
Fast Features for Time Constrained Object Detection

Gary Overett and Lars Petersson∗

NICTA
Locked Bag 8001, Canberra, Australia

gary.overett@nicta.com.au

Abstract

This paper concerns itself with the development and de-
sign of fast features suitable for time constrained object de-
tection. Primarily we consider three aspects of feature de-
sign; the form of the precomputed datatype (e.g. the inte-
gral image), the form of the features themselves (i.e. the
measurements made of an image), and the models/weak-
learners used to construct weak classifiers (class, non-class
statistics). The paper is laid out as a guide to feature de-
signers, demonstrating how appropriate choices in combin-
ing the above three characteristics can prevent bottlenecks
in the run-time evaluation of classifiers. This leads to reduc-
tions in the computational time of the features themselves
and, by providing more discriminant features, reductions in
the time taken to reach specific classification error rates.

Results are compared using variants of the well known
Haar-like feature types, Rectangular Histogram of Oriented
Gradient (RHOG) features and a special set of Histogram
of Oriented Gradient features which are highly optimized
for speed. Experimental results suggest the adoption of this
set of features for time-critical applications.

Time-constrained comparisons are presented using
pedestrian and road sign detection problems. Comparison
results are presented on time-error plots, which are a re-
placement of the traditional ROC performance curves.

1. Introduction

In many computer vision problems such as detection,
both error rates and time to decision determine the value
of a given solution. Indeed, the stellar success of the Haar-
feature, presented by Viola & Jones [16], can be primarily
attributed to the fast-yet-discriminant nature of the Haar-
feature (via the integral image) and its successful combina-
tion in a boosted cascade. The majority of detection feature

∗NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program

comparisons found in literature consider mostly error-rate
performance. This paper, however, compares features from
a time-constrained perspective and introduces an analysis of
several recent and emerging feature designs for extremely
fast-yet-discriminant features.

For all detection systems adopting a Viola & Jones like
framework, we see that 3 major avenues exist for improv-
ing speed and robustness. Firstly, it is possible to change the
choice of weak classifier. Secondly, it is possible to use an
alternative choice of boosting algorithm (or other learning
algorithm) and thirdly it is possible to reform the cascade
structure. This paper concerns itself with the design of the
weak classifier, with the aim of providing improvement in
the first area, that of the choice of weak classifier. How-
ever, for completeness, it is first worth briefly considering
the other two.

The chosen boosting algorithm can have a marked effect
on both the speed and classification performance of the re-
sulting strong classifier. AdaBoost [4], and its Real-Valued
counterpart RealBoost [13], are favoured options, however,
other boosting algorithms may construct a faster or more
discriminant classifier. For example, on some problems, re-
searchers have found LogitBoost [5] to decrease the classi-
fication error more quickly [15].

Detection cascades are generally structured so that small
and fast early stages reject a large amount of the incom-
ing data. However, making appropriate early decisions after
just a few features have ‘measured’ the input data is diffi-
cult. Nevertheless, it is an important factor in the speed-
robustness trade off. Cascade structures are often deter-
mined manually using basic rules of thumb, or by requiring
stages to meet a given performance criteria as in [15]. It is
often appropriate to have the boosting algorithm itself take
on the task of constructing the cascade structure so as to
deal with both problems together. A good example is found
in the WaldBoost algorithm [14].

The criteria for determining a suitable choice of weak
classifier are similar to those for the overall strong clas-
sifier system. That is, quality is determined by both er-
ror rates (per feature discriminance) and time to decision

23978-1-4244-3993-5/09/$25.00 ©2009 IEEE

(computational complexity). Within the literature, Haar-
features [16], Histograms of Oriented Gradients (HOG fea-
tures) [2][19], Edgelet features [18] and Region Covari-
ance features [15] [10] are all popular choices. Each ap-
proach yields a range of performance results. Different ob-
ject classes, such as pedestrians, faces, or road signs, of-
ten suggest a different choice of weak classifier. Features
will be chosen for their characteristics like scale invariance,
rotational invariance and perspective invariance. While all
these features have been implemented using precomputed
datatypes, such as the the integral image [16], they are quite
different in terms of speed. The Region Covariance feature
is, for example, many times slower than a basic Haar-feature
implementation, but, for pedestrians at least, it is also many
times more discriminant [15].

While many of these features are considered cheap to
compute, some require substantial bandwidth to memory to
support real-time computation in large high-resolution im-
ages. In Pettersson et al. [11], a new feature, HistFeat, is
presented. HistFeat is an extremely resource efficient fea-
ture, depending on a single main memory access for feature
evaluation. Like Haar features, Rectangular Histogram of
Oriented Gradient (RHOG) features and Region Covariance
features, HistFeat uses its own precomputed datastructure,
the Histogram Image. This contains a highly packed form of
Histograms of Oriented Gradients. More recently Overett
and Petersson [8] presented two more features based on
the histogram image, the LiteHOG and LiteHOG+ feature.
These preserve the single memory access feature evalua-
tion of HistFeat but use more of the data from within the
histogram image ‘pixel’ and employ a more powerful weak
learner based on more advanced non-parametric models [7].
The result was a feature set that was slower on a per fea-
ture basis but significantly more discriminant. The added
discriminance of the LiteHOG+ feature means that it could
reach a lower error rate than HistFeat in fewer features and
less time.

In this paper we create several new feature designs by
pairing the different features with alternate weak learners to
compare the implications for evaluation speed and discrim-
inance. Readers are most likely to be aware of per-feature
speed and per-feature discriminance comparisons. E.g. one
region covariance feature [15] is more discriminant than one
RHOG feature. This fails to consider that it may be possi-
ble to compute three RHOG features in the same time as
one region covariance feature. In this paper we perform
comparisons using a time-error analysis, comparing the er-
ror performance achieved in a fixed amount of time.

At this time it is worth including a somewhat philosoph-
ical note about comparing features in the boosting context.
In a climate where the primary quantitative measure of fea-
ture strength is the ROC curve (or some equivalent curve
based on error-rates), there has been a growing presence of

more computationally expensive and memory intensive fea-
tures without considering time-to-decision. In pedestrian
detection, a number of works have asserted their superior-
ity based purely on decreased error rates. Under error rate
evaluation on pedestrians, past work has found that Region
Covariance [15] improves upon HOG features [2], which in
turn improved upon Haar-features. However, the memory
and processing requirements of the Region Covariance fea-
ture are staggering, and it is doubtful that this feature can
produce real-time performance on standard PC hardware in
the near future. One should remember, that the astronom-
ical popularity of these methods in the first place is borne
out of the somewhat more qualitative results shown, where
tasks such as face detection were demonstrated running in
real-time on normal hardware.

That said, this author denotes high value to both the Re-
gion Covariance feature and the RHOG feature, having im-
plemented versions of both. Indeed the Histogram Image
based features in this paper are effectively child and grand-
child features of the RHOG feature. They represent an at-
tempt to distill the greatest part of the HOG ‘signal’ into a
faster variant, see Section 3.4. Further work will hopefully,
succeed in doing the same for ever more powerful features,
such as the Region Covariance Feature [15].

2. The Work of Feature Evaluation

Typical feature evaluation can be broken up into three
parts: the precomputed datatype (if any), the feature re-
sponse computation (the result of measuring the image),
and the model evaluation (converting the feature response
into a probabilistic statement about class instances in an im-
age). See Figure 1.

Figure 1. Memory and computational flow in evaluating a feature.
The major bottlenecks for full feature evaluation are usually mem-
ory bandwidth to the precomputed datatype, computation required
to evaluate the feature and/or model evaluation.

2.1. Precomputed Datatype

Pettersson et al.[11] observed that a major bottleneck
limiting the speed of most visual detection algorithms is not
the speed of the CPU, but rather the bandwidth to the mem-
ory. This is because precomputed datatypes such as the in-
tegral image [16] have drastically reduced the per-feature
computation required to evaluate features. The task of read-
ing the precomputed datatype is often made worse because
detection algorithms typically have a semi-random way of

24

accessing memory. This leads to poor CPU cache perfor-
mance, causing the processor to idle until the lengthy main
memory access returns.

Consider the example of any of the rectangle based fea-
tures; Haar, RHOG, or Region Covariance. Typical comput-
ing architectures will stream consecutive memory regions
with great efficiency, however, the above features require
memory access spread out over their respective precom-
puted datatypes. This causes a high rate of cache misses,
forcing the CPU to idle.

Pettersson et al. [11], introduce a solution to this problem
via a novel precomputed image which they called the his-
togram image. This is an “image” where each 32-bit word
represents a Histogram of Orientations of a 4× 4 pixel area
in the input image. The histogram image is used in a similar
way to the precomputed images for other features, but has a
major advantage in terms of speed. A feature based on the
histogram image requires only a single read of a 32-bit word
for feature evaluation, as opposed to several semi-random
reads per feature.

In this paper we will consider several features using the
histogram image. Including HistFeat (as in [11]), the Lite-
HOG and LiteHOG+ features (as in [8]) as well as some
new variants of these features using decision stump learn-
ers, see Sections 2.2.3 and 2.3.

2.1.1 Computing the Histogram Image

Most readers will not be familiar with the structure of the
Histogram Image, thus we will include a description here.
The major aim of the histogram image is to produce a pre-
computed datatype allowing single memory read feature
evaluation in tandem with high per-feature discriminance.
Figures 2, 3 and 4 are used with permission of Pettersson et
al.[11].

An overview of the computations needed to produce the
histogram image is shown in Figure 2.

Magn.

image

HistogramHistogram

binning

Greyscale

image

x and y

Gradients Orient.

Figure 2. Given a greyscale image, first compute the x and y gra-
dients at each pixel in the image. These gradients are then used
to compute the magnitude and orientation at each pixel. Then use
these magnitudes and orientations to create histograms at every
possible 4 × 4 image patch. Each of these histograms then be-
comes a pixel in the histogram image.

Computing the gradients
The x and y gradients of a greyscale image are calculated

using a [−1, 0, 1] kernel. This kernel choice derives support
from [2], which found it to be the most discriminant. Since
it is also easy to implement using SSE2 technology, this was
the method adopted.

x

y

0

13

2

6

7 5

4

Figure 3. The orientation space is divided into 8 bins. Each pixel
in the grey image is assigned to one of these orientations.

Orientation and magnitude
Following the x and y gradient computation, the gradient

orientations and magnitudes at each pixel are calculated. A
pixel’s orientation is represented by a number between zero
and seven. Hence, it can be stored as a 3 bit value.

Reducing the number of orientations to just eight means
that orientation can be found via a sequence of simple com-
parisons. More specifically,

orix,y = (Gy < 0)·4+(Gx < 0)·2+(|Gy| > |Gx|)·1 (1)

where orix,y is the orientation at pixel (x, y), Gx is the x

gradient at pixel (x, y) and Gy is the y gradient at pixel
(x, y).

This results in the unconventional encoding of the differ-
ent orientations shown in Figure 3. This encoding avoids
any evaluation of the much slower trigonometric identities
(further discussion in Section 3.4).

While calculating the orientation associated with each
pixel, a simultaneous calculation of the pixel’s approximate
magnitude is found by taking the absolute sum of the two
gradients Gx and Gy . This use of the L1 metric instead
of the Euclidean distance is far more efficient and has been
found to have an entirely negligible effect on discriminance.
This value is immediately thresholded to give a 1 bit repre-
sentation of magnitude. This is an important step in com-
pressing the data of the histogram image, but note the dis-
cussion in Section 3.4 on discriminative loss.

Histogram binning
Next, a histogram for each 4× 4 image patch is found by

binning the gradients in the patch to the 8 directions shown
in Figure 3. Gradients whose magnitude is less than some
chosen threshold are ignored (magnitudes of 8/256 in this
paper). Each of these histograms then becomes a pixel in
the histogram image.

Pettersson et al. [11] chose to represent each histogram
as a 32 bit word (i.e. four bits for each orientation) as shown
in Figure 4. This allows a full histogram to be read in a
single access to memory. The overall storage needed for the
histogram image is the same as for the integral image - 32
bits per pixel in the input image.

25

Histogram Image

32−bit histogram

b7b6b5b4b3b2b1b0

Figure 4. Each ‘pixel’ in the histogram image encodes a histogram
of the orientations in a 4 × 4 neighborhood. Each orientation is
represented by just 4 bits.

2.2. Computing the Feature Response

2.2.1 Haar and RHOG features

The task of computing the feature response of Haar-features
and RHOG features is generally well known and can be
found in [16] and [2]. The important attributes from our
perspective are that their feature evaluation relies on several
reads of their respective precomputed datatypes and that
the evaluation itself involves only a few very fast compu-
tations. The result of this computation is the lookup key for
the model.

2.2.2 HistFeat

Evaluation of the HistFeat feature can be found in [11]. It
involves taking two orientation bins from a single histogram
image pixel. These two values serve as the lookup key for
the model with no alteration at all. An extremely brief fea-
ture evaluation indeed! Essentially this requires no compu-
tation at all, the lookup key is simply found in the 32-bit
histogram image pixel.

2.2.3 LiteHOG+ and Feature Variants

Our results include two feature variants based on the his-
togram image; LiteHOG+, and LiteHOG [8]. Both variants
involve finding a linear projection of the 8 orientation bins
of the single histogram image pixel or, in the case of Lite-
HOG+, some subset of the 8 dimensions.

Linear projections are found according to the canonical
variate of Fishers Linear Discriminant (FDA) as shown in
[3],

w = S−1

w
(m1 −m2) (2)

where w is the N-dimensional projection matrix, Sw is the
within class scatter matrix and m1, m2 are the means of
the positive and negative classes respectively. For LiteHOG
N = 8, in the case of LiteHOG+ N ∈ [1, 8]. Note, also that
the boosting algorithm RealBoost [13] produces a weights
vector, which is used in the calculation of the projection
matrix w. I.e. we are using weighted FDA. This means
that new projections are found for each RealBoost train-
ing round, uncovering new information from the same his-

togram image pixel according to the RealBoost weighted
priorities.

Thus the evaluation of the LiteHOG+ feature involves N

multiplications, and N −1 additions to compute the projec-
tion, see Equation 3.

R = w · x (3)

where x contains the N selected bins from the histogram
image. Since the LiteHOG feature space always requires an
8 dimensional projection, it is slower to compute than the
LiteHOG+ feature space which may drop several dimen-
sions from the computation. Additionally, the projections
within the LiteHOG+ feature space are often more discrim-
inant, making LiteHOG+ both faster to compute and more
powerful on a per feature basis. Further details can be found
in [8].

2.3. Model Learning and Evaluation

For the feature response to hold meaning about the
class/non-class likelihood of an image patch we require a
model of the class/non-class feature response statistics. For
a feature designer, models can be divided into two aspects;
the model learning, which allows for significant effort as it
will take place in an offline context, and model evaluation
which will form a part of the online system which is time-
constrained. Thus, while we can be more extravagant in our
learning processes the model must be able to be stored and
referenced in such a way as to perform well in the context
of the other design choices. For example, there is no reason
to adopt a model with low processing overhead if the fea-
ture evaluation is memory bandwidth limited. In this case
the CPU may be left idle - waiting on memory. This ‘spare’
processing resource can be used in the evaluation of a more
detailed, more discriminant model, if one can be found.

From an evaluation perspective our experiments con-
sider two kinds of models; decision stumps and lookup ta-
ble (LUT) based models. From a learning perspective we
consider three different model learners; stump learners, his-
tograms (LUT based) (as in [12] [17]) and smoothed re-
sponse binning (SRB) learners as found in [7] and [6] which
are also LUT based. SRB learners are non-parametric den-
sity estimation models which support multimodal data and
where the final density estimation is produced for a fast
LUT based model evaluation. Figure 5 shows a compari-
son of the SRB learner with the decision stump learner.

A prevalent idea in boosting theory is that the weak
learners need only to be slightly better than random to yield
a robust result in the final strong classifier. The computer
vision community has largely adopted simple models such
as decision stumps following the landmark paper of Viola
and Jones [16]. We find that few researchers employ more
advanced learners, despite the fact that they can increase

26

T

1a) Decision Stump Learner 2a) Smoothed Response Binning

- Class
- Non-Class

Distr ibutions

- Classification

1b) 2b)

Figure 5. Comparison of the SRB model learner [6] with the deci-
sion stump learners. The top row shows how the two methods map
the distribution of class data (red and green) to a learnt hypothesis
(blue). The bottom row shows how SRB learners are able to dis-
criminate more quickly on a 2D ‘toy’ distribution. The SRB model
greatly improves the per-feature discriminance in the same evalua-
tion time as other lookup table based methods such as histograms.
Histograms suffer from severe overfitting in sparse regions lead-
ing to poorer boosting-level learning and weaker features. Per-
feature error is often reduced by 75% when SRB models replace
histogram learners [7].

Name FeatSpace Datatype Learner

RHOG-SRB RHOG RHOG Integral Img. SRB [6]

RHOG-ST RHOG RHOG Integral Img. Stump

Haar-SRB Haar Integral Img. SRB [6]

Haar-ST Haar Integral Img. Stump

HistFeat HistFeat Histogram Img. 2D-Histogram

LiteHOG-SRB LiteHOG Histogram Img. SRB [6]

LiteHOG+ SRB LiteHOG Histogram Img. SRB [6]

LiteHOG+ ST LiteHOG Histogram Img. Stump

Table 1. Features compared in our experiments.

the discriminance of individual features and thereby im-
prove both time-to-decision performance and classification
robustness. Buja & Stuetzle [1] however, reminds us that
“the base learners [at the time boosting rose to fame (circa
1998)] were anything but weak in the sense of todays ortho-
doxy [decision stubs etc.]”. I.e. early boosting algorithm
development considered somewhat more advanced learners.

2.4. Feature Summary

Table 1 shows a summary of the features used in our
experimental comparisons. Figure 6 shows the evaluation
speed of the different feature types.

2.4.1 Feature Optimization

Occasionally, when computer vision researchers compare
methods they create a kind of “home advantage” for a given
method by affording it a greater level of optimization than
they give other methods. This is not the case here. We have
applied significant optimization to all features compared,
right down to the assembly level and memory arrangements

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0 20 40 60 80 100

fe
at

ur
es

 p
er

 s
ec

on
d

features in classifier

Histfeat AMD64
LiteHOG SRB AMD64

LiteHOG+ SRB AMD64
LiteHOG+ ST AMD64

Haar SRB AMD64
Haar ST AMD64

Figure 6. The number of features that can be evaluated per second,
on an AMD64 2.2GHz machine. Measurements were done on a
typical test video with 101 frames and a resolution of 768 × 576.
The (x, y) step was (1, 1), which results in about 365,000 patches
per frame.

of each feature. For example, our Haar feature implementa-
tion requires only 40 CPU instructions. Viola & Jones [16]
reported that their implementation of the Haar feature re-
quired about 60 CPU instructions.

3. Time-Error Experiments

These experiments provide a per feature comparison of
strong classifier performance given a range of CPU time
budgets. This allows us to select the fastest feature for a
desired classification performance.

Strong classifiers can be trained in a variety of ways.
Most often, training is done in a cascaded fashion with a
number of stages one after the other, each rejecting a pro-
portion of the input data. This is a good procedure when try-
ing to achieve the best possible classifier for a particular ap-
plication. Unfortunately, this procedure excludes the possi-
bility of a fair comparison between methods. Cascade struc-
tures are highly sensitive to changes in their structure and
this affects different features in markedly different ways.
Boosting methods requiring each stage to meet a given false
positive and false negative rate, as in [15], are suitable for
comparing minimum error rates at feature starvation. How-
ever, changing the required cascade stage performance be-
tween say a 35% and a 50% reject rate may yield similar
results in terms of error rates but will yield entirely differ-
ent ‘winners’ under a time constrained analysis. Hence, to
make a fair comparison of the features, only a single stage
was used.

Detection cascade design is a challenging task when
time-to-decision is a factor. Some supporting theory can
be found in [14]. Generally however, it is a problem
which would require exhaustive exploration of the cascade-
space (the space of cascades with all possible between stage
thresholds and stage size combinations). This is impossible.

27

Type Raw Train Raw Valid Dist Train Dist Valid

Stop Sign 129 32 10000 2500

Pedestrian 4926 1865 9852 1865

Table 2. Number of images used as positive training and validation
data. Distortions are applied to the raw images to create a larger,
more generalized dataset.

3.1. Training and Evaluation Dataset

Figure 7. A selection of 32x80 color images from the NICTA
Pedestrian Dataset.

Positive input data to the RealBoost training process for
the different object types are listed in Table 3.1. The num-
bers reflect the original raw hand-labelled images taken by
a digital camera, and the number of images after distortions
have been applied as in [11]. Pedestrian images are a subset
taken from the NICTA Pedestrian Dataset [9]. As such, the
only distortion applied is mirroring. A total of 10,000 neg-
ative training data and 100,000 validation data were used in
the stop sign experiments.

3.2. Training and evaluation parameters

For each object type listed in Table 3.1, RealBoost was
used to build 1000 different strong classifiers consisting of
1 to 1000 features. For each of the strong classifiers we
calculated the ROC curves and the scan time on a typical
video sequence.

By pairing the ROC and scan time data we produced the
time-error curves shown in Figure 9. To give a clearer rep-
resentation of the resulting error versus time trade offs we
sample the ROC curve at 3 operation points; a) the ‘knee’,
see below b) false negative rate = 0.01; and c) false positive
rate = 0.01. These measures provide a better description of
the shape of the ROC curve than other measures such as the
AdaBoost error score or the common Area Under the Curve
value.

The minimum total error E on the ROC curve is taken to
be at the ‘knee’ of the curve, where the ROC curve is closest
to perfect classification.

E = min(
√

F 2
p

+ F 2
n
) (4)

where E is the total error, Fp is the false positive rate and
Fn is the false negative rate.

In Figure 9, we note several interesting results. It is ap-
parent from the results that no single feature dominates an
entire performance curve. We believe this is a strong justi-
fication for this kind of performance versus computing time
analysis.

3.3. Feature Design Guide

In this Section we will discuss the experimental results
from Figures 9 and 8.

To get the most use from the time-error plots, one must
first consider the time constraints of the problem at hand.
We find that classifier evaluation in the range of 10-200Hz
is most useful. Exhaustively searching for objects in a rea-
sonably spaced scale-space pyramid on standard definition
video 1 yields around 365,000 patches per frame. See high-
lighted region Figures 8 and 9.

HistFeat, the fastest feature to decrease error, would be
recommended, for very easy problems where acceptable
error-rates are achieved with few features. Easy to interme-
diate detection problems are best for the LiteHOG+ feature
using SRB learners. The Haar and RHOG feature spaces
provide features geared for robustness. However, they will
not produce real-time results on more difficult detection
problems, if high detection rates and low false positive rates
are required.

A
ve

ra
ge

 to
ta

l e
rr

or

ms/frame

Pedestrians

RHOG SRB
RHOG ST

LiteHOG+ SRB
LiteHOG+ ST

 0.01

 0.1

 1

100 101 102 103 104

A
ve

ra
ge

 to
ta

l e
rr

or

ms/frame

Stop Signs

RHOG SRB
RHOG ST

LiteHOG+ SRB
LiteHOG+ ST

 0.0001

 0.001

 0.01

 0.1

 1

100 101 102 103 104

Figure 8. Comparison of Decision Stump and SRB learners. The
SRB learners are superior for both LiteHOG+ and RHOG features.
Note, the superiority weakens significantly for the more discrim-
inant (on a per feature basis) RHOG feature in conjunction with
the less challenging stop sign class (right hand image). We sug-
gest two reasons for this. Highly discriminant features working
on less challenging classes give rise to strongly divergent distribu-
tions of the class/non-class responses. When distributions are well
separated, decision stumps perform similarly to more advanced
models. In contrast, weaker features and harder problems yield
overlapping distributions requiring more detailed models to dis-
criminate the class/non-class statistics.

3.4. Simplification, Speed and Discriminance

Most feature simplifications involve at least some loss of
discriminance in order to improve the speed of the feature.
Therefore, it is worth providing some discussion of the rel-
ative merits of different design choices. As can be seen in
Figure 9, RHOG - the grandparent feature of LiteHOG+, is
often more discriminant given more computing time. It is
worth noting where this loss of discriminance happens in an
evolution from RHOG features to the various features using
the histogram image.

1Standard Definition Video; No such single standard exists! Gen-
erally resolutions of around 704 × 480 to 768 × 576. This paper uses
Standard Definition PAL at 768 × 576.

28

A
ve

ra
ge

 to
ta

l e
rr

or

ms/frame

LiteHOG+ SRB
LiteHOG SRB

HistFeat
RHOG SRB

Haar SRB
HAAR ST

 0.01

 0.1

 1

100 101 102 103 104

(a) Pedestrians

F
al

se
 p

os
iti

ve
 r

at
e

at
 fa

ls
e

ne
ga

tiv
e

=
0.

01

ms/frame

 0.01

 0.1

 1

100 101 102 103 104

(b) Pedestrians

F
al

se
 n

eg
at

iv
e

ra
te

 a
t f

al
se

 p
os

iti
ve

 =
0.

01

ms/frame

 0.01

 0.1

 1

100 101 102 103 104

(c) Pedestrians

A
ve

ra
ge

 to
ta

l e
rr

or

ms/frame

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

(d) Stop signs

F
al

se
 p

os
iti

ve
 r

at
e

at
 fa

ls
e

ne
ga

tiv
e

=
0.

01

ms/frame

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

(e) Stop signs

F
al

se
 n

eg
at

iv
e

ra
te

 a
t f

al
se

 p
os

iti
ve

 =
0.

01

ms/frame

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

(f) Stop signs

Figure 9. Performance versus computing time. The left column shows average total error versus computing time for the pedestrians and
stop signs. The middle column shows the performance for a fixed negative rate of 0.01. The right hand column shows performance for
a fixed false positive rate of 0.01. Note that the pedestrian column has a different scale on the y-axis. The highlighted region shows the
region of classifiers with a speed performance between 10-200Hz and standard definition video. In these plots we see that the histogram
image based features, LiteHOG+ and HistFeat are well suited to fast detection problems.

By far the greatest loss of discriminance can be attributed
to the fact that the histogram image features act on only a
single scale, that is, 4x4 image patches. For the first few
selections of RealBoost this may not be particularly signif-
icant, however, on challenging classes like pedestrians this
becomes a growing problem and these features are left be-
hind in terms of performance. Unfortunately, it is very diffi-
cult to keep the memory efficient behaviour of the histogram
image and use a rectangular and scale free datatype like the
integral image.

Gradients are binned into only 8 orientations and the
horizontal and vertical gradients are split between bins.
While 8 direction bins may seem too few, our experimen-
tation has shown that little is to be gained by increasing the
direction sensitivity through more bins. I.e. this does not
significantly weaken per feature discriminance. The split-
ting of the horizontal and vertical gradients between bins
(see Figure 3) allows a simpler calculation in Equation 1 by
foregoing the trigonometric identities. For pedestrians this
has been found to contribute to a small but measurable loss
of discriminance. However, the discriminant loss here is

not enough to justify a slower calculation of the histogram
image.

Lastly, the magnitude thresholding step (see Section
2.1.1) lowers discriminance in two ways. Firstly, it ignores
gradients which are below the threshold. Secondly it loses
any magnitude information apart from its relative magni-
tude to the threshold. I.e. all gradient edges stronger than
the threshold are considered equal. However, this parameter
can be tuned for each feature class to preserve the greatest
signal through to the training and selection algorithm.

As future work we are interested in implementing a “dis-
tilled” version of the Region Covariance feature, which has
been so successful on pedestrians [15]. This feature relies
on some similar feature measurements such as x and y gra-
dients and their second derivative counterparts. We believe
that a similar path may be taken to produce a “LiteRegion-
Covariance” feature which is faster and less memory inten-
sive, but preserves as much of the parent feature’s discrimi-
nance as possible.

29

4. Conclusion

This paper serves as a guide to feature design for time
constrained detection problems. Results are demonstrated
using a variety of feature implementations, with particular
attention given to the designed-for-speed HistFeat and Lite-
HOG+ features. We have outlined the numerous sources
of bottlenecks arising from different precomputed datatype
designs, feature evaluation methods and learnt models. We
have shown how extremely fast yet discriminant features
can be produced using the histogram image datatype.

The paper shows how incorporating more advanced
learners into a classifier can greatly improve the perfor-
mance of a classifier, both in terms of speed and robustness.
Many researchers who currently use very simple models
with slower features will find they are directly able to in-
corporate better learners with little to no speed penalties.

The time-error plot analysis provides a useful reference
to a detector designer seeking the most appropriate features
for a given problem. The overall methodology used pro-
vides some direction to researchers attempting to optimize
an existing slow and memory intensive feature with high
discriminance into a faster child feature. This provides hope
of improvement for the growing number of popular features,
such as the Region Covariance feature, which are very re-
source intensive.

References

[1] A. Buja and W. Stuetzle. Response to Mease and Wyner,
Evidence Contrary to the Statistical View of Boosting, JMLR
9: 131–156, 2008. Journal of Machine Learning Research,
9:165–170, 2008.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. of Computer Vision and Pattern
Recognition CVPR, June 2005.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion (2nd Edition). Wiley-Interscience, November 2000.

[4] Y. Freund and R. E. Schapire. A short introduction to boost-
ing. Journal of Japanese Society for Artificial Intelligence,
14:771–780, sept 1999.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: a statistical view of boosting. The Annals of
Statistics, 38(2):337–374, 2000.

[6] G. Overett and L. Petersson. Improved response modelling
on weak classifiers for boosting. In IEEE International Con-
ference on Robotics and Automation, April 2007.

[7] G. Overett and L. Petersson. On the importance of accurate
weak classifier learning for boosted weak classifiers. In IEEE
Intelligent Vehicles Symposium (IV2008), June 2008.

[8] G. Overett, L. Petersson, L. Andersson, and N. Pettersson.
Boosting a heterogeneous pool of fast hog features for pedes-
trian and sign detection. Intelligent Vehicles Symposium,
2009.

[9] G. Overett, L. Petersson, N. Brewer, L. Andersson, and
N. Pettersson. A new pedestrian dataset for supervised learn-
ing. In IEEE Intelligent Vehicles Symposium (IV2008), June
2008.

[10] S. Paisitkriangkrai, C. Shen, and J. Zhang. Fast pedestrian
detection using a cascade of boosted covariance features.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 18(8):1140–1151, August 2008.

[11] N. Pettersson, L. Petersson, and L. Andersson. The his-
togram feature – a resource-efficient weak classifier. In IEEE
Intelligent Vehicles Symposium (IV2008), June 2008.

[12] B. Rasolzadeh, L. Petersson, and N. Pettersson. Response
binning: Improved weak classifiers for boosting. In IEEE
Intelligent Vehicles Symposium (IV2006), June 2006.

[13] R. E. Schapire and Y. Singer. Improved boosting using
confidence-rated predictions. Machine Learning, 37(3):297–
336, 1999.

[14] J. Sochman and J. Matas. Waldboost - learning for time con-
strained sequential detection. Computer Vision and Pattern
Recognition, 2:150– 156, 2005.

[15] O. Tuzel, F. Porikli, and P. Meer. Human detection via clas-
sification on riemannian manifolds. In Computer Vision and
Pattern Recognition. IEEE Computer Society, 2007.

[16] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. Computer Vision and Pattern
Recognition, 2001.

[17] B. Wu, H. Ai, C. Huang, and S. Lao. Fast rotation invariant
multi-view face detection based on real ad aboost. IEEE In-
ternational Conference on Automatic Face and Gesture Reco
gnition, 2004.

[18] B. Wu and R. Nevatia. Detection and tracking of multi-
ple, partially occluded humans by bayesian combination of
edgelet based part detectors. International Journal of Com-
puter Vision, 2007.

[19] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast hu-
man detection using a cascade of histograms of oriented
gradients. In CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 1491–1498, Washington, DC, USA,
2006. IEEE Computer Society.

30

