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Abstract

Local image descriptors computed in areas around
salient points in images are essential for many algorithms
in computer vision. Recent work suggests using as many
salient points as possible. While sophisticated classifiers
have been proposed to cope with the resulting large num-
ber of descriptors, processing this large amount of data is
computationally costly.

In this paper, computational methods are proposed to
compute salient points designed to allow a reduction in the
number of salient points while maintaining state of the art
performance in image retrieval and object recognition ap-
plications. To obtain a more sparse description, a color
salient point and scale determination framework is pro-
posed operating on color spaces that have useful perceptual
and saliency properties. This allows for the necessary dis-
criminative points to be located, allowing a significant re-
duction in the number of salient points and obtaining an in-
variant (repeatability) and discriminative (distinctiveness)
image description.

Experimental results on large image datasets show that
the proposed method obtains state of the art results with the
number of salient points reduced by half. This reduction in
the number of points allows subsequent operations, such as
feature extraction and clustering, to run more efficiently. It
is shown that the method provides less ambiguous features,
a more compact description of visual data, and therefore a
faster classification of visual data.

1. Introduction
Salient points, also referred to as interest points, are im-

portant in current solutions to computer vision challenges.
In general, the current trend is toward increasing the num-
ber of points [26], applying several detectors or combining
them [13, 19], or making the salient point distribution as

dense as possible [16, 21]. While such a dense sampling
has been shown to be effective in object recognition, these
approaches basically shift the task of discarding the non-
discriminative points to the classifier.

Dense sampling implies that a huge amount of data must
be extracted from each image and processed. This is fea-
sible when executed on a cluster of computers in a re-
search environment. Nevertheless, there are environments
in which the luxury of extensive computing power is not
available. This is illustrated by the strong trend towards
mobile computing on Netbooks, mobile phones and PDAs.
Therefore, an important question is if it is possible to reduce
the number of salient points extracted while still obtaining
state of the art image retrieval or object recognition results.

Therefore, in this paper, computational methods are pro-
posed to compute salient points, designed to allow a reduc-
tion in the number of salient points while maintaining state
of the art performance in image retrieval and object recogni-
tion applications. The ability to choose the most discrimina-
tive points in an image is gained through including color in-
formation in the salient point determination process. To this
end, a framework is presented for using color information
to extract salient points and select a scale associated with
each salient point. The color salient point and scale deter-
mination framework proposed operates on color spaces that
have useful perceptual and saliency properties. This allows
for the necessary discriminative points to be located, allow-
ing a significant reduction in the number of salient points.
In this way, an invariant (repeatability) and discriminative
(distinctiveness) image description is obtained.

Experimental results are presented to demonstrate that
fewer color salient points maintain state of the art perfor-
mance for various applications. Firstly, we evaluate the re-
peatability of corner detection approaches using the evalu-
ation framework of [14]. We show that the use of color in-
creases the stability and distinctiveness of salient points in
natural scenes under varying transformations so that fewer
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points maintain state of the art performance. We then show
that by using fewer color salient points, we obtain improved
retrieval of color images, by being more stable to lighting
and shadowing effects. Finally, we evaluate object catego-
rization using the PASCAL VOC dataset and show that the
use of significantly fewer color salient points gives com-
parable performance to the best performing system in the
challenges [26].

Section 2 gives an overview of the main approaches to
extract salient points. Section 3 presents the theory behind
the color salient point detection and scale calculation, with
an overview of the color representations used in the experi-
ments. With the experiments in Section 4, we demonstrate
that significantly fewer color salient points perform equally
well to existing state of the art techniques.

2. Related work
We give an overview of the successful approaches for

detecting salient points based on intensity information and
their extensions to use color information.

Blob detectors – based on the space-scale theory [25]
and extended by [10] – rely on differential methods such
as Laplacian of Gaussians (LoG), difference of Gaussians
(DoG) and Determinant of Hessian (DoH) [10]. The result
of blob detection using either LoG or DoG methods depends
on the choice of a scale sampling rate which is analyzed
in [11].

Maximally stable extremum regions (MSER) [12] are
obtained by a watershed-like algorithm. Connected regions
of a certain thresholded range are selected if they remain
stable over a set of thresholds. The algorithm is efficient
both in run-time performance and detection rate. The region
saliency is measured as the number of thresholds where the
region remains stable.

A widely used color based interest point detector is
the Harris corner detector [7] which can be extended to
RGB [15]. Instead of using the intensity gradient, the gra-
dient for each RGB channel is determined. These values
are summed and averaged using a Gaussian kernel with size
σD. It is shown in [6] that it is the most stable interest point
detector with respect to illumination changes, noise, rota-
tion and viewpoint changes. It is successfully used in many
applications including object tracking [5], visual informa-
tion retrieval [18] and object-based queries. As suggested
in [24], the second moment matrix can be computed using
different color models. The first step is to determine the
gradients of each RGB component, which are then trans-
formed to the desired color space. This method forms the
basis for the color salient point detector in Section 3.

Rugna et al. [18] suggest a method to extract scale-
invariant interest points based on color information for tex-
ture classification. They build a color Gaussian pyramid us-
ing every channel separately. For every pyramid level and

color channel, the Harris energy is calculated building a per-
ceptual image of the texture. This method is independent
of the color space used. The authors suggest the Y UV or
CIELAB color space.

Faille [4] proposes a shadow, shading, illumination color
and specularities invariant interest point localization using
the perceived RGB information as terms modeled as Lam-
bertian and specular reflection, and expresses their geomet-
ric dependencies as a function of the light direction, surface
normal and viewing direction. The approach is evaluated
with the shadow-shading invariant HSI approach that we
choose in Section 3.3. Unnikrishnan et al. [22] extract scale
and illumination invariant blobs through color. The result-
ing regions are found by non-maxima suppression in the
scale space pyramid.

3. Color Salient Point and Scale Detection

We first present the Harris corner detector generalized to
color images, followed by the PCA method for determining
the characteristic scale of the region surrounding an inter-
est point in color images [20]. Finally we describe the two
color spaces used for the experiments. In contrast to other
color interest points used so far [1, 4, 5, 15, 18, 22] we are
using an adapted color Harris detector in conjunction with
an independent scale selection maintaining the main prop-
erties of the chosen color space [20]. Very relevant to our
work is the research of van de Weijer et al. [24, 23]. They
did preliminary work on incorporating color distinctiveness
into the design of salient point detectors (see Section 3.3)
and extended the RGB based Harris to be applied on arbi-
trary color spaces which is given in the next Section.

3.1. Color Salient Point Detector

The Harris corner detector introduced in [7] provides a
cornerness measure for image data. It is based on the second
moment matrix which describes the gradient distribution in
the local neighborhood of a pixel in a greyscale image.

The second moment matrix can be computed in color
spaces that are obtained by transformation from the RGB
space [24]. The first step is to determine the gradients of
each component of the RGB color system. This is done us-
ing a convolution with a differentiation kernel of size σD.
The gradients are then transformed into the desired color
system. By multiplication and summation of the trans-
formed gradients, all components of the second moment
matrix are computed. The values are averaged by a Gaus-
sian integration kernel with size σI . To achieve scale invari-
ance, scale normalization is done using the factor σD.

In symbolic form, an arbitrary color spaceC is used with
its n components [c1, . . . , cn]T . The second moment matrix
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M computed at position x in a color image is then

M(x, σI , σD) =σ2
DG(σI)⊗

[
L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]
(1)

with the components L2
x, LxLy and L2

y defined as:

L2
x(x, σD) =

n∑
i=1

c2i,x(x, σD) (2)

LxLy(x, σD) =
n∑
i=1

ci,x(x, σD)ci,y(x, σD)

L2
y(x, σD) =

n∑
i=1

c2i,y(x, σD)

where ci,x and ci,y denote the components of the trans-
formed color channel gradients, and where the subscript x
or y indicates the direction of the gradient. As shown in sev-
eral experiments [14], the relation 3σD = σI performs best.
Given a second moment matrix M(x, σI , σD), the Harris
energy is calculated based on the trace and determinant of
this matrix:

CH(x, σI , σD) = det(M)− α · trace2(M) (3)

where the matrices M are calculated using the parameters
specified as arguments of the CH function. The constant α
indicates the slope of the zero line, i.e. the border between
corner and edge. We show in Section 4 that this measure
gives a powerful saliency indication for the choice of im-
portant salient points. In the next section, we suggest a way
to estimate the characteristic scale of a salient point based
on this measurement.

3.2. Color Scale Decision

Mikolajczyk and Schmid [14] applied the Laplacian of
Gaussian for automatic scale selection. This is referred to
as the Harris Laplacian detector. The scale space of the
Harris function is built by iteratively calculating the Harris
energy under varying σD and σI .

We apply principal component analysis (PCA) to reduce
the transformed color image I to a single channel finding
the most representing projection vector and reducing the
projective representation error Î(x) = νλI(x)T [2]. In this
scope the projection aims to maintain both salient colors
and relative color differences. Therefore we make use of
the “saliency implies rarity” principle from [8].

The Laplacian of Gaussian function Λ has been used to
detect the characteristic scale automatically [10]. Λ is de-
fined by

Λ(x, σD) =
(
∂2I

∂x2
+
∂2I

∂y2

)
⊗G(σD)⊗ Γ(σD) (4)

where Γ(σD) is the circularly symmetric raised cosine ker-
nel, which is defined for each location xi, yi in the patch
with the center xc, yc and the radius σD

Γ(σD) =
1 + (cos( π

σD

√
(xi − xc)2 + (yi − yc)2)

3
(5)

A convolution with this kernel gives smoother borders
than the Gaussian kernel G for scale decision [9].

A characteristic scale of a possible region is found if
both the Harris energy and the Laplacian of Gaussian are
extrema [20]. Aiming for just one region per location cover-
ing the characteristic structure around, we use the following
decision criteria:

R̂(x) =

(
maxs

[
Ê(x, s)

]
3targ maxs[(bΛ(x,s))]σD

)
(6)

where, having chosen constants σI , σD and t, the func-
tions are Ê(x, s) = CH (x, tsσI , tsσD) and Λ̂(x, s) =
Λ (x, tsσD). The resulting vector function R̂(x) defines all
candidates for salient points and the corresponding region
size. The Harris energy is the measure used to characterize
salient points, and is used as a decision criterion for discard-
ing less salient points. The characteristic scale is estimated
independently of the scale in which the highest Harris en-
ergy occurs.

3.3. Color Spaces

We calculate the proposed salient points in two color
spaces encoding luminance and chroma information sepa-
rately. We use the color space HSI proposed in [24], de-
rived from the Opponent Color Space (OCS) defined as

OCS =

o1

o2

o3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (7)

This orthonormal transformation into OCS provides
specular variance.

A polar transformation on o1 and o2 of the OCS leads
to the HSI color space

HSI =

hs
i

 =

tan−1
(
o1
o2

)√
o2

1 + o2
2

o3

 (8)

The derivative of the hue component h is both the shad-
ing and the specular quasi-invariant [24], as it is both per-
pendicular to the shadow-shading direction and the specular
direction.

As proposed in [23], colors have different occurrence
probabilities p(v) and therefore, different information con-
tent I(v) of the descriptor v:

I(v) = −log(p(v)) (9)

3



The idea behind color boosting is to boost rare colors
to have a higher saliency in the cornerness measurement.
Looking for rare colors, statistics for the Corel Database
containing 40000 color images showed that the three di-
mensional color distribution was remarkably significant.
The color boosting transformation is chosen that vectors of
equal saliency lead to vectors of equal length. A boosting
function can be found so that pixel information in the image
data has equal impact on the saliency function as its infor-
mation content. The strength of gradients is considered as
the decorrelated information content [24].

These color spaces provide either shading and specular
quasi-invariance or a occurrence probability based saliency
measure. Therefore we use these two color spaces to ex-
tract the color salient points used in the experiments in the
following Section.

4. Experiments

The experiments aim to demonstrate that state of the art
results can be obtained when using significantly fewer color
salient points. We first demonstrate the stability of these
color salient points by carrying out extensive repeatability
experiments on natural scenes in Section 4.1. We show that
color information increases the stability of salient points
especially for lighting changes. In an image retrieval ex-
periment in Section 4.2, we show that fewer color salient
points outperform intensity-based Harris Laplacian salient
points. In addition, the increased ability of color points to
retrieve colorful objects under lighting changes is demon-
strated. Going into “real world” experiments with natural
images, we challenge the color salient points in a large pub-
lic object categorization challenge. To show the impact of
the location of detectors in different applications, we do not
use color based description but use illumination based SIFT
and SPIN descriptors only.

In the experiments, we denote the salient points based
on the HSI quasi invariant coordinates as light invariant
points and the salient points based on the color boosted
OCS coordinates as color boosted points. When we re-
fer to both of them, we refer to them as color points. In
Section 4.1, we add RGB points for comparison. As the
state of the art reference, we use the Harris Laplacian. For
the Harris Laplacian we use the latest implementation1 used
and evaluated in [14]. All experiments are carried out with
the same parameters σD = 1, s = 10, t =

√
2 as suggested

in the literature and defined in Section 3. In case we choose
a subset of the provided points, we order the points by their
Harris energy (see Eq. 3). We show the color based Harris
energy gives a more reliable decision criteria for reducing
features than the illumination based counterpart does.

1http://www.robots.ox.ac.uk/˜vgg/research/
affine/

4.1. Repeatability

Mikolajczyk and Schmid [14] suggest a test for the qual-
ity of salient points: they measure the repeatability of
salient points under different challenges. A challenge con-
sists of a set of images, where one is the reference image,
and the other images show the same scene under predefined
changes, including blur, rotation, zoom, viewpoint change,
jpeg compression and lighting2. An example set challeng-
ing viewpoint change is shown in Figure 1. The repeatabil-
ity rate is defined as the ratio between the number of actual
corresponding salient points and the total number of salient
points that occur in the area common to both images. More
salient points give a higher probability of overlaps and tend
to have a higher repeatability rate. In Fig. 2 the averaged
results of the experiments with the suggested test sets are
shown. We carry out the repeatability challenges on a vary-
ing number of features. From 100 points on, the results be-
come stable and go up to 6000 points, when statistically all
the pixels are covered by at least 10 salient points at once.
We denote this as a dense distribution of salient points. We
evaluate the approaches for selecting salient points. For the
Harris Laplacian, literature suggests a fixed threshold on the
Harris energy. This leads to a variable number of points for
the images of the dataset based on their contrast. This in-
creases stability for certain challenges, but is a drawback
for others e.g. varying contrast which happens e.g. at light-
ing challenges. We see that 1000 color points reach Har-
ris Laplacian performance with the suggested parameters
(mean number of points: 2688 ([763,9191] ± 2536) and
even outperform its dense distribution of 6000 points per
image. Comparing light invariant points with Harris Lapla-
cian, 100 light invariant points are enough to outperform the
state of the art.
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Figure 2. The mean repeatability rate of the 18 repeatability chal-
lenges per number of points.

Figure 3 shows the mean repeatability over the five
datasets with varying lighting. Increasing the number of

2http://lear.inrialpes.fr/people/mikolajczyk/
Database
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Figure 1. “Graffiti” test set used in the repeatability experiment challenging change of viewpoint.
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Figure 3. The mean repeatability rate of the 5 data-sets challenging
lighting changes only.

Harris Laplacian points does not improve the repeatabil-
ity against light changes significantly. In contrast, light
invariant points remain more stable for all chosen num-
ber of points. Generally, color boosted points prove to be
less repeatable than the HSI points, which is reasonable
as their saliency function is variant with respect to illumi-
nation changes and focuses on the occurrence probability.
The RGB points have the lowest repeatability among the
colour interest points tested, and are therefore omitted from
the subsequent experiments.

These results show that the Harris energy of the color
points gives a better saliency measurement for reducing fea-
tures. As already stated, increasing the number of color
points increases the repeatability for the color points, but
even with a very sparse description, we have reasonable re-
sults outperforming the Harris Laplacian. A complete de-
scription is not necessarily a matter of quantity but of the
reasonable distribution of the points.

4.2. Image Retrieval

This experiment evaluates the impact of different color
spaces in retrieval scenarios with varying illumination di-
rection and intensity. We use the Amsterdam Library of Ob-
ject Images (ALOI)3 which provides images of 1000 objects
under supervised, predefined conditions on a dark back-
ground yielding a total of 110250 images for the collection.

3http://staff.science.uva.nl/˜aloi/

(a) ALOI object 225 (b) ALOI object 245 (c) ALOI object 584

Figure 4. Sparse color points retrieve object 225 (a) perfectly with
rank 8-13 going to object 245 (b). Dense points perform worse
shifting object 584 (c) to rank 2-8.

Example images are shown in Figure 5. We use the part
of the dataset that provides images under eight predefined
illumination conditions for each object, where illumination
direction and illumination intensity is varied. With these il-
lumination changes, intensity based approaches suffer from
instability and many ambiguous descriptions of shadowing
effects. This experiment is carried out with 7000 images as
ground truth set and 1000 query images, having thus seven
true positives for every object class and query image.

The salient point approaches evaluated provide the lo-
cations and scales for the subsequent calculation of SIFT
descriptors. For the matching, the similarity between two
images is determined by a simple knn algorithm ranking
the nearest 30 Euclidean weighted distances of 100 best
matches. The only difference between the evaluated ap-
proaches is in the stage of salient point extraction.

We show that there is a certain minimum number of fea-
tures that is necessary to discriminate an object from 999
other objects. More importantly we see that too many fea-
tures make the description ambiguous. To discover this cru-
cial global parameter, we do the retrieval experiment while
varying the maximum number of salient points to be ex-
tracted, where a maximum number of N salient points im-
plies that the N salient points with the largest Harris en-
ergies are extracted. If fewer than N salient points are
detected for an image, then all are used. We begin with
all extractable salient points (all of the up to 22117 max-
ima of the Harris energy per image) and then use N =
1000, 500, 200, 100, 50, 10. We retrieve the most similar
images, considering them as ranked results for the retrieval
evaluation. We consider the precision and recall for the top
30 retrieved images and show the mean of the resulting F1
score plotted against the number of salient points in Fig-
ure 6. We see that every approach has its best performing
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Figure 5. Example images from the ALOI database.
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Figure 6. Mean F1 score of 30 ranks under different maximum
number of features.

number of salient points. The important point is that af-
ter a maximum, the performance decreases with increasing
number of points.

Figure 4 shows a specific example of this decrease in
performance with an increasing number of salient points.
Object 225 is shown in Fig. 4(a): It is retrieved perfectly
with the first 7 ranks being correct for 200 light invariant
points. The next candidate with the 2nd best ranks is object
245 (Figure4(b)) for this set of parameters. This is intu-
itively correct as it contains similar texture. With 200 light
invariant points, object 225 does not appear in ranks 1–7 for
queries using any of the other 999 objects. Taking all the
8775 features available, object 225 appears in 43 queries
in the top 7 ranks, worsening the result significantly. For
the query by object 225 itself, it still ranks one right can-
didate at the first rank, having the following 7 from object
584 (see Fig. 4(c)). As the only distinct features, the spikes
at the border of object 225 and on the head of object 584 re-
main. The other features become more ambiguous the more
points we consider. It is clear from Fig. 6 that a higher per-
formance is achieved for a lower number of color salient
points than for the Harris Laplacian points. The precision-
recall graph showing averages over 1000 queries for the
best performing parameters of the color points and the sug-
gested parameters of the Harris Laplacian (max. of 200
color points, 381 [12,8873] ± 393 Harris Laplacian points)
is given in Figure 7, with the average precision shown in
Table 1. On average, half of the number of color points are
used to almost solve this retrieval scenario perfectly. Com-
pared to the Harris Laplacian based approach, reducing the
number of points to a half reduces the computational com-
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Figure 7. Precision and recall of retrieval performance for best per-
forming parameters of the color points and the suggested parame-
ters of the Harris Laplacian.

avg. precision avg. nr. points
Harris Laplacian 0.52 381
color boosted points 0.82 192
HSI points 0.82 193

Table 1. Average of number of points extracted and the average
precision in the image retrieval experiment.

plexity significantly.

4.3. Object categorization

One of the most successful approaches to object catego-
rization is the bag of keypoints in combination with SVM
classifiers [26] — the best performing methods at the PAS-
CAL Visual Object Classes Challenge 2006 [3] and later
used variations on this approach.

We evaluate the color salient points on the dataset from
the PASCAL VOC 2007 challenge4. This dataset consists of
9963 images, where 5011 images form the annotated train-
ing set. The test set contains 4952 images which are used
to evaluate the performance of the framework. The number
of objects in one image is not fixed, the whole dataset con-
tains 12608 objects. Twenty classes of object are annotated
with ground truth. Example images are shown in Figure 9.
As a benchmark we use the algorithms that are evaluated in
more detail by Zhang et al. [26]. They use a Harris Lapla-
cian detector, a combination of SIFT and SPIN descriptors
using a bags of keypoints approach and an EMD Kernel
SVM for classification. The workflow of the algorithm is
shown in Figure 8. We use the best performing parameters

4http://www.pascal-network.org/challenges/VOC/
voc2007/
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Figure 8. Flowchart of the approach of Zhang et al. [26] used in the object categorization experiment.

Figure 9. Annotated sample images from the VOC 2007 dataset.

of their evaluation. Image signatures consisting of 40 clus-
ters of these descriptors are extracted. Clustering is done
using the k-means algorithm. The earth mover’s distance
(EMD) [17] showed to perform best for the task of esti-
mating the similarity between image signatures. These im-
age distances are incorporated into a one-against-all SVM
classifier. We wish to test the effect of using salient points
obtained from luminance and color information on the cate-
gorization and calculation time performance. Only the first
step in the flowchart in Figure 8 is changed, all succeed-
ing steps of the approach are carried out identically. An
example showing the color points and Harris Laplacian of
an image from the VOC 2007 dataset is given in Figure 10.
For this image, the color salient point detectors focus on the
more colorful foreground objects. Fewer salient points are
found in the background by the color salient point detectors
than by the Harris Laplacian detector.

We test the quality of each single one-against-all clas-
sifier by carrying out 10 fold cross validation on the
VOC 2007 training set. The second column of Table 2
shows the discrimination accuracy for different numbers
and types of salient points and descriptors, averaged over
20 one-against-all classifiers. No matter which descrip-
tion we feed into the SVM, the classifier manages to reach
about 93% accuracy on the 2 class problem. The accuracy
when categorizing the test data into one of 20 classes is
shown in the third column of Table 2. For this experiment,
reducing the number of Harris Laplacian points by about
50% gives around 60% of the original categorization per-
formance. This does not hold for color salient points: we
keep the 400 salient points with the highest Harris energy
per image and can maintain the performance of the richer
description (800 points).

Therefore we argue that the color points are more dis-
tinct and discriminative, even when intensity based descrip-
tors are used. It is shown that the use of color in the de-
tection phase does not degrade the categorization ability of
the one-against-all SVM classifier and the description is as
complete as for the best performing Harris Laplacian detec-
tor. The classifier is able to discriminate between the given

SIFT discrimination categorization number of points
Harris Laplacian 93.12± 2.52% 79.5± 15.5% 771± 531

92.41± 2.65% 54.6± 20.7% 387± 72
light invariant points 93.27± 2.17% 81.7± 10.6% 800

93.54± 2.34% 80.9± 11.4% 400
color boosted points 93.49± 2.28% 83.0± 10.1% 800

93.41± 2.44% 83.1± 10.4% 400
SPIN
Harris Laplacian 92.95± 2.64% 66.2± 17.8% 771± 531

92.19± 2.8% 38.4± 12.9% 387± 72
light invariant points 93.16± 2.61% 68.9± 18.3% 800

93.08± 2.56% 68.3± 18.9% 400
color boosted points 93.13± 2.71% 68.8± 17.2% 800

93.04± 2.62% 68.7± 16.4% 400
SIFT + SPIN
Harris Laplacian 93.50± 2.4% 85.9± 9.9% 771± 531

92.83± 2.75% 54,8± 18.5% 387± 72
light invariant points 93.52± 2.61% 86.6± 8.7% 800

93.57± 2.37% 86.5± 8.5% 400
color boosted points 93.49± 2.65% 86.2± 8.9% 800

93.47± 2.38% 86.4± 8.4% 400
Table 2. Discrimination accuracy of the classifier and the catego-
rization accuracy of the challenge as average± standard deviation
over classes.

object classes equally well, while training on significantly
fewer descriptors. The number of salient points are an indi-
cation for the runtime of the system. Every step of the object
categorization (see Fig. 8) has to deal only with about half
of the data as the state of the art does, which diminishes the
runtime significantly.

5. Conclusion
In this paper, computational methods have been intro-

duced to allow the usage of fewer but more distinctive
salient points for object retrieval and categorization. These
distinctive points are obtained by making use of color infor-
mation.

Extensive experimental results show that a sparser but
equally informative representation, obtained by making use
of color information, can be directly passed to current and
successful image retrieval and object categorization frame-
works, which then obtain state of the art results while pro-
cessing significantly less data. When using color salient
point detectors for object categorization, the same perfor-
mance is obtained using about half the number of color in-
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(a) original (b) light invariant points (c) color boosted points (d) Harris Laplacian

Figure 10. VOC 2007 image number 5221 and the salient points used in the object categorization experiment.

terest points compared to greyscale interest points. Such a
reduction in the amount of data to be processed is useful
in applications for which limited computing power is avail-
able.
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