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Abstract

Selecting automatically feature points of an object ap-
pearing in images is a difficult but vital task for learning
the feature point based representation of the object model.
In this work we present an incremental Bayesian model that
learns the feature points of an object from natural unan-
notated images by matching the corresponding points. The
training set is recursively expanded and the model param-
eters updated after matching each image. The set of nodes
in the first image is matched in the second image, by sam-
pling the unnormalized posterior distribution with particle
filters. For each matched node the model assigns a prob-
ability for it to be associated with the object, and having
matched few images, the nodes with low association proba-
bilities are replaced with new ones to increase the number
of the object nodes. A feature point based representation of
the object model is formed from the matched corresponding
points. In the tested images, the model matches the corre-
sponding points better than the well-known Elastic Bunch
Graph Matching batch method and gives promising results
in recognizing learned object models in novel images.

1. Introduction
An algorithm that matches feature points of an object in

an unseen query image typically needs to be trained on im-
ages with annotated feature points on the instances of the
object. Two successful examples of such an approach are
based on an elastic grid of features [15] and principal com-
ponents of shape and appearance [3]. However, these mod-
els typically require a rather large training set, and man-
ually annotating the training images is a tedious and time
consuming task. Furthermore, they are batch algorithms
where all the training images need to be available to train
the model parameters. For a system learning the environ-
ment continuously, recursive online learning by updating
the internal representations after each obtained data would
be more feasible than batch learning, which requires mem-
orizing and processing all the past data.

Some models learn the object representation in a weakly
supervised manner. In constellation models, multiple can-
didate parts are extracted from the unannotated training im-
ages, and a joint probability density for the appearance and
shape of these parts is utilized. The object parts are found by
computing the maximum likelihood estimate with e.g. ex-
pectation maximization methods. Constellation models or
variations of them are usually implemented as batch algo-
rithms [14, 7, 5, 8, 11, 10] with the exception of [6], where
the expectation maximization algorithm is adapted to allow
for incremental learning. Other approaches to weakly su-
pervised batch learning include a hierarchical visual cortex
inspired algorithms [12] or segmentation algorithms [1].
In this work we present a weakly supervised online

method that automatically learns the appearance and shape
of the feature points of the common object appearing in
grayscale images with no annotations or pre-segmentations,
processing single image at a time. The learned feature
points are the corresponding points in the images, matched
during the process. To our knowledge, no other method ex-
ists that aims to perform this task. A presentation of the
object, formed from the learned feature points, can be used
in detecting instances of the object in unseen images. The
method can also be used as a precursor to training other
models that require annotated training images.
In the proposed algorithm, the matching result of each

image is exploited in matching the next image, thereby in-
crementally expanding the training set. The approach is
Bayesian; the likelihood is modeled as a Gabor filter based
appearance and the prior as a Gaussian distribution for the
shape of the corresponding points. These are combined into
the (unnormalized) posterior distribution whose main mode
is searched with particle filters. The set of reference nodes,
positioned heuristically in the starting image, includes both
object and background nodes. The probabilistic model al-
lows for inferring the nodes that are to be associated with
the object, and nodes that are not associated with it are re-
placed with new ones after having processed few images.
The representation of the object thus improves as more im-
ages are processed.
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2. The method
We first introduce the model in brief (see also Figure

1). The model is presented images that share instances of
a common object with arbitrary location, scale and orienta-
tion, one at a time. Also images containing no object can
be included. A set of nodes, which can be considered as
candidate corresponding points, is positioned in the start-
ing image in a heuristic fashion, so that they are spread
fairly evenly in the image. The unnormalized posterior dis-
tribution of the node set location in the second image is ob-
tained as a product of the likelihood of the node set location,
formed from the Gabor filter responses, and the prior distri-
bution of the node set shape, modeled as a Gaussian distri-
bution in the mean, scale and orientation free space. The
node set is matched by sampling the posterior distribution
with Population Monte Carlo algorithm. For each matched
node the model assigns a posterior association probability,
that is, the probability for a node to be associated with the
common object.
For matching the nodes in the third image, the likeli-

hoods are formed as mixtures whose kernels are evaluated
at the node locations of the starting image and at the Monte
Carlo estimate of the posterior mean of the second image.
Also the variances of the Gaussian shape model and the
association probabilities are updated. As more images are
processed, the association probabilities of the object nodes
(corresponding points) evolve to unity, and nodes with low
association probabilities are eliminated and new nodes are
laid on locations that more probably cover the object. The
system needs no pre-defined number of images as the pro-
cess could be stopped at anytime and a representation of
the object formed by dropping the possibly remaining back-
ground nodes. The likelihood and prior used in this paper
are somewhat similar to those used in [13], which presented
a batch model that accurately matches occluded objects in
query images with Sequential Monte Carlo methods.

2.1. Node selection
The nodes are selected in the starting image by first di-

viding it into small non-overlapping rectangular windows.
In each window, the sum of the norm of a vector of the com-
plex Gabor filter response magnitudes [15, 4] and the Gaus-
sian distribution whose mean is the midpoint of the window,
is maximized. As a result, the nodes are spread fairly evenly
in the image with high information content (see left image
of Figure 2). Basically, a node set with the shape of a regu-
lar grid could also be used, but selecting the reference nodes
in (more) interesting locations alleviates the matching.

2.2. Likelihood - appearance model
The appearance of the nodes is modeled using a Gabor

filter bank [4]. Denoting the magnitudes of the filter re-

Figure 1. A schematic illustration of the model. In the first image,
a simple algorithm selects the six nodes (yellow dots), which are
matched in the subsequent images (solid blue arrows and dots).
For each matched node, the model estimates how probably it asso-
ciates with the object. The association probability is high for large
green dots and low for small red dots. In the third image, three
nodes with very low association probabilities are replaced by new
nodes (dashed arrows) that are selected inside the convex hull of
the current node set.

sponses by aj and phases by φj , a phase-sensitive similar-
ity measure between a query image location x and the ref-
erence location x′ is defined as

Sp(x, x′) =

∑
j aj(x)aj(x

′) cos(φj(x) − φj(x
′))√∑

j aj(x)2
∑

j aj(x′)2
, (1)

where the index j runs over the jet coefficients [15]. By
denoting the (Gabor filtered) query image with I, (Gabor
filtered) reference image with I ′, and the event ”node is
to be associated with the object” with Vi, the associative
likelihood of node i is

p(I|xi, x
′
i, I′, Vi) = exp(βSp(xi, x

′
i)) , (2)

where β is a parameter controlling the steepness of the like-
lihood and is related to the Gaussian in-class variance of the
Gabor responses. With a large enough value for β the non-
linear weighting of the similarities (2) can be such that the
strongest mode of the posterior is at the correct location.
By denoting the non-association of node i with Vi we

derive the likelihood by summing out the two association
statuses:

p(I|xi, x
′
i, I′) = p(I, Vi|xi, x

′
i, I′) + p(I, V i|xi, x

′
i, I′)

= p(I|xi, x
′
i, I′, Vi)P (Vi) + p(I|xi, x

′
i, I′, V i)P (V i) .

(3)

40



1st image 2nd image 2nd image, lkh+Pr

Figure 2. Left image: starting image and its node set. Middle image: second image in the sequence. Right image: zoomed second image,
with white fields showing the modes of the likelihood of a node, marked with yellow circle in the starting image, and green contours
illustrating the marginal prior distribution of the node (given scale 1.32, orientation −0.10◦, and the midpoint, shown as red cross).

Hence the likelihood is a mixture of the two association
possibilities weighted by their prior probabilitiesP (Vi) and
P (V i) = 1 − P (Vi), which are considered to be indepen-
dent of the node locations and the reference image. Further-
more, the probability that the query image point xi is to be
associated with the reference node point x′

i is simply the ra-
tio of the associative likelihood and the mixture likelihood:

P (Vi|xi, x
′
i, I, I′) =

p(I|xi, x
′
i, I′, Vi)P (Vi)

p(I|xi, x′
i, Vi, I′)P (Vi) + p(I|xi, x′

i, I′, Vi)P (Vi)
. (4)

The likelihood when the query node at xi is not
associated with the reference node at x′

i, that is,
p(I|xi, x

′
i, I′, Vi), is the conditionalmarginal likelihood in-

tegrated over all other features except the one present at
x′

i in I ′. For that, we use a constant, heuristically chosen
value: p(I|xi, x

′
i, I′, Vi) ≡ κ ∀i. In [14, 7, 5] the back-

ground parts were modeled with a uniform density as well.
In target tracking and surveillance, a constant value for no-
detection likelihood is also typically used.
We assume independence between the filter responses at

different locations, so that the total likelihood of the query
node set is the product of the node likelihoods (2). Adding
a positive constant κ with the associative likelihood ensures
that the total likelihood is always non-zero also with non-
associable nodes present.

2.3. Prior - shape model
The configuration of the nodes is controlled by setting a

translated, scaled and rotated Gaussian prior distribution on
the location of the nodes. The mean of the distribution is the
reference shape - that is, the shape of the reference nodes -
and the distribution is independent on the reference image:

p(x|x′, s, ϕ) = N (x|mx+R(ϕ)s(x′−E[x′]), s2
R(ϕ)C) ,

(5)
where E[·] denotes mean value, C is a diagonal covariance
matrix, mx is the midpoint of the query set, s is the scale

(of the query shape compared to the reference shape),R(ϕ)
is the rotation matrix with angle ϕ andR(ϕ) scales the ver-
tical and horizontal components of the covariance matrix.

2.4. Posterior distributions
The likelihood and prior parts are combined into the un-

normalized joint posterior distribution:

p(x, s, ϕ|x′, I′, I) ∼ p(I|x,x′, I′, s, ϕ)p(x|x′, s, ϕ)p(s, ϕ) ,
(6)

where p(s, ϕ) ∼ 1 is the non-informative prior distribution
for scale and rotation. Likelihood depends on s and ϕ if
different Gabor filter jets are used for different scales and
rotations. Also the posterior association probability of node
i is obtained, by integrating over the posterior distribution:

P (Vi|x′, I, I′) =

∫
p(Vi,x, s, ϕ|x′, I, I′)dx ds dϕ

=

∫
p(Vi|x, s, ϕ,x′, I, I′)p(x, s, ϕ|x′, I, I′)dx ds dϕ .

(7)

In Figure 2, an example of matching a query image is
presented. The combination of the prior and likelihood re-
sults in the marginal posterior (not shown) whose mode is
approximately at the true location.

2.5. Sampling
For representing the distributions and computing the

necessary integrals, we sample the posterior distributions
with Population Monte Carlo (PMC) method [2]. In PMC
the proposal distributions may differ between particles, so
we let the variance of the proposal distributions decrease for
associable nodes. PMC algorithm may be arbitrarily initial-
ized without violating the convergence theorems; thus we
have implemented the global move step of Elastic Bunch
Graph Matching (EBGM) method [15] as heuristic means
to get probable node locations. The first round of our PMC
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1. Initialize

• Pre-compute a large filter bank consisting of five scales √
2π/{2, 4, 8, 16, 32} and 12 orientations

{0, π/6, ..., 11π/6}
• Initialize the particles by scanning (with interval of few pixels) the query image with a rigid reference node set using
five scales s = 2{−0.8,−0.4,0,0.4,0.8} and three angles ϕ = {−10◦, 0◦, +10◦}. For each match (there are typically
thousands of them), compute phase-sensitive similarities (1) and phase-insensitive similarities (by dropping the
phase term off), using Gabor jets consisting of three frequencies and six orientations, by interpolating the filter
responses with four neighboring filters of the pre-computed filter bank. Give each match a score, defined as the
mean value of the most similar 25 % of the nodes, using the phase-insensitive similarity. Take 150 best scores
(matches) and initialize the particles with the corresponding locations (x0), scales (s0), orientations (ϕ0) and
phase-sensitive similarities.

• Set t = 1.

2. Sample each particle from the proposal distributions

• Compute the posterior association probabilities with (4) and set Ti = P (Vi|xi, x
′
i, I, I′)

• Set q(log[s]|st−1) = N (log[st−1], σ2
log[s]), where σlog[s] = log[1.06]/(1 + E[T ])

• Set q(ϕ|ϕt−1) = N (ϕt−1, σ2
ϕ), where σϕ = 2/(1 + E[T ]) (in radians)

• Sample scale and angle: log[s∗] ∼ q(log[s]|st−1) , ϕ∗ ∼ q(ϕ|ϕt−1)

• For i = 1...Nnodes

– Set q(xi|xt−1, s∗, ϕ∗) = N (xi|mx +R(ϕ∗)s∗(xt−1
i −E[xt−1]), Ci), wheremx is theT weighted midpoint

of xt−1 and Ci =

(
σ2

xi
0

0 σ2
yi

)
, where σxi

= s∗(σxi,prior)
√

2−Ti and σyi
= s∗(σyi,prior)

√
2−Ti

– Set q(I|xi, x
′
i, I′, s∗, ϕ∗) = P (Vi)L̃i(x) + (1 − P (Vi))κ, where P (Vi) is the prior association probability

and L̃i(x) = exp(βSp), where Sp is the pre-computed phase-sensitive similarity with scale and orientation
closest to s∗ and ϕ∗

– Set αi =
∑

xi∈A q(xi|xt−1, s∗, ϕ∗)q(I|xi, x
′
i, I′, s∗, ϕ∗), where the size of the search window A is [3 3]Ci

pixels around the prior mean
– Set q(xi|xt−1, s∗, ϕ∗, I, I′) = 1

αi

q(xi|xt−1, s∗, ϕ∗)q(I|xi, x
′
i, I′, s∗, ϕ∗)

– Sample location (numerically): x∗
i ∼ q(xi|xt−1, s∗, ϕ∗, I, I′)

3. Compute the particle weights for each particle

• Compute w = p(I|x∗,x′,I′,s∗,ϕ∗)p(x∗|x′,s∗,ϕ∗)

[
QNnodes

i=1
q(x∗

i
|xt−1,s∗,ϕ∗,I,I′)]q(log[s∗]|st−1)q(ϕ∗|ϕ)

, where the value of the likelihood has been com-
puted by interpolating between four neighboring filter responses, according to s∗ and ϕ∗.

• If t = 1, set the particle weight to w1/3, otherwise set the particle weight to w

4. Resample and move the particles

• Resample the particles with replacement according to the particle weights using deterministic resampling
• Set the components of the particles {xt, st, ϕt} to the resampled values
• Move each particle with Langevin Monte Carlo sampling step
• If t > 1 and the variance of xt is below a threshold, or if t = tmax, stop. Otherwise, set
t = t+1 and go to step 2

Algorithm 1: Population Monte Carlo implementation. Particle indexing has been dropped for clarity, hence steps 2 and 3
are performed individually for each particle.
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implementation is special as the particle weight is taken to
bew1/3 to prevent degeneration - theoretically this does not
produce samples from the posterior but acts as an initial-
ization for the second round. The PMC implementation is
presented in a greater detail in Algorithm 1, where indexing
for different particles is omitted for the sake of clarity. The
number of best scores in the initialization step, and hence
the number of particles, was chosen to be 150 to have a sen-
sible computational time. The hypothesis is that the correct
approximative match is included in these 150 best scores.

2.6. Incremental processing of the image set
Next we describe how the images are processed one by

one (see also Algorithm 2). After being matched with the
starting image, the second image turns into a reference im-
age for the third image. The similarities and the likelihoods
are mixtures of two kernels whose Gabor coefficients are
evaluated at the nodes of the starting image and at the mean

1. Actions for the starting image:

(a) Gabor transform the starting image
(b) Select the nodes in the starting image as ex-
plained in the text and store the Gabor responses
at each node

2. Match the next image

(a) Gabor transform the next image
(b) Match the node set with PMC (Algorithm 1)

3. Update the parameter values

(a) Estimate the posterior association probabilities of
the nodes with (7)

(b) Compute the magnitudes of the Gabor responses
with (8), and likewise the phases, for the mixture
likelihood

(c) Update the prior association probabilities of the
nodes with (10)

(d) Update the prior node variance with (11)

4. Modify the node set

(a) For each node with P (Vi) < Pth, reposition the
node as explained in the text

(b) Update the reference shape with (12) and (14)

5. Go to step 2

Algorithm 2: Incremental algorithm for matching the cor-
responding points

Gabor responses of the second image, weighted by the pos-
terior association probabilities. In general, the average Ga-
bor magnitudes of node i of kernel (image) k > 1 are com-
puted as

(ai)k =

∫
a(xi, s, ϕ)Ψ(x, s, ϕ) dx ds dϕ∫

Ψ(x, s, ϕ) dx ds dϕ
, (8)

where

Ψ(x, s, ϕ) = P (Vi|xi, x
′
i, I, I′, s, ϕ)k p(x, s, ϕ|x′, I′, I)k ,

(9)
where the subscript k refers to the kth kernel, and likewise
for phase (φi)k. The prior association probabilities for the
next imageK + 1 are updated as

P (Vi)K+1 =
K − 1

K
P (Vi)K +

1

K
P (Vi|x′, I, I′)K . (10)

Initially, all the prior association probabilities are half.
Having an inverse-gamma prior distribution on the node

variance of the shape model leads to an analytical form for
the conditional posterior distribution [9]. Using the mode of
the posterior distribution and setting the observed variance
in horizontal (x) direction vxi

to the point estimate at the
posterior mean, the prior node variance is updated as

(σxi,prior)
2
K+1 =

ν0 + K

ν0 + K + 2

ν0σ
2
0 + Kvxi

ν0 + K
, (11)

where ν0 and σ0 are the hyperparameters of the prior distri-
bution for σxi

, and similarly for y direction. Updating the
node variance allows the system to learn the level of rigidity
of the object being matched.
With many object nodes and few background nodes the

representation of the object model improves, making it eas-
ier to match the node set in the next image. Therefore, the
node set is modified by replacing the nodes whose prior as-
sociation probability goes below a thresholdwith new nodes
so that the total number of the nodes stays constant. Be-
cause in the starting image the nodes are distributed over
the whole image, the new nodes are positioned inside the
convex hull of the existing nodes so that the object is ap-
proached ’outside’ by gradually shrinking the area of the
node set. For non-convex objects, this approach leads to
trial end error type procedure, as a new node may not
get correspondence in the subsequent images and is again
moved to a new position. The new nodes are positioned
by maximizing the information content while penalizing the
vicinity of other nodes, as in selecting the nodes in the start-
ing image. For these new nodes, the prior associations are
set to half, the previous posterior association probabilities
are set to zero, the prior node variances are set to the initial
values and the previous kernels in their likelihood mixtures
are removed. To prevent some image to have too much con-
trol over the new node locations, an upper limit can be set
on the number of the modifications.
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The reference shape for the next image is a mixture of
the previous mean free shapes, weighted by their mean pos-
terior association probabilities:

x
′ =

∑K
k=1 Ei[P (Vi|x′, I, I′)k](x − Mx)k∑K

k=1 Ei[P (Vi|x′, I, I′)k]
. (12)

For this, the midpoints of the matched images Mx are re-
computed to minimize the weighted variance of the x and y
components of the distances of the nodes to the midpoints:

Ex =
∑

i

∑
k

V k
i

(
(Δx)k

i −
∑

k′ V k′

i (Δx)k′

i∑
k′ V k′

i

)2

/
∑
k′

V k′

i ,

(13)

where V k
i ≡ P (Vi|x′, I, I′)k is the posterior association

probability of node i in image k, and (Δx)k
i ≡ xk

i − mk
x

is the coordinate of xk
i in mk

x mean coordinate system, and
likewise for the y component. By denoting with V a matrix
with elements V k

i , with X a matrix with elements xk
i , and

by differentiating Ex w.r.t. Mx = {m1
x, m2

x, ..., mK
x } and

setting the result to zero, we get

MX =(Z)−1Bx , where (14)

Z =d

[(
V

V IK×K

)T

IN×1

]
− 2

(
V

(V IK×K)2

)T

V

+

(
V

(V IK×K)3

)T

d[V IK×1]V (15)

and

Bx =D

[(
V

V IK×K

)T

X

]
− 2

(
V

(V IK×K)2

)T

D[V XT ]

+

(
V

(V IK×K)3

)T

d[V IK×1]D[V XT ] , (16)

where d[a] means constructing a diagonal matrix of vector
a, D[A] means taking the main diagonal of matrix A and I
is a matrix of ones. The divisions and involutions are made
element-wise.

3. Experiments
In this section we give both qualitative and quantita-

tive results using the following parameter values: likelihood
steepness was β = 50, hyperparameters of the shape model
were ν0 = 5 and σ2

0 = 10, threshold for removing the nodes
was Pth = 0.24, maximum number of PMC iterations was
5, the number of nodes was Nnodes = 30 and the maximum
number of nodes to be modified in a singly image was set to
6. These parameter values were found by testing and were

Figure 3. Examples of the images used in experiments. From top
to bottom: SIGNS, DOGS, Caltech FACES and Caltech LEAVES.

used throughout the experiments. The method is, however,
not very sensible for these parameters - the value for Pth

was chosen to prevent the node set to be modified yet in the
second image. The image databases we used include im-
ages of traffic signs and a dog taken with a digital camera,
as well as the face and leaves databases of the widely used
Caltech images [7] (see Figure 3). The average CPU time
to process an image is about one minute in an unoptimized
Matlab environment and up-to-date desktop computer, be-
ing proportional to the number of nodes. Due to the parallel
nature of the PMC sampling, the computation time could be
reduced substantially with parallel computing.
In Figure 4, examples on matching sequences of 10

SIGNS and DOGS images are illustrated. Object nodes are
accurately matched, and the number of the object nodes in-
creases along the sequence.
The Euclidean matching errors for SIGNS and DOGS

sequences were measured by manually picking in the next
matched image the corresponding points of the nodeswhose
prior association probability was higher than 0.9 in the last
image (average number of such nodes was five), and taking
the average over the images and nodes. For comparison, we
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Figure 4. Illustrative examples of the matching results. The loca-
tions of the dots reveal the Monte Carlo estimate of the posterior
mean. The size of the dots is proportional to the prior association
probability and the green value to the posterior association prob-
ability. The image sequence proceeds from top to bottom. The
green dots form the representation of the object.

tested the same images with EBGM method [15], by first
annotating the objects (6 annotations in SIGNS images and
12 in DOGS images, in fiducial locations such as corners)
and defining the edges as Delaunay triangulations of the an-
notated nodes. The median errors of 100 image sequences
of 10 images are tabulated in Table 1 for both methods. Our
method outperforms EBGM method although it processes
the images recursively and uses no object annotations.

Recognition tests were performed with Caltech images.
The object model was first learned (recursively) from ob-
ject image sequences. For FACES database, the system was
then given five background images (from the Caltech back-
ground images database) and five object images, the learned
object model was matched to the images and the number of
correct and false detections were counted, with detection
measured if the mean posterior node association probability
exceeded a threshold. ROC curves are formed by varying
the threshold. The numerical figures are shown in Table
2. Having more training images, dropping the background
nodes before matching the query image, as well as using a
common value for κ seem to improve the results. The in-
cremental constellation model of [6] was tested with differ-
ent databases (Caltech 101) and cannot thus be compared
with these results; however, it is worth while mentioning
that the average areas under the ROC curves they report are
71 % with one training image and 75 % with three train-
ing images. LEAVES database was tested by first extract-
ing four subsets from it according to the type of the leaves,
learning each leave model with five images, and matching
the learned models to three representatives of each of the
four leave types. The query image with the largest mean
posterior association probability was inferred to contain the
learned object. The confusion matrix, averaged over 75
such processes, is depicted in Table 3.

Table 1. Median point-to-point errors of 100 image sequences for
our method and EBGM method, with the number of training im-
ages in parentheses, in pixels. The errors in our method describe
the average match over the sequence with 1,...,9 training images.

OUR EBGM(1) EBGM(5) EBGM(9)
SIGNS 1.7 16.9 11.6 6.3
DOGS 4.5 7.3 3.4 3.4

Table 3. Confusion table for the Caltech LEAVES. For instance,
95% of type 4 query images were correctly classified whereas 5%
were misclassified as other types.

Type 1 Type 2 Type 3 Type 4
Model 1 84 14 0 1
Model 2 14 81 1 1
Model 3 0 1 92 3
Model 4 1 4 8 95
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Table 2. ROC error figures, averaged over 100 learned models. AURx refers to the area under ROC curve and EERx refers to the equal
error rate, using x training images. The two left columns indicate, whether the background nodes (with P (Vi) < 0.5) were dropped before
matching the query image and whether the same κ (such value that maximizes the figure in question) was used for all the association
probabilities. The EER figures of other reported results are 96.4 [7] and 98.2 [12], which are batch methods and used training sets with
225 images.

Drop BG Same κ AUR1 AUR3 AUR6 AUR9 EER1 EER3 EER6 EER9
65.8 73.2 83.6 87.5 63.0 67.2 76.5 79.8

X 65.8 67.2 82.7 90.1 63.0 63.2 75.4 84.4
X 76.1 84.0 87.8 88.4 71.2 77.4 80.7 81.0

X X 76.1 70.9 82.5 89.7 71.2 66.2 75.8 84.8

4. Conclusions

We have presented a translation-, scale- and rotation-
invariant incremental method for finding a set of represen-
tative feature points for an unknown object from a series
of images with no manually selected feature locations. The
method is based on Bayesian learning; a set of nodes is se-
lected in the starting image, and for each new image, the
posterior distributions of the node locations, and the prob-
ability of a node being associated with the object are esti-
mated. The appearance and shape models are updated with
information from the new image. The mixture likelihood
allows for large variations in the node appearance in the
corresponding location. The experiments suggest that our
method is able to accurately match the corresponding points
and to learn the object representations that make it possible
to detect and recognize the learned objects in new images.
Although all the images used in the experiments con-

tained an instance of the object, the proposed model is not
very sensitive to the number of background images included
in the sequence. Also, the initialization of the nodes in the
starting image is of minor relevance, whilst the ordering of
the images has a bigger role - an outlier late in the sequence
causes less harm than in the beginning of the sequence. The
current shape model is restricted to objects or classes of ob-
jects with similar shape, such as human faces. Adding addi-
tional metric transformations, or generic affine transforma-
tion, would be straightforward, allowing for association of
wider class of objects in one model. For classifying objects
with highly varying shapes in a same category (for example
a class ”chair”) could be implemented as a higher level clus-
tering or supervised classification process, where the low
level models recognize the basic shapes.
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