
A User-Friendly Method to Geometrically Calibrate Projector-Camera Systems

Samuel Audet and Masatoshi Okutomi
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
saudet@ok.ctrl.titech.ac.jp and mxo@ctrl.titech.ac.jp

Abstract

Projector-camera systems drive applications in many
fields such as measurement and spatial augmented reality.
When needed, we can find their internal and external pa-
rameters via geometric calibration. For this process, we
have to use both a printed pattern and a projector pat-
tern, but they can easily interfere with each other. Current
methods compensate by decoupling their calibrations or by
leveraging structured light and color channels, but the re-
quired manipulations are not user-friendly. Therefore, we
cannot expect normal users to execute the procedure, which
can also become a burden for researchers. Although not al-
ways required, knowledge of the geometric parameters can
often facilitate development of new systems. To make the
calibration process easier, we propose a method that uses
fiducial markers, from which we can easily derive a pre-
warp that, once applied to the projector calibration pattern,
prevents its interference. Using our method, we confirmed
that users can easily calibrate a projector-camera system in
less than one minute, which we consider to be user-friendly,
while still achieving typical subpixel accuracy.

1. Introduction
Projector-camera systems are changing the way peo-

ple use computers. Traditionally, projector-camera systems

had been limited to surface measurement applications using

structured light, but recently research has been progress-

ing in other fields such as spatial augmented reality [3],

where we use projectors to complement real world objects

by adding art or information to them, for the benefit of hu-

man users. Augmented reality has a wide range of poten-

tial applications, and to succeed, systems have to be us-

able by people of any background. At the same time, we

need to track and measure precisely physical objects, top-

ics that still challenge many researchers in computer vi-

sion. Successful tracking or measurement can more easily

be achieved by calibrated systems than uncalibrated ones.

Although there exists methods to find the internal and exter-

Figure 1. Snapshot of our demo video showing the test user cali-

brating a casually installed projector-camera system.

nal geometric parameters of both camera and projector, they

are cumbersome, impractical, and could not realistically be-

come part of an augmented reality system that anyone could

use under a large range of casual conditions, such as the one

shown in Figure 1.

1.1. Previous Work

Most current methods to geometrically calibrate

projector-camera systems, [1, 2, 13, 15, 19, 23] among

others, operate in two phases: they first calibrate cameras,

then they calibrate projectors. Calibrating cameras in one

way and projectors in another automatically doubles the

effort. To reduce the amount of work, methods have been

proposed to integrate both calibrations together. They

either exploit structured light or color channels, or both for

one-shot structured light.

In the case of methods using structured light, [6, 11, 16,

17, 23] among others, during the calibration process, the

machine may shut the projector off, capture an image, then

project structured light, capture more images, and by de-

coding everything can geometrically relate images together.

The ones captured with the projector off are used to cal-

ibrate the camera, and the rest, to calibrate the projector.

Even though this procedure works, we need to secure phys-
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ically the calibration target in place, because within a given

set of images the machine assumes that the scene is static,

often a requirement of structured light. We cannot simply

hold a board in our hands in front of the projector-camera

system.

To capture two images simultaneously, we can also ex-

ploit color channels, [1, 2, 11, 12, 23] among others, usually

the red and blue ones. With properly designed complemen-

tary colors for the physical pattern and projected pattern, we

can recover them separately, e.g.: White and cyan squares

show clearly in the red channel of a camera, but should

hopefully not appear in the blue channel. While this obvi-

ously does not work for grayscale projectors, cameras, and

printers, even with color ones, this approach presents two

problems. First, depending on the properties of the color

filters and inks, the blue channel of the projector might still

interfere with the red channel of the camera, and vice versa.

For example, results from Chen et al. [5] show a 4% overlap

between the red channel of their camera and the blue chan-

nel of their projector, and the same the other way around.

Second, many cameras use only one sensor with an appro-

priate array of color filters, such that the resolution of the

blue and red channel is half of the resolution of the whole

sensor. Both of these issues may hurt accuracy, although

current results are not conclusive, but more importantly re-

quiring color complicates the execution of calibration.

1.2. The User-Friendly Way

If projector-camera systems could easily and accurately

be calibrated, more applications could use the information,

without fear that users might not be able to install and main-

tain the system properly. We also believe that researchers

could benefit from such a method, since they could concen-

trate on using the results of the calibration, instead of spend-

ing time doing it or developing applications for uncalibrated

systems only.

In this paper, we propose a user-friendly method to per-

form full geometric calibration of a projector-camera sys-

tem. It is based on fiducial markers typically used for aug-

mented reality applications. Fiala and Shu [9] proposed

such a method for camera-only systems. We extend it to

projector-camera systems, where half of the markers are

physically printed, and half are projected using the projec-

tor. Each marker on its own carries information and can

easily be identified. As we describe in this paper, this al-

lows the machine to prewarp markers that are projected, in

a way that they do not interfere with printed markers. More-

over, markers do not need color, and unlike structured light

users can hold the calibration board in their hands. The user

simply has to wave the calibration board, ideally at angles

of approximately 45◦ with respect to the image plane as

recommended by Zhang [24], and the machine automati-

cally captures and saves about ten good images, with which

(a) ID = 0. (b) ID = 1.

Figure 2. Two sample fiducial markers made from binary-coded

BCH codes with IDs 0 and 1.

it computes calibration parameters for both the camera and

the projector.

Fiala [7] also proposed using fiducial markers in the

context of projector-camera systems, but only for multi-

projector displays, which do not require full geometric cal-

ibration.

In the following sections, we describe how we designed

our system, including the detection of fiducial markers, the

calibration patterns used, the prewarp of the projector pat-

tern, the practical algorithm, and solutions to some of its

issues. Even though we describe a system with only one

camera and one projector, it can easily be extended to any

number of them.

2. Detection of Fiducial Markers

As fiducial markers, we opted for the BCH codes pro-

vided by ARToolKitPlus [21]. Two examples with IDs of 0

and 1 are shown in Figure 2. There are 4096 such unique

markers, arranged in squares of 8 × 8 black or white sub-

squares composing the black border and 36 interior bits, for

only 12 bits of data, thus featuring strong error correction

capabilities. Once printed or projected on a sheet of paper

and imaged sufficiently large by a camera, ARToolKitPlus

can detect these markers. Basically, the software first bina-

rizes the image at an appropriate threshold, then analyzes

contours to find shapes close to a quadrangle, estimates the

four corners, and warps the shapes into squares, thus remov-

ing projective distortion from the camera. Lastly, by decod-

ing the BCH codes inside the squares, it recovers the IDs of

the markers. In our case, even if a detected quadrangle is

not a marker, since we use a small amount of markers and

thanks to error correction, the decoding would most likely

simply fail. Fiala [8] provides a more detailed analysis for

markers used by ARTag, which are similar to BCH codes

used by newer versions of ARToolKitPlus.

While ARToolKitPlus provides most of the desired func-

tionality, we had to add two more features: adaptive thresh-

olding and subpixel corner extraction. The former finds an

optimal threshold for binarization even if the level of bright-

ness varies across the image. The latter refines the location

of the detected quadrangles, in the original grayscale image.
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Adaptive thresholding adjusts the threshold depending

on the local neighborhood of each pixel. We adopted

Niblack’s method [18], which sets the threshold for each

pixel (x, y) to

t(x, y) = m(x, y) + k × s(x, y) , (1)

where k is a negative parameter, usually −0.2, and where

m(x, y) and s(x, y) are the local mean and the local stan-

dard deviation, which are computed within a neighborhood

of (x, y). In our case, we considered an adaptive neighbor-

hood size, instead of a constant one. If the variance is very

low, then the intuition is that the window of the neighbor-

hood is too small. We need to make it larger to compute a

good threshold. Inversely, if the variance is very high, then

it is too large. We are no longer analyzing local statistics

and the threshold would not be optimal. For each pixel,

we thus need to adapt the window size dynamically. We

chose binary search to find the size where the standard de-

viation s(x, y) drops below a certain threshold. Assuming

a grayscale image with pixel values in the range [0, 255],

since the maximum standard deviation is a bit less than 128

and the minimum is 0, we found 64 to be an appropriate

threshold. We implemented an efficient algorithm based on

integral images that runs in O(N2 log N) time for an N×N
image.

For subpixel corner extraction, we were able to use di-

rectly the code provided in OpenCV [4]. The algorithm

works by first considering a small window (e.g.: 11 × 11)

around the pixel of interest in the original grayscale image.

It then assumes that the following holds for all subpixels x
in the window:

(c− x) · ∇x = 0 , (2)

where c is the exact subpixel corner location and ∇x is the

gradient at x. This is true if either∇x equals 0 or is orthog-

onal to (c − x), which is valid for a corner (but also for a

straight edge, so it cannot be used for corner detection). The

algorithm finds the minimum of this function, which is not

normally zero because of noise and nonlinear distortions.

In this manner, we obtain for each marker an ID and the

subpixel coordinates of its four corners.

3. Calibration Patterns
Even though it is possible to calibrate using only four

corners from only one marker, to obtain best calibration ac-

curacy, we should in fact attempt to cover the widest area

possible with a large amount of corners [20]. As calibration

pattern, we decided to use a matrix of markers, similar to the

one that Fiala and Shu [9] used, but where half of the mark-

ers are printed and half of them are from the projector, as

shown in Figure 3. As explained in more details below, the

projector markers are in inverted color, since it helps to de-

tect them when projected on top of printed markers. Given

(a) Printed pattern.

(b) Projector pattern.

Figure 3. Sample calibration patterns composed of matrices of

markers.

the minimum focus distance of our projector, we found that

20 × 20 mm2 markers spaced every 30 mm on a B4 size

board works well. This gives a total of 12× 8 markers, half

of which are printed and half from the projector.

If one uses a board larger than the field of views, the

system would obviously never be able to detect some mark-

ers, but as long as it can detect enough of them, there is no

problem. In fact, since corners cover fully the image planes,

it should improve accuracy.

In all cases, images captured by the camera contain a

Figure 4. The ideal image that would be created by projecting the

pattern from Figure 3(b) over Figure 3(a) under perfect alignment.
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mix of both markers. For a given image to be considered

appropriate for calibration purposes, the patterns need to be

aligned well enough such that the markers from the projec-

tor do not interfere with the printed ones, and vice versa, as

shown in Figure 4. In the following section, we explain how

to accomplish this by prewarping the projector pattern.

4. Prewarp of the Projector Pattern
For camera-only systems, we can easily accommodate

the number of corners shown in Figure 4, but this is chal-

lenging for projector-camera systems, because we need to

image both physical corners and projector corners. Without

proper considerations, the pattern from the projector would

interfere with the printed pattern. In this section, we show

that a prewarp of the projector markers to prevent interfer-

ence does not change the calibration problem.

The prewarp transformation that we derive is a homog-

raphy. Although the patterns contain many markers, we

actually only need one to estimate a homography with

maximum likelihood under the assumption of Gaussian

noise [14]. Still, at least a few markers have to be decod-

able to compute a meaningful estimate of the error. In cases

of large errors, the patterns are not well aligned, and we

should not use the estimate for calibration purposes, but we

can take it to update the projector prewarp, and hope to get

a better estimate from the next captured image. In any case,

we first need to find the homography between the camera

and the board.

When a few printed markers are decoded, we can esti-

mate this homography Hbc in

xb = Hbcxc , (3)

where xb is a point on the board, xc the corresponding point

on the camera image plane. Hbc is also the initialization

information required to calibrate a camera using Zhang’s

method [24]. For the projector, we have the similar rela-

tionship

yb = HbcHcpyp , (4)

where yb is a point on the board, yp the corresponding point

on the projector image plane, the homography Hbc as de-

fined above, and Hcp, the homography transforming points

from the image plane of the projector to the one of the cam-

era, which we find using detected projector markers in the

camera image. With the combined homography HbcHcp, we

can calibrate a projector in the same way as a camera. This

is how all current projector calibration methods work. How-

ever, we can equivalently write

y′
b = HbcHcpy′

p , (5)

where y′
p = Hpyp and Hp is the homography that prewarps

our projector image. In other words, we can choose Hp,

Projector markers
in inverted colors

If error
is low

Update
prewarp

If patterns  are                
 well  aligned

Apply
prewarp

Detect
markers

Save corners
for calibration

Printed markers
on a flat board

Send to 
projector

Capture
with camera

Figure 5. Flowchart illustrating one iteration of the practical algo-

rithm.

such that a transformed point y′
p on the image plane of the

projector appears where we want it on the board, y′
b, such

that it does not interfere with the printed pattern. As previ-

ously, Hcp simply becomes the homography computed us-

ing detected projector markers in the camera image, and we

can say that the calibration method is equivalent.

5. Practical Algorithm and Issues
The sections above fully cover the theoretical aspects,

but the machine executes in practice an algorithm. One of

its iteration is depicted in Figure 5. First, it applies the pre-

warp of Section 4 to the projector pattern and sends it to

the projector. We assume the user holds at all times the flat

board with printed markers in front of the projector-camera

system. In this case, projector markers appear along side

the printed ones. The system can then continue and at-

tempt to detect all printed and projector markers, one by

one as explained in Section 2. If it considers that the er-

ror on the detected corners is low enough (details below) it

uses them to update the prewarp homography. Further, if

the patterns are aligned well enough (details below) it saves

their marker corners. Finally, it loops and expects the user

to move the board, unless enough corners have been saved,

at which point they are used for calibration.

Although a conceptually simple algorithm, a few thorny

technical issues remain. First, if we want the results of the

subpixel detector to mean anything, we must make sure the

prewarped projector image contains as little aliasing as pos-

sible. Next, when projector and printed markers overlap, it

is not usually possible to detect them. However, using in-

verted colors makes them more easily detectable, even when
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they interfere with each other. Third, even though we can

derive a useful update for the prewarp from a rough homog-

raphy estimation, outliers do not help. Finally, the machine

must somehow judge when both patterns are aligned well

enough and automatically select images for calibration. In

the following subsections we explain in further details and

provide practical solutions.

5.1. Antialiased Projector Images

Typical projector calibration methods do not warp the

projector image and do not have to worry about aliasing.

In our case, arbitrary warps produce subpixel motion, and

aliasing issues must be managed. As antialiasing measure,

we opted for simple 4× supersampling [10], which gives

good results and executes fast enough in software. Basi-

cally, we first create an image buffer that has four times the

resolution of the projector. For example, a 4096 × 3072
image for a typical 1024 × 768 projector. Next, we draw

the markers in the high-resolution buffer using well know

drawing and filling algorithms [10] that work on a per-pixel

basis. Since we make no attempt at drawing at the subpixel

level, this high resolution image contains a lot of aliasing

artifacts. However, when smoothed with simple averag-

ing and decimated by a factor of four, the resulting image

is subpixel sharp and free from problematic aliasing arti-

facts. Graphics processing units (GPUs) can also usually

perform this operation quickly and efficiently via OpenGL

or Direct3D, but the proprietary nature of the actual algo-

rithms they use does not amend itself well to reproducible

results. In either case, the system can then send the resulting

image to the projector.

5.2. Detection of Overlapping Markers

Afterward, if the user holds the calibration board in front

of the projector and camera, printed and projected markers

usually overlap up to some degree. Because of the limited

dynamic range of a typical camera, if we use black markers

over a white background only, both black regions from the

projector and regions printed in black appear in the same

shade of black. Any overlapping markers do not appear as

quadrangles anymore, and detection fails. To remedy, we

observed that using projector markers with inverted colors

(i.e.: white markers over a black background) overlapping

markers are more robustly detected. This can be explained

by the fact that with markers designed this way, the cam-

era automatically images as gray the empty regions of the

board, while printed black regions appear black, and white

projected regions appear white, naturally providing orthog-

onal intensity ranges for both types of markers. For this

reason, we use inverted colors for projector markers. In ad-

dition, the machine can easily adjust the brightness of the

markers to match the ambient light and fall within the dy-

namic range of the camera or alternatively, in dark environ-

ments, use the projector as an adjustable source of light, by

setting the minimum intensity of pixels.

5.3. Rough Homography Estimation

Even if overlapping markers are detected, the accuracy

of their corners might obviously suffer, and consequently

any homography we might estimate from them. In extreme

conditions, markers may also be incorrectly detected. To

compensate, we found that it works well to reject estimated

homographies with large errors (e.g.: with an RMSE, root

mean squared error, greater than 10 pixels, depending on

the nonlinear distortions). One marker, which has only four

corners, always fits a homography perfectly, so this also im-

plies that the minimum number of detected markers must be

two. While an RMSE of 10 pixels is still unacceptable for

calibration, the hope is that updating the prewarp with this

rough estimate moves the markers to a better position in the

next captured image.

5.4. Automatic Image Selection

Eventually, the machine should be able to detect a lot of

the projector and printed markers (e.g.: 50% of each). Also,

if the corners of the calibration patterns have not moved a

lot from the last captured image (e.g.: less than 5 pixels on

average, depending on the slight movements from the user

or oscillations when updating and applying the prewrap),

then the system assumes that the patterns are aligned well

enough, and it saves the detected corners for later calibra-

tion. Next, if the user does not move the board a lot, it

would keep saving corners, but similar images are not use-

ful for calibration. For this reason, we added another cri-

terion. The system only selects an image if, since the last

saved one, the corners of the calibration patterns moved a

lot (e.g.: more than 50 pixels on average). When enough

images have been selected (e.g.: 10 images), then all the

saved corners go to the final stage: camera and projector

calibration.

Marker corners
(from ~10 images)

Undistorted
marker corners

Calibrate camera
(OpenCV)

Remove linear and
non−linear distortions

of the camera

Calibrate projector
(OpenCV)

Figure 6. Dataflow diagram for calibrating the camera and the pro-

jector.
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6. Camera and Projector Calibration
Once a sufficient amount of accurate corners have been

accumulated, the calibration algorithm can process them

directly. Using only the corners from printed markers xb

and their detected corners xc, OpenCV [4] can calibrate the

camera with no difficulties using Zhang’s method [24]. For

the projector, on the other hand, we must first remove the

linear (projective) and nonlinear (radial, etc.) distortions of

the camera from the projector corners. Note that removing

projective distortion is equivalent to applying the homogra-

phy Hbc of Equation 5 to the imaged corners. Using such

undistorted corner points y′
b on the board and correspond-

ing y′
p on the image plane of the projector, we can apply the

same method to calibrate the projector. Figure 6 illustrates

the dataflow involved.

Although we have been writing about corners all along,

we can also calibrate using the center of each marker. A

center is defined as the average of a marker’s four corners.

When nonlinear distortions are small, as is usually the case

of projectors, Fiala and Shu [9] showed that we can obtain

better results using centers than corners. This happens be-

cause corners that are not perfectly in focus are not accu-

rately extracted. This is especially relevant in the case of

projectors, since they usually have a narrow depth of field.

To illustrate the problem, Figure 7 shows the lower left area

of the detected markers in Figure 5: The edges of the defo-

cused projector markers make them appear larger than they

really are. Taking the average of the four corners lowers this

bias.

7. Results
The description of our method is now complete, and

we present here some results. We built an application in

Java, which integrates ARToolKitPlus, OpenCV, and PGR

FlyCapture as appropriate, and that implements the proce-

dure described in this paper. Our test hardware consisted

Figure 7. Lower left area of the detected markers from Figure 5.

We can observe severe defocusing of projector markers.

Table 1. Reprojection RMSE, root mean squared errors, in pixels

after calibrating using our method with either corners or centers.

Reprojection RMSE (pixels)

Camera Projector

Corners 0.43 0.66
Centers 0.33 0.20

of a NEC LT157 (1024 × 768 color LCD) projector, and a

PGR Grasshopper GRAS-14S5M/C (1280× 960 grayscale

CCD) camera attached to a Fujinon HF16SA-1 (16 mm)

lens, both connected to a Dell Vostro 400 computer with an

Intel Core 2 Quad Q6600 2.4 GHz CPU. For the calibration

target, we used the calibration patterns of Figure 3, printed

the first one on a B4 size sheet of paper and pasted it on a

(mostly) flat foam board.

Camera capture via software trigger took on average 158

ms, the display delay was about 64 ms, and the processing

ran on only one core in approximately 350 ms, for a total

of 572 ms per iteration. The test user could fully calibrate

both camera and projector within about 30 seconds of ma-

nipulation. Figure 1 shows him in action on the casually in-

stalled system. The full sequence can be downloaded from

http://www.ok.ctrl.titech.ac.jp/%7Esaudet/procams2009.mp4.

The reprojection errors, as listed in Table 1, also indicate

that we were able to obtain an accurate subpixel calibration

from this test session. Moreover, we could easily reproduce

such results at will. The errors also show that, as predicted,

because the projector has a narrower depth of field than the

camera, it benefits more from the use of marker centers.

For quick comparison, we summarize in Table 2 other

reprojection errors reported in the literature. For publica-

tions with more than one set of numbers, we took only the

best.

Table 2. Reprojection RMSE, root mean squared errors, in pixels

of other methods. For tidiness, we cite only the first author.

Authors Reprojection RMSE (pixels)

Camera Projector

Ashdown [1] 0.25 0.47
Audet [2] 0.23 0.52
Drouin [6] N/A 0.27
Gao [11] 0.63 0.43
Gao [12] 0.15 0.24
Griesser [13] < 0.4 < 1.5
Kimura [15] ≈ 0.3 ≈ 0.4
Legarda-Sáenz [16] 0.60 0.79
Li [17] 0.094 0.15
Zhang [23] ≈ 0.4 ≈ 0.6
Average 0.34 0.54
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8. Discussion and Conclusion
Judging from our results and comparing them to data

available from previous methods, little of which include in-

formation about usability, we conclude that our method is

the most user-friendly. A calibration session that typically

requires only a light board, a printed pattern, and less than

one minute justifies in our eyes this designation. Further-

more, the subpixel accuracy achieved compares favorably

with all previous methods. Assuming the noise characteris-

tics of projectors are similar to cameras, since we based our

method solely on existing theory of camera calibration, pub-

lished results for those [20, 24], with regards to the actual

physical 3D accuracy, should translate similarly. However,

this remains to be proven. For this paper, our main goal is

to demonstrate the ease of use.

We hope that this will help research on projector-camera

systems in two ways. First, from the point of view of a

user, since the calibration procedure is simple and does

not require any special hardware, it could realistically

become part of standard installation instructions targeted

at end users. Second, researchers may save time when

(re)calibrating their systems, instead spending hopefully

more time actually using the calibration information.

Nevertheless, the method does have a few quirks. It

can fail when all markers completely overlap, but we con-

firmed that a human user can easily detect such conditions

and slightly move the board to help the machine. Also, to

obtain the most accurate calibration, the casual user might

not be aware that the calibration board should be placed at

angles of approximately 45◦ with regards to image planes of

the projector and the camera, and that it should also cover

the largest area possible. A future implementation might be

able to solve this by properly decomposing the homogra-

phies [22] and by providing appropriate feedback to users,

i.e.: Point them in the right direction for the next ideal sweet

spot. Despite all this, prewarps that use homographies alone

might still fail for projectors that exhibit strong nonlinear

distortions, such as omnidirectional projectors.

In any case, we believe that the method as it stands cur-

rently could already be useful to other researchers. For

this reason, releasing the source code as free software is

our next priority. We will soon post more information

at http://www.ok.ctrl.titech.ac.jp/%7Esaudet/research/ .

Other future work includes implementing improvements,

such as support for multiple projectors and cameras, and

researching applications of projector-camera systems that

could benefit from full geometric calibration.
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