provide the desired service. One thirty second timer is reset when motion above
a certain threshold is detected. A second timer, whose countdown time is set by the user, is reset if the thirty second timer reaches zero.
The third image is of a simple motion detection application.
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Figure 4. Data flow for publishing an application. A producer uploads code through an online interface into one of many AppEngine
servers. From here, the code is stored in a distributed database and a compilation job is queued. As they become available, dedicated
worker machines monitoring the job queue process compilation jobs, generating binaries, or in the case of errors or warnings, messages
that will be presented to the client.

The worker cycle is maintained using cron and a se-
ries of folders representing stages of code retrieval, com-
pilation, and uploading. Cron is used to make sure the
Python scripts used to complete each stage are running.

2.2.3 Job Queue

A job queue is used to reduce the risk of over saturating the
dedicated servers with too many simultaneous tasks. If a
job queue were not present, a sudden surge in publication
requests could overextend the fixed resources dedicated to
native execution. With a job queue, a sudden surge in publi-
cation requests merely lengthens the waiting time for com-
pleting new jobs and leaves currently running jobs unen-
cumbered.

After submitted code is stored on the server, the job
queue is asked to create a compilation job that includes
a unique database key provided by the AppEngine server.
This job is placed at the end of the queue with an available
status.

2.2.4 Servers, Third Party Services, and Peer Applica-
tions

Applications are currently allowed to communicate arbitrar-
ily with any other processes running on the Internet. This
allows interesting interactions with not only AppEngine, but
also third party services such as Twitter and Flickr, remote
dedicated servers, and even other client-side Flash applica-
tions.

We implemented a simple third party server using Cher-
ryPy. Our server maintains an access log that records each
incoming request. Each record includes IP address, date,

HTTP command, URL, return code, browser, operating sys-
tem, and preferred language.

3. Limitations
Incentivizing user participation is challenging. We found

the job acceptance threshold on Amazon Mechanical Turk
with regards to compensation to be exceptionally high com-
pared to the results achieved by previous research [10].
Through feedback from one of the workers, we discovered
that they were apprehensive about taking the job because
they believed that photos were being taken of them. What
we learned from this is that, although our software stated
clearly that no images were being sent back to the server,
there was still an issue of trust between the consumer and
the producer. In future work, we aim to assure a mutual
agreement of privacy expectations before accessing a per-
sonal camera.

Currently, our system requires advanced knowledge
to use fully. Our publishing interface, a simple web
form, is minimal interface usable by advanced users or
users with access to an external development environ-
ment. Additionally, we have not tested our system un-
der heavy publishing load. Currently we have pub-
lished one application in a testing environment, located at
http://visionontap.com and have not encountered
any systemic problems during our testing.

Users were recruited both organically and through Ama-
zon Mechanical Turk. Initially the compensation offered
for keeping the program running for twenty-four hours was
0.05 USD, the default price suggested by the Mechanical
Turk system. At this price, we commissioned 100 Human
Intelligence Tasks (HITs). However, after one hour of wait-
ing no HITs had been accepted by workers. The price was
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Figure 5. The distribution of hours of user participation follows a
long tail distribution. The most dedicated user provided over sixty
hours of video. The least dedicated user provided less than an hour
of video.

then raised 0.50 USD, leading our first Mechanical Turk
worker to accept the job. Although we found it difficult
to recruit anonymous workers online, we found it trivially
easy to recruit graduate student volunteers with the promise
of 0.50 USD worth of free food from a nearby vending ma-
chine.

4. Results

Here is an example of a single record we collected us-
ing our stand alone server monitoring a distributed motion
detection algorithm:

18.85.24.87 - - [22/Mar/2009:06:32:37] ”GET /report/email/8
HTTP/1.1” 200 51 ”” ”Mozilla/5.0 (Macintosh; U; Intel Mac OS
X 10.5; en-US; rv:1.9.0.7) Gecko/2009021906 Firefox/3.0.7”

We collected over 700,000 records over the course
of approximately five days. Our first record is dated
17/Mar/2009:20:22:22, and our last record is dated
22/Mar/2009:06:32:37. In raw form, the log file is
151.3 MB. Compressed, it is 3.2 MB, which we estimate to
be significantly smaller than five days worth of video from
connected clients.

Although we can’t be certain of the exact number of
users due to dynamic IP addresses and lack of an authenti-
cation system, we estimate, based on the number of unique
IP addresses in the log, that 68 individuals from the eight
countries shown in figure 1 provided a combined 197 hours
of video data using our application.

From the data gathered in this experiment, we were able
to determine that more movement occurred in front of our
participating clients’ cameras at night, suggesting that users
were more active at night than during the day.

Figure 6. The distribution of activity of hours in the day shows
more activity at nighttime than daytime. The units on the vertical
axis are sums of motion levels, each in the range 0 through 100
inclusive.

Country Unique IPs
United States 58
India 3
Germany 2
Taiwan 1
France 1
European Union 1
Serbia and Montenegro 1
Canada 1

Table 1. Number of unique IP addresses. Participants were orig-
inally recruited locally by word of mouth. However, due to low
participation rates, additional participants were recruited through
advertisement on Twitter, through email lists, and through Ama-
zon Mechanical Turk.

Figure 7. The next big computer vision killer app may be invented
by this guy. Computer vision research benefits from being exposed
to a larger population of creative individuals. The next major con-
tribution to vision in learning may not come from a closed com-
munity of researchers, but instead, from the open community of
the Internet. (Photo courtesy Wired Blog.)
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Figure 8. Potential Application: Citizen Speed Watch. Bob, con-
cerned about speeding vehicles, can aim his camera towards the
street and visit a website for computer vision service. One limita-
tion, however, is that license plates may be blurred.

5. Potential Applications

5.1. Real-Time Social Mood Mapping

Determining the mood of an individual is relatively easy
for humans. Facial feature recognition and expression un-
derstanding are hardwired into the human brain [3]. How-
ever, determining the distributed mood of a group of people,
for example, in an entire office building, can be a nontrivial
exercise.

With our system, John can write a smile detector paired
with a mapping application and distribute it over the Internet
to colleagues in his office. His coworkers can participate in
creating a mood map of their office by allowing the in-office
map application to use their location and mood information
to populate local office regions on their floor. Running the
application for each floor of a building can help produce a
three dimensional volume of mood measurements. It would
be interesting to investigate the correlation between office
floor number and daily mood fluctuations.

5.2. Neighborhood Watch

Speeding in residential areas is a life-threatening nui-
sance that pervades neighborhoods across the country. De-
spite presenting an exceptionally high risk to school-aged
children, this public nuisance is low on police priority lists
due to the frequency of higher priority and higher profile
crimes such as drug trafficking and violent crime. Police
forces are too preoccupied with more immediate threats to
dedicate forces to stop neighborhood speeding.

One solution to help neighborhoods defend themselves
from irresponsible motorists is to use our system. Con-
cerned citizens can publish speed camera software, shown
in figure 8, to be deployed by homeowners in their win-
dowsills using commodity hardware, including just web-
cams, personal computers, and the Internet. Additionally
setup would be extremely simple since there is no installa-

tion procedure. Simply visiting a website links the camera
back to a local neighborhood watch group or the local police
station.

6. Conclusion and Future Work
We have demonstrated a concept of computer vision as

a live service on the Internet. We showed a platform to dis-
tributed a real time vision algorithm using simple widely
available web technologies. There are several avenues for
future work.

6.1. Privacy

In [1], Avidan and Butman describe a system in which
the algorithm producer guarantees privacy for the algorithm
consumer. In our system, we expect to be able to allow
the consumer to specify, in a fine-grained manner, the level
of privacy expected, so that provided applications can be
loaded with a social contract respecting end user privacy
concerns.

6.2. User Interface

Our current user interface is lacking and does not meet
user expectations. In future iterations, we hope to create a
more inviting experience for end users. This can be accom-
plished through creating interfaces to existing highly devel-
oped publishing services, such as Scratch and Eclipse, or
creating our own environment.

6.3. System Robustness

Our initial prototype client, located at
http://visionontap.com, only reports back to
a single endpoint. In future iterations, we hope to add
interfaces for multiple servers, third party services, and
other clients.
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