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Abstract

Global shape prior knowledge is a special kind of se-
mantic information that can be incorporated into an image
segmentation process to handle the difficulties caused by
such problems as occlusion, cluttering, noise, and/or low
contrast boundaries. In this work, we propose a global
shape prior representation and incorporate it into a level set
based image segmentation framework. This global shape
prior can effectively help remove the cluttered elongate
structures and island-like artifacts from the evolving con-
tours. We apply this global shape prior to segmentation of
three sequences of Electron Tomography membrane images.
The segmentation results are evaluated both quantitatively
and qualitatively by visual inspection. Accurate segmen-
tation results are achieved in the testing sequences, which
demonstrates the capability of the proposed global shape
prior representation.

1. Introduction
Image segmentation is a fundamental and important task

in computer vision. Many different kinds of methods have
been proposed to solve this problem, including edge-based
segmentation [10] [9], region-based segmentation [8] [14],
top-down and bottom-up segmentation [3], graph-based
segmentation [13], etc. Due to the complexity of image seg-
mentation problems, it is normally not enough to only use
the image data for segmentation, especially when occlusion,
clutter, noise, and/or low contrast edges exist in the images.
Prior knowledge such as the domain knowledge and seman-
tic information are therefore incorporated into the segmen-
tation process in order to improve segmentation results.

Variational method is an important class of segmentation
approach. It models image segmentation using an energy
functional and converts the problem into a contour evolu-
tion process to minimize the energy functional. This ap-
proach requires solving the partial differential equation of
the energy functional. In recent years, the level set method
by Osher and Sethian [15] is extensively used for solving
image segmentation problems. Level set method represents

an interface implicitly using a surface or hypersurface that
is one dimension higher. It can perform numerical computa-
tions involving curves and surfaces on a fixed Cartesian grid
without having to parameterize them. Moreover, it can eas-
ily handle topological changes and can be easily extended
to high dimension problems, which make it useful to solve
partial differential equations. Researchers have successfully
applied level set method into their segmentation framework.
Chan et al. [4] propose the model of region-based active
contours, which can detect objects whose boundaries are
not necessarily defined by gradient. Caselles et al. [16] pro-
pose their segmentation scheme based on the relation be-
tween active contours and the computation of geodesics or
minimal distance curves. Their scheme segments an image
by evolving the active contours according to the intrinsic ge-
ometric measures of the image. Rousson et al. [12] present
a variational framework based on a bayesian model, which
utilizes both the image partition information and the statis-
tical parameters of each region.

As mentioned before, pure data-driven image segmenta-
tion usually cannot achieve good results when there are such
problems of occlusion, noise, cluttering, etc. Incorporation
of the semantic information or prior knowledge can help
deal with these difficulties. The global shape prior is a spe-
cific kind of semantic information that gives the global con-
straint on the local contours. Many different global shape
prior models are proposed in the past few years and incor-
porated into the level set based image segmentation. Chan
et al. [5] propose a global shape prior term as the summation
of squared differences between the Heaviside functions of
the level sets corresponding to the prior shape and the evolv-
ing contour. Rousson et al. [12] construct the shape prior as
the difference between two level set surfaces, which respec-
tively correspond to the reference shape and the evolving
contour. Foulonneau et al. [2] construct the global shape
prior based on affine-invariant moments. Due to the in-
herent properties of the definition of their shape prior, it
is not necessary to estimate the pose of the global refer-
ence shape simultaneously with the segmentation. Statis-
tical shape prior is also extensively used to handle varia-
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tions of the shape prior. Leventon et al. [11] incorporate
statistical shape prior into Geodesic Active Contours [16]
and get the final segmentation using maximum a posteri-
ori (MAP) method. Normally, the statistical shape prior
assumes a Gaussian distribution of the prior shape. How-
ever, the shape of a real object is usually distorted by non-
linear operation. Cremers et al. [6] propose integration of
nonlinear shape statistics into a Mumford-Shah based seg-
mentation process [7]. They successfully incorporate into
their method the nonlinear prior knowledge on complex
real-world shapes.

In practice, we find the extensively used global shape
prior [5] has difficulty in segmenting images that contain
cluttered elongate structures and island-like artifacts. These
reasons motivate us to propose a different global shape prior
that can effectively address these problems, which can be
useful for segmenting biological images that are usually
noisy and have many adjunct structures associated with the
main object of interest.

In this paper, we propose a different level set based
global shape prior representation based on the contour dif-
ference. It can effectively help remove the cluttered elon-
gate structures and island-like artifacts in the evolving con-
tours. We apply the proposed shape prior to segmentation
of electron tomography membrane image sequences. Ac-
curate membrane segmentations are achieved and evaluated
both quantitatively and qualitatively by visual inspection.

2. Region-based Active Contours
The basic segmentation model used in this paper is sim-

ilar to the model of active contours [4]. This is a robust
model for image segmentation based on piecewise approx-
imation of the well-known Mumford-Shah functional [7].
Instead of using edge detector for stopping the curve evolu-
tion, this model uses the region based information (e.g. the
intensity) and tries to minimize the summation of intensity
variances within the object region and the background re-
gion. As a result, it can segment images with low contrast
edges along the object boundary. The basic segmentation
model is defined by an energy functional

E(c1, c2, C) = λ

Z
Ω

|I(x, y)− c1|2H(φ(x, y))dxdy

+ λ

Z
Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy

+ µ

Z
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy (1)

where I(x, y) is the intensity at the pixel (x, y). Ω repre-
sents the whole image domain. φ is the level set function
whose zero level set is the evolving contour C. φ is selected
to be positive for the interior region of C and negative for
the exterior region of C. Normally, the interior of the con-
tour C represents the object region and the rest of the image

is the background region. µ ≥ 0 and λ > 0 are constant pa-
rameters to balance the importance of each term. c1 and c2
are the average intensities inside C and outside C, respec-
tively. They can be calculated as follows:

c1(φ) =

R
Ω
I ·H(φ)dxdyR
Ω
H(φ)dxdy

; c2(φ) =

R
Ω
I · (1−H(φ))dxdyR
Ω
(1−H(φ))dxdy

(2)
The function H(φ(x, y)) is the Heaviside function of

φ(x, y) and the function δ(φ(x, y)) is the one dimensional
Dirac function of φ(x, y). The Heaviside function and the
Dirac function are defined as

H(z) =


1, if z ≥ 0;
0, if z < 0.

δ(z) =
d

dz
H(z) (3)

The first and second terms in Eq.(1) measure the inten-
sity variances of the object and the background, respec-
tively. The third term regularizes the length of the curve
C and smooths the curve according to local curvature infor-
mation. If the image I contains two regions with approx-
imately constant intensities, it can be partitioned into two
piecewise constant regions by minimizing the energy func-
tional in Eq.(1). Segmentation is achieved by minimizing
the energy functional, i.e.,

inf
c1,c2,C

E(c1, c2, C) (4)

It can be performed using an iterative process to solve the
partial differential equation corresponding to Eq.(1).

Global shape prior information has been incorporated
into the segmentation framework of region-based active
contours [4]. Chan et al. [5] introduce a global shape prior
term to impose an additional constraint on the evolving con-
tour C. It restrains the evolving contour to have a similar
shape as a global reference shape. Their global shape prior
is formulated as

Eshape =

Z
Ω

(H(φ)−H(ψ))2 (5)

where ψ is the level set function whose zero level set
represents the global reference shape. For brevity, we call
this shape prior as Chan’s prior in the following discussions.

3. The Proposed Global Shape Prior
Chan’s global shape prior compares the level set func-

tion φ with ψ in the whole image domain. It is well known
that the level set function φ and ψ only depend on the lo-
cation of their zero level sets. That is, only the zero level
sets decide the difference between the evolving contour and
the reference shape. We therefore introduce a global shape
prior to directly measure the differences between φ and ψ
only at the zero level set of φ, which is defined as

E
′
shape =

Z
Ω

(ψ − φ)2|∇H(φ)|2 =

Z
C

ψ2|∇H(φ)|2 (6)
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Figure 1. The conceptual difference between the proposed global
shape prior and Chan’s global shape prior in 1D case

Note that |∇H(φ)|2 is only non-zero on the evolving con-
tour C, where φ is zero.

Since |∇H(φ)| is nonzero only at the zero level set of φ,
this prior term exactly measures the difference between φ
and ψ at the zero level set of φ. We use the squared func-
tion for |∇H(φ)| in order to prevent this term from appear-
ing in the denominator of the partial differential equation of
Eq.(6). It will avoid instability problem caused by a small
denominator that can often happen in a numerical solution.
The integral in Eq.(6) is only needed at the zero level set of
φ, which makes it very easy to implement the more efficient
narrow band level set method. This will be valuable for high
dimensional problems such as 3D segmentation.

4. The Differences between two Shape Priors

Chan’s global shape prior measures the area of the re-
gions where the evolving contour disagrees with the global
reference shape. For an image point, if its corresponding
values in level set surfaces φ and ψ have different signs,
then the evolving contour disagrees with the global refer-
ence shape at this point. By minimizing this prior term, the
level set surface of the evolving contour becomes close to
that of the global reference shape. As a result, the evolving
contour C will have a similar shape as the global reference
shape.

On the other hand, our global shape prior measures the
total squared difference between the level sets correspond-
ing to the evolving contour and the global reference shape,
only at the zero level set of φ. The difference between our
prior and Chan’s prior is clear. Ours minimizes the differ-
ence between two contours while Chan’s minimizes the dif-
ference between the Heaviside functions of two level set
surfaces. The conceptual difference between Chan’s prior
and ours can be illustrated by Figure 1. In this case, the
Chan’s prior moves the level set surface φ so that the shaded
area can be minimized, while our prior moves φ so that the
differences denoted by the double arrows can be minimized.
When the zero level set of φ coincides with the zero level
set of ψ, both prior terms are zero.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2. Segmentation results that demonstrate the effectiveness
of the proposed global shape prior to remove small island-like ar-
tifacts and cluttered elongate structures: a)the synthetic image; b),
d) and f) are the produced segmentation results using the model
with the proposed prior term; c), e) and g) are the produced seg-
mentation results using the model with Chan’s prior.

The concepts of two global shape priors are obviously
different, which leads to their different characteristics.
Since Chan’s prior minimizes the difference between the
level set surfaces, it will be insensitive to the small differ-
ences on the contours. Our global shape prior focuses on the
contours and therefore can pick up the small differences on
the contours. For instance, our prior can effectively help re-
move the cluttered elongate structures and small island-like
artifacts. However, the Chan’s prior has difficulty in han-
dling such issues. Theoretically, when the evolving contour
consists of the reference contour and small island-like ar-
tifacts, the “energy” of Chan’s prior term is already small
because the area of the disagreed regions is small. As a
result, this is already a local minimum solution. The opti-
mization process is easily got trapped in the local minimum
to produce a sub-optimal solution. Similarly, if the evolv-
ing contour consists of elongate structures and the reference
contour, the disagreed area encompassed by these elongate
structures is also small. The Chan’s prior also has difficulty
in removing these structures from the final segmentation.

These problems are less significant for the proposed
prior. This prior directly measures the difference between
two contours. As long as the elongate structures and small
island-like artifacts are not too close to the global reference
shape, the new prior term is still large, due to the ψ2 term
in Eq.(6). The optimization process will continue evolving
the active contour toward a better solution.

Figure 2 shows several segmentation results to demon-
strate these characteristics. Both a synthetic image and real
images are tested. The synthetic image consists of a circu-
lar object, several island-like artifacts and a cluttered elon-
gate structure. The segmentation model using the proposed
shape prior term successfully removes most of the island-
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like artifacts and the cluttered elongate structure from the
segmentation in Figure 2(b). However, the model using
Chan’s prior has difficulty in removing these artifacts from
the final segmentation in Figure 2(c). These artifacts still
exist in the final segmentation, even if a very large weight
for Chan’s prior term is used. Similar phenomena are also
observed in the real image segmentations.

5. Segmentation with Global Shape Prior
When the proposed global shape prior is added into the

basic segmentation model in Eq.(1), the energy functional
corresponding to the segmentation problem becomes

E(c1, c2, C) = λ

Z
Ω

|I(x, y)− c1|2H(φ(x, y))dxdy

+ λ

Z
Ω

|I(x, y)− c2|2(1−H(φ(x, y)))dxdy

+ µ

Z
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy

+ γ

Z
C

ψ2|∇H(φ(x, y))|2dxdy (7)

where γ is the positive weight of the global shape prior.
This functional can be minimized using the corresponding
Euler-Lagrange equation as follows:

dφ

dt
= −δ(φ){λ[(I − c1)

2 − (I − c2)
2]− µdiv(

∇φ
|∇φ| )

+γ[2ψ2δ
′
(φ)|∇φ(x, y)|2 + 4ψδ(φ)∇φ · ∇ψ

+2ψ2δ(φ)(φxx + φyy)]} (8)

where φxx and φyy are the second order derivatives of φ
in column and row directions, respectively. The constant
λ is fixed as 2 in all experiments. δ

′
(φ) is the first order

derivative of the Dirac function of φ. The term div( ∇φ
|∇φ| ) is

the curvature term that is normally calculated as

div(
∇φ
|∇φ| ) =

φ2
yφxx − 2φxφyφxy + φ2

xφyy

(φ2
x + φ2

y)3/2
(9)

where φx and φy are the first order derivatives. φxy , φxx

and φyy are the second order derivatives.
In addition, the initial global reference shape may not

be in the same pose as the object. It is therefore necessary
to estimate a similarity transformation between the global
reference shape and the initial reference shape. If ψ is the
level set function for the current global reference shape, it
is related to the initial reference shape ψ0 by a four-tuple
(a, b, r, θ) [5].

ψ = rψ0(x
∗, y∗)

x∗ =
(x− a) cos(θ) + (y − b) sin(θ)

r

y∗ =
−(x− a) sin(θ) + (y − b) cos(θ)

r
(10)

where (a, b) represents the translation vector. r is the scal-
ing factor and θ is the rotation angle. These parameters shall

Figure 3. The flowchart of automatically adjusting the temporal
step sizes to update the level set function φ and (a, b, r, θ).

be estimated simultaneously with the segmentation process.
We use gradient descent to estimate them as follows:

∂a

∂t
=

Z
Ω

f(·){ψ0x(x∗, y∗) cos(θ)− ψ0y(x∗, y∗) sin(θ)}dxdy

∂b

∂t
=

Z
Ω

f(·){ψ0x(x∗, y∗) sin(θ) + ψ0y(x∗, y∗) cos(θ)}dxdy

∂r

∂t
=

Z
Ω

f(·){−ψ0(x
∗, y∗) + ψ0x(x∗, y∗)x∗

+ ψ0y(x∗, y∗)y∗}dxdy
∂θ

∂t
=

Z
Ω

f(·){−rψ0x(x∗, y∗)y∗ + rψ0y(x∗, y∗)x∗}dxdy

f(·) = 2γψ(x, y)|∇H(φ(x, y))|2 (11)

where ψ0x and ψ0y are the derivatives of ψ0 in column and
row direction, respectively.

The PDE (8) is numerically solved by a two step iterative
process. In the first step, we try to roughly estimate a sub-
optimal solution. The level set function φ corresponding to
the evolving contour is updated with a fixed temporal step
size. The level set function φ corresponding to the mini-
mum energy in this first step is used as the initialization for
the second step. The estimated global reference shape ψ
corresponding to the minimum energy is also used as the
initialization for the second step. In the second step, we au-
tomatically adjust the temporal step sizes according to the
change of the energy. The flowchart of this process is illus-
trated in Figure 3. If the energy becomes to increase, we
decrease the temporal step sizes in order to find a better so-
lution. If the temporal step sizes are too small or the change
of energy is too small, then the iterative process is stopped
and the final segmentation is output.
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6. Application to Membrane Segmentation
Membrane segmentation is important for medical image

analysis. The membrane is a place where many cell activi-
ties happen. There are often subcellular assemblies and or-
ganelles attached to membranes, which perform cell activi-
ties. Knowing the location of membranes can help observe
and analyze cell activities. However, membrane segmenta-
tion is difficult due to the noise, low contrast membranes,
existence of other organelles, cluttered cells, etc.

We applied the segmentation model with the proposed
prior on three sequences of different cell images obtained
by Electron Tomography (ET). For the first sequence, the
goal is to find the membrane of the main cell in all 74 im-
age frames. We manually give a segmentation for every
fixed number (e.g. 20) of frames. This manual segmenta-
tion is used as the initial global reference shape for the fol-
lowing frames. We use the segmentation of previous frame
as the initial contour for the current frame. Each frame is
segmented according to the process introduced in Section
5. Two typical segmentation results are shown in Figure 4.
By visual inspection, accurate segmentations are achieved.

With the ground truth provided by human experts, we
quantitatively evaluate the accuracy of these segmentations.
The accuracy of segmentation is measured by the preci-
sion and recall rates [1]. Precision is the probability that a
machine-generated boundary pixel is a true boundary pixel.
Recall is the probability that a true boundary pixel is de-
tected. The average precision and recall values of all seg-
mentations are 92.28% and 99.09%, respectively.

When all segmentations are stacked together, a 3D view
of the membranes is established, as shown in Figure 4(c).
Although this result is not generated from a 3D segmenta-
tion, the wall of the membranes is still smooth, demonstrat-
ing the consistency between the segmentations of consec-
utive frames. In addition, we also segment this image se-
quence using the level set segmentation with Chan’s prior.
The 3D view of the stacked membrane segmentations is
shown in Figure 4(d). By visual inspection and comparison,
the membrane segmentations produced by using our shape
prior are smoother than the segmentations produced by us-
ing Chan’s prior. Besides, there are more adjunct structures
incorrectly detected in Figure 4(d).

The second sequence consists of 44 frames. The goal
is also to segment the membrane of the main cell in each
frame. We use a manual segmentation of the first frame as
the initial global reference shape to segment all following
frames. A circle is used as the initial contour for segment-
ing the second image frame. Other frames use the segmen-
tation of their previous frames as the initial contour. Two
typical segmentation results are shown in Figure 5. By vi-
sual inspection, accurate segmentation is achieved. The av-
erage precision and recall values of these segmentations are
99.12% and 97.55%, respectively. Figure 5(c) shows the 3D

(a) (b)

(c) (d)

Figure 4. Typical segmentations of two frames (a) and (b) in the
first image sequence. The segmentations are superimposed as the
white contours on the original images. (c) is the 3D view of the
stacked membrane segmentations produced by using our proposed
shape prior. (d) is the 3D view of the stacked membrane segmen-
tations produced by using Chan’s shape prior.

view of the stacked segmentations of all frames. The wall
of the membranes is also smooth, demonstrating the consis-
tency between the segmentations of consecutive frames.

The third sequence consists of cells with two-layer mem-
branes. One is the outer membrane and the other is the in-
ner membrane. The two-layer membrane demonstrates the
thickness of a membrane. Our goal is to segment out both
the outer membrane and the inner membrane. One key ob-
servation is that the inner membrane is roughly a contour
shrunk from the outer membrane for a nearly fixed distance.
Based on this observation, we first segment out the outer
membrane for each frame using a similar process as above.
In order to segment out the inner membrane, the segmen-
tation of the outer membrane is shrank by a fixed distance
(e.g. 8 pixels). This new contour is used as the initial con-
tour for curve evolution. The inner membrane is then seg-
mented using the same process. Figure 6 shows two typ-
ical segmentation results, which visually demonstrate the
good accuracy of segmentations. We totally segment out 32
frames and stack all segmentations to generate a 3D view of
the membranes, as shown in Figure 6(c). The smoothness
of the wall of membranes demonstrates the consistency be-
tween the segmentations of consecutive frames.

7. Summary

In this paper, we propose a global shape prior based on
contour differences and incorporate it into a level set based
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(a) (b)

(c)

Figure 5. Typical segmentation of two frames (a) and (b) in the
second image sequence. The segmentations are superimposed as
the white contours on the original images. (c) is the 3D view of
the stacked membrane segmentations of the second sequence.

segmentation framework. The proposed global shape prior
can effectively remove the cluttered elongate structures and
island-like artifacts in the evolving contours. We apply the
model with the proposed shape prior to membrane segmen-
tation of image sequences and achieve accurate segmenta-
tion results. In the future, we plan to extend this approach
to the 3D segmentation problems. Finally, we acknowledge
the Wadsworth Center to provide the membrane image se-
quences for our experiments.
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