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Abstract

In this paper, the accuracy of feature points in images

detected by the Scale Invariant Feature Transform (SIFT) is

analyzed. It is shown that there is a systematic error in the

feature point localization. The systematic error is caused

by the improper subpel and subscale estimation, an inter-

polation with a parabolic function. To avoid the system-

atic error, the detection of High-Accurate Localized Fea-

tures (HALF) is proposed. We present two models for the

localization of a feature point in the scale-space, a Gaus-

sian and a Difference of Gaussians based model function.

For evaluation, ground truth image data is synthesized to

experimentally prove the systematic error of SIFT and to

show that the error is eliminated using HALF. Experiments

with natural image data show that the proposed methods in-

crease the accuracy of the feature point positions by 13.9%

using the Gaussian and by 15.6% using the Difference of

Gaussians model.

1. Introduction

The precise detection of feature points in an image is a

requirement for many applications in image processing and

computer vision. In most cases, feature points are used to

establish correpondences between different images contain-

ing the same scene captured by a moving camera or several

cameras simultaneously. These corresponding points can be

used to perform measurements to reconstruct the geometry

of the observed scene or to recognize observed objects. In

most approaches, the feature point detection and the corre-

spondence analysis steps are divided into two parts indepen-

dent from each other [5, 9], [1, 6, 8]. However, recent ap-

proaches show that the procedure can gain in performance

if information of the feature point detection is used for the

correspondence analysis [10].

Extensive work has been done on evaluating feature

point detectors and descriptors [6, 10, 12, 15, 16, 17].

The criteria used for evaluation are Information Content

[16], Repeatability [10, 16], Overlap Error [10], Recall-

Precision [6, 11], and Matching Score [6, 11]. All these

criteria deal with the performance of the approaches con-

cerning distinctiveness of feature point descriptors. The

evaluation is performed under various changing conditions

resulting from a viewpoint change like illumination, rota-

tion, perspective, and scale. For comparison, test data pack-

ages are provided. This data is mainly used to evaluate the

distinctiveness of the feature descriptors for the correspon-

dence analysis step. While the stability of the correspon-

dence analysis is often analyzed in literature, the accuracies

of feature points have rarely been considered.

The main motivation of this work is to analyze the lo-

calization accuracy of the SIFT detector. We present a

proper evaluation scheme, and we introduce a modified fea-

ture point detector with increased accuracy based on our

analysis. For estimating the subpel coordinate of a feature

point, the standard SIFT detector uses a parabolic interpo-

lation function, although it is known that this is a poor ap-

proximation for the gradient signal of an image taken with

a camera based on a lens system [4, 14]. It has been shown,

that using a parabolic interpolation leads to a systematic er-

ror in the localization of a feature point for the Canny- and

Harris-detector [13, 14].

The scale of a feature is used to map the detected feature

point position from the coordinates of the detected pyramid

level to the coordinates of the original image. Hence, the

accuracy of the localization is especially important at higher

levels in the pyramid [2].

In this paper, the systematic error caused by the improper

subpel interpolation technique is shown for the SIFT detec-

tor [2, 8] regarding the position and scale parameters of a

feature point. To avoid this error, two improved interpola-

tion techniques for the subpel estimation of the SIFT detec-

tor are proposed, a Gaussian and a Difference of Gaussians

function model.

The contributions of this paper are

• the development of a method for evaluating the accu-
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racy of a detected feature point using synthetic images,

• experimental verification of a systematic error in the

feature point localization of SIFT, and

• an accuracy gain of detected feature points of SIFT.

In the following Section, the SIFT detector is briefly pre-

sented. In Section 3, the proposed interpolation techniques

are derived. Section 4 shows experimental results using

synthetic and real image data. In Section 5, the paper is

concluded.

2. The SIFT detector

The Scale Invariant Feature Transform provides distinc-

tive feature points which can be used to establish correspon-

dences between images with the same scene content. The

corresponding points can be identified under various trans-

formations of the image which are caused by a viewpoint

change.

The workflow of SIFT using an image as input data is

shown in Figure 1. First, feature points are detected that

are characterized as extrema in the Difference of Gaussians

pyramid of the image. The Difference of Gaussians pyra-

mid is used as an approximation of the Laplacian pyramid,

which has been proven to provide stable scale-invariant fea-

tures. In the next step, the localization is refined by an in-

terpolation of the 27 surrounding grid points with x-, y-,

and scale - coordinates. This interpolation is done by fitting

a 3D parabolic function to the Difference of Gaussians. It

provides subpel and subscale accuracy of the localization of

a feature point. In order to apply an orientation parameter to

a feature, the main orientation of the surrounding image gra-

dients is estimated. This information is used to ensure ro-

tational invariance of a feature. Finally, a 128 dimensional

vector is computed using the surrounding gradients. This

vector is called SIFT descriptor. It is used to establish the

correspondence to a feature in the other image. Correspon-

dences between two images are found by associating feature

points with a minimal distance between their descriptors.

3. Accurate Subpel Localization

In order to estimate the subpel and subscale parame-

ters of a feature, a parabolic interpolation curve is used by

the SIFT detector [2, 8] and variants of the SIFT detec-

tor [1, 6, 11]. The localization is determined by using an

approximation of the Hessian matrix. To improve the in-

terpolation accuracy, the parabolic function is replaced by

a function that provides a better approximation of the im-

age gradient signal. Assuming a camera lens system with a

Gaussian transfer function and an ideal step edge, the gra-

dient signal can be approximated by a Gaussian function

Detection of Scale-Space Extrema

Image

Image Features

Apply Orientation

Calculate Descriptor

Localization of Features

Figure 1. Workflow diagram of the detection of image features

with the SIFT detector. The part modified in our approach is

marked with a dotted box border.

[3, 4, 14]. The response of a peak distribution leads to a

Difference of Gaussians [8].

The scale-space which is used to detect scale invariant

features is represented by a Gaussian image pyramid [7]. In

the SIFT approach, the first scale of each octave is smoothed

with the prior smoothing σ0 = 1.6 [8]. The standard devia-

tion σi of a scale i can be calculated as

σi = σ0 · k
i = σ0 · (2

1

N )i (1)

where N is the number of scales per octave and k deter-

mines the separation between neighboring scales [8]. Usu-

ally, the number of scales per octave is chosen to N = 3.

In order to extract an accurate subpel und subscale lo-

calization of a feature point, two interpolation functions

are introduced, a Gaussian in Section 3.1 and a Difference

of Gaussians in Section 3.2. In the following, a model

for the interpolation functions is developed. A member

of the model function is determined by a parameter vec-

tor p. The parameter vector p is identified through a re-

gression analysis minimizing the distances between the 27

sampling points surrounding a feature point in the Differ-

ence of Gaussians pyramid and the model function. For the

optimization, the Levenberg-Marquardt (LM) algorithm is

used. As pointed out in [14], the regression with LM may

not provide stable results, a fact which we can confirm for

some points. Further optimization analysis is left for future

works.

3.1. Gaussian Interpolation

The interpolation function model using a Gaussian func-

tion with the covariance matrix Σ =

(

a2 b

b c2

)

and its de-
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terminant |Σ| = det(Σ) can be written as

GxG,Σ(x) =
rG

√

|Σ|
· e−

1

2
((x−xG)⊤Σ

−1(x−xG)) (2)

Here, xG = (x0, y0) ∈ ℜ2
[−1;1] is the subpel posi-

tion of the feature point. The parameter vector pG =
(x0, y0, a, b, c, rG) determines a member of the function

model. The resulting solution for the subpel localization

of the feature is (x0, y0). In order to extract the subscale lo-

calization i0, the function model GxG,Σ(x) is also applied to

the neighboring scales i− 1 and i + 1. Then, the maximum

in scale direction i0 is determined by fitting a Gaussian to

the amplitudes of the scales i − 1, i, and i + 1.

3.2. Difference of Gaussians Interpolation

We assume a Gaussian image signal GxD,Σ surrounding

a feature point as derived in Equation (2). Our model for the

Difference of Gaussians function is based on the response

of a Difference of Gaussians filter to a Gaussian input

DxD,σ = rD(GxD,Σσ
− GxD ,Σkσ

) ∗ GxD,Σ

= rD(GxD,Σσ+Σ − GxD ,Σkσ+Σ) (3)

with Σσ =

(

σ2 0
0 σ2

)

and the standard deviation σ of the

current scale.

Like the Gaussian function (Section 3.1), the Differ-

ence of Gaussians function can de described by a six-

dimensional parameter vector pD = (x0, y0, a, b, c, rD).
In contrast to the Gaussian, the Difference of Gaus-

sians function has more than one local extremum. This in-

creases the probability that the gradient based Levenberg-

Marquardt optimization strategy converges to a false local

minimum of the cost function with invalid localization pa-

rameters (x0, y0, i0). Hence, less feature points are detected

with the Difference of Gaussians function model together

with a gradient based optimization strategy.

4. Experimental Results

For the evaluation of our approaches, we use the follow-

ing experimental setup.

• synthetically constructed Gaussian blob feature im-

ages (Section 4.1)

• natural image pairs 1 with estimated homographies

(Section 4.2.1)

• natural image pairs (Section 4.2.2) using constant ex-

trinsic camera parameters, but varying illumination

conditions and varying intrinsic camera parameters

1www.robots.ox.ac.uk/~vgg/research/affine/index.html

Figure 2. Ground truth feature localization (left) of the constructed

Gaussian blob and the feature localization detected by the SIFT

detector (right). The difference is indicated by a red line.

To evaluate the accuracy of the standard SIFT and our

proposals, images with Gaussian blobs are synthesized.

Each of the images provides one scale-space extremum with

ground truth subpel und subscale values. As shown in Fig-

ure 2, the ground truth position is the center of the Gaussian

blob. The scale parameter is determined by the standard

deviation σg of the Gaussian. With these images, we can

directly extract the subpel and subscale localization error of

the approaches.

The test image sequences 1 provide image pairs with a

camera performing a rotational movement, or observing a

planar scene. Thus, all detected feature points in one im-

age can be mapped to the corresponding feature points in

the other image by a homography. Estimated 2 homogra-

phy matrices are also provided with this data. These images

are widely accepted in the computer vision comunity, espe-

cially for evaluating the distinctiveness of feature descrip-

tors.

Our natural image pairs use constant extrinsic camera pa-

rameters. Therefore, the homography mapping between the

images equals the identity matrix. The differences between

images of a pair are generated by modifying the illumina-

tion conditions and varying intrinsic camera parameters.

In the following, we will refer to the three different sub-

pel interpolation methods parabolic of the original SIFT,

Gaussian (Section 3.1), and Difference of Gaussians (Sec-

tion 3.2) with the abbreviations PARAB, GAUSS, and

DOG.

For all experiments, default SIFT parameters are used,

only the interpolation scheme has been exchanged.

4.1. Synthetic Images

The synthetic images are constructed using Gaussian

blobs with a varying localization in x-direction and a vary-

ing standard deviation σg that determines the standard de-

viation of the scale σi = 1
√

k
σg . The differences x0 in

x-direction are within the interval [−2.0; 2.0] with a step

2www.robots.ox.ac.uk/~vgg/research/affine/det eval files/DataREADME
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Figure 3. Some examples of the test images with varying stan-

dard deviation σi (top row, σi = 2.0, 4.0, 6.0, 8.0) and vary-

ing subpel position x0 in x-direction (bottom row, σi = 4.0,

x0 = −1.5,−0.5, 0.5, 1.5)

distance of 0.05 pel. The used standard deviations σi are

within the interval [1.6; 9.9] with a step distance of 0.1 pel.

The scale i0 is determined with Equation (1). As we are

using rotationally invariant Gaussians, we can limit the test

scenario to the localization parameters x0 and i0. The sub-

pel value in y-direction is y0 = 0. With these values, the

first two full pyramid octaves are covered. The image size

is 64 × 64. Some examples are shown in Figure 3.

The results of PARAB can be seen in Figure 4 for the

error of the estimated subpel and subscale localization x̃0

and ĩ0. The Gaussian blobs are detected in two different

pyramid octaves with N = 3 scales each. Within an oc-

tave, a systematic error Ex = x0 − x̃0 and Ei = i0 − ĩ0
can be observed. With an error Ex = 0 on fullpel positions

(x0 = 0), its magnitude increases in both directions. The

error Ex is periodic and represents the three scales of one

octave. From one octave to the next, the structure of the er-

ror is similar, only its interval changes. The magnitude of

the error increases regarding the x-position. Interestingly,

the error Ei in scale decreases. The results of DOG can be

seen in Figure 5. The position localization error is indepen-

dent of the subpel and subscale position. The systematic er-

ror is eliminated exept for a small error of Ei
DOG

< 0.0576
pel in scale direction. The localization error of GAUSS is

very similar to DOG. The maximum position errors match

those obtained by DOG. The scale localization of GAUSS

is Ei
GAUSS

< 0.062 pel.

The maximum errors Emax x
PARAB

of PARAB and Emax x
DOG

of DOG of the x-position for the first eight scales in three

octaves are shown in Table 1.

4.2. Natural Image Pairs

For our tests with natural image pairs, we first detect fea-

tures with all three methods, PARAB, GAUSS, and DOG

in an image pair. Then, the default SIFT procedure for cor-

respondence analysis is used to establish corresponding fea-

ture points. Mismatches in the correspondence analysis step

i σi x0 Emax x
PARAB

Emax x
DOG

1..3 1.6..3.9 −0.5..0.5 0.0721 0.0062
4..6 4.0..7.9 −1.0..1.0 0.1424 0.0091
7..8 8.0..9.9 −2.0..2.0 0.2968 0.0213

Table 1. Maximum errors for the first three octaves of the Gaus-

sian blobs. The maximum scale i = 8 is limited by the image

boundaries of 64 × 64.

are eliminated by detecting all correspondences that do not

fullfill the Repeatability Criterion [10]. This means that a

feature point of the first image mapped by the given homog-

raphy to the second image has a distance of d < dthres to

the detected corresponding feature point in the second im-

age. In [10], dthres is set to 1.5 pel. In order to focus on

the more accurate points, we decrease the threshold value

of the Repeatability Criterion to dthres = 1.0 pel. This

guarantees, that misaligned feature points resulting from an

imperfect optimization scheme (see Section 3) do not affect

the results.

Feature points provided by the three methods PARAB,

GAUSS, and DOG do not only differ in the subpel and

subscale parameters. Because of the different localization,

there are points rejected by the rejection criteria [8] from

one method that are accepted from the other and vice versa.

Furthermore, DOG tends to detect a smaller amount of fea-

tures because of the occurence of local extrema as discussed

in Section 3.2. To be able to compare the resulting fea-

ture points directly, we only use correspondences that are

present in both methods.

For the comparison, the feature points are classified by

error magnitude into 30 bins within the interval [0.0; 1.0],
and their occurence is counted. Thus, the more accurate

feature points will appear on the left side of the resulting

error histogram.

4.2.1 Image Pairs with Estimated Homographies

The test data provide image pairs with associated homogra-

phy matrices that map all features of one image to the corre-

sponding features in the other image. The homographies are

not exact, but estimated. Since the homographies of the pro-

vided images result in a mean mapping error of E > 0.4 pel

per feature, we only worked with data which provides a suf-

ficiently accurate homography, namely the ubc sequence.

This fact also indicates that high-accurate SIFT localiza-

tion has not been in the focus of research so far. The ubc

stereo pairs are well-suited since the homographies are ex-

act (Hubc = E). The error histograms for the first pair of ubc

are shown in Figure 6. Comparing the histogram plots of

PARAB with our approaches GAUSS and DOG, a shift to

the left of the observed points is obvious. This means that

the accuracy of the points increases. The mean error of a
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Figure 4. Error distribution of the standard parabolic interpolation PARAB of the x-position (left) and scale localization (right) showing

the first two octaves. Contour lines are displayed in the ground plane.
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Figure 5. Error distribution of the proposed Difference of Gaussians interpolation DOG of the x-position (left) and scale localization (right)

showing the first two octaves. Contour lines are displayed in the ground plane.

ubc Mean Error Mean Error

Pair PARAB GAUSS PARAB DOG

1-2 0.1686 0.1452 0.1719 0.1485

1-3 0.2671 0.2471 0.2599 0.2445

1-4 0.3498 0.3262 0.3622 0.3434

Table 2. Results of the first three image pairs of the ubc sequence.

For the comparison, only features are selected which are detected

with both methods. Thus, results for PARAB slightly vary

within a row.

feature is shown in Table 2. It decreases up to 13.9% using

GAUSS and up to 13.6% using DOG instead of the original

PARAB as shown in Table 2.

4.2.2 Image Pairs with Illumination Changes

For our test scenario, we chose a Thomson Viper HD TV

camera with a resolution of 1920 × 1080 pixels. A drawing

was captured from a distance of 1.50 m in our studio. To

get differing images with constant extrinsic camera param-

eters, the illumination intensity is changed. By varying the

illumation, three test scenarios are constructed:

A) all intrinsic camera parameters remain constant which

means that the second captured image has a lower dy-

namic range as shown in Figure 7.

B) the autoiris-function of the camera is activated. Thus,

the camera compensates the less intense illumination

with its aperture. The changes are shown in a part of

the captured images in Figure 8.

C) the automatic gain-function of the camera is activated

which means that the changing illumination circum-

stances are compensated with the amplifier of the cam-

era. This results in noise added to the image as shown

in Figure 9.
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Figure 6. Comparisons of PARAB to GAUSS and PARAB to DOG classifying the position error of a feature point by its magnitude for

the first image pair of ubc. The more accurate feature points appear on the left side of the error histogram.

Figure 7. Our natural test image pair from the first test scenario A50%. The illumination intensity changes from 100% (left) to 50% (right).

In the right image, the detected feature points are marked in yellow.

Figure 8. Part of the test image pair B50%. The autoiris-function

of the camera compensates the illumination intensity change from

100% to 50%

With each of the scenarios A, B, and C, two image pairs

are generated, the first with an illumination intensity change

from 100% to 75% and the second pair with a change from

100% to 50%. The image pairs are called A75%, A50%,

B75%, B50%, C75%, and C50%. The image pair A50%

with an illumination intensity change from 100% to 50% is

Figure 9. Part of the test image pair C50%. The automatic gain-

function of the camera compensates the illumination intensity

change from 100% to 50%

shown in Figure 7. The effect of the second scenario B75%

and B50% is a decreasing depth of field (shown in an image

part in Figure 8) while the effect of the third scenario C75%

and C50% is an increase in noise (shown in an image part in

Figure 9).
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Figure 10. Error histograms for A75% and A50% (top row), B75% and B50% (middle row) , and C75% and C50% (bottom row) comparing

PARAB with our approach DOG

The resulting error histograms are shown in Figure 10

for A75% and A50% (top row), B75% and B50% (middle

row), and C75% and C50% (bottom row). In the histograms,

all feature points occuring for both methods PARAB and

DOG are classified by their error magnitude into bins

within the interval [0.0, 1.0]. For DOG, there are more

features having a smaller error than for PARAB in all im-

age pairs. This result is confirmed by Table 3, where the

mean errors of the feature points are shown for the compar-

isons between PARAB and DOG and for the compar-

isons between PARAB and GAUSS. Both methods per-

form better than the original interpolation scheme of SIFT.

The accuracy incrases by 11.0% in maximum for GAUSS

and by 15.6% in maximum using DOG.
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Mean Error Mean Error

scene PARAB GAUSS PARAB DOG

A75% 0.1505 0.1345 0.1573 0.1327

A50% 0.2076 0.1848 0.2127 0.1852

B75% 0.1548 0.1430 0.1549 0.1343

B50% 0.4682 0.4624 0.4393 0.4151

C75% 0.2025 0.1812 0.2042 0.1833

C50% 0.2634 0.2422 0.2570 0.2375

Table 3. Results of the natural test image pairs diplaying the mean

error of a correspondence. For the comparison, only features are

selected that are detected with both methods. Thus, the results for

PARAB slightly vary within a row.

5. Conclusions

Using the standard SIFT feature point localization, by fit-

ting a 3D quadratic function to the Difference of Gaussians

pyramid leads to a systematic error in the localization of a

feature. This is shown in our work by evaluating synthetic

images with varying localized extrema in the scale-space.

The systematic error can be avoided by using a function

model which is adapted to the image signal characteristics.

Using a Difference of Gaussians function model eliminates

the systematic error.

Experiments with natural images reveal that the position

localization error can be reduced by up to 15.6% using the

Difference of Gaussians approach. However, the approach

tends to detect less feature points because of multiple local

extrema. Using a Gaussian function model decreases the

localization error up to 13.9%. These results are obtained

for accurate feature points (≤ 1 pel). The evaluation of less

accurate points is left for future works.

Our approach is designed for the SIFT detector, but can

be applied to all feature point detectors which use scale-

space extrema as characterization of feature points.
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