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Abstract

In this paper, we focus on face recognition over image
sets, where each set is represented by a linear subspace.
Linear Discriminant Analysis (LDA) is adopted for discrim-
inative learning. After investigating the relation between
regularization on Fisher Criterion and Maximum Margin
Criterion, we present a unified framework for regularized
LDA. With the framework, the ratio-form maximization of
regularized Fisher LDA can be reduced to the difference-
form optimization with an additional constraint. By in-
corporating the empirical loss as the regularization term,
we introduce a generalized Square Loss based Regularized
LDA (SLR-LDA) with suggestion on parameter setting. Our
approach achieves superior performance to the state-of-the-
art methods on face recognition. Its effectiveness is also ev-
idently verified in general object and object category recog-
nition experiments.

1. Introduction

Face recognition has been studied in computer vision for
decades. Depending on the data available, face recognition
can be performed on a single image or an image set. Re-
cently attention has been shifted towards image set based
recognition, as it is easy to acquire and handle large quan-
tities of image data nowadays. By exploring information
from multiple images, better performance can be achieved
compared to recognition based on a single image. Many
of the previous work exploited the temporal continuity be-
tween images [12, 19], assuming the images were recorded
from consecutive observations. Following recent work [9],
in this paper we focus on face recognition over sets of im-
ages that may be unordered.

By representing each image set as a linear subspace, Kim
et al. [9] exploited canonical correlations for comparing
face image sets. They proposed Discriminant Analysis of
Canonical Correlations (DCC), which extends Fisher Linear

Discriminant Analysis (LDA) [4] for learning over image
sets that maximizes canonical correlations of within-class
sets and minimizes canonical correlations of between-class
sets. By mapping the subspaces into an empirical feature
space using the kernel method, Hamm and Lee [7] recently
proposed Grassmann Discriminant Analysis (GDA) for im-
age set classification, which applies regularized Fisher LDA
to the subspace data.

In this work, we also represent each set of face images by
a linear subspace [9, 17]. LDA is adopted for discriminative
learning, where Fisher Criterion and Maximum Margin Cri-
terion (MMC) [11] are discussed. We investigate the rela-
tion between regularization on Fisher Criterion and MMC,
and present a unified framework for regularized LDA. With
the framework, the ratio-form maximization of regularized
Fisher LDA can be reduced to the difference-form optimiza-
tion with an additional constraint. By incorporating the em-
pirical loss as the regularization term, we introduce a gen-
eralized Square Loss based Regularized LDA (SLR-LDA)
with suggestion on appropriate parameter setting. We ap-
ply SLR-LDA over image sets for face recognition, which
achieves superior performance to the state-of-the-art meth-
ods. Its effectiveness is also evidently verified in general
object and object category recognition experiments.

2. Key Ingredients of Our Approach
2.1. Subspace Representation of Image Sets

An image (or vector) set can be considered to span a
linear subspace, and represented by the orthonormal basis
matrix. Figure 1 illustrates some face images from one
image set, and the corresponding subspace representation
using the first 5 leading bases. To measure the similar-
ity between image sets, a distance measure of linear sub-
spaces is needed. Most of the used distances are based on
canonical correlations [9], which are cosines of principal
angles 0 ≤ θ1 ≤ ... ≤ θd ≤ π/2 between two linear sub-
spaces. Given the orthonormal basis matrices of two sub-
spaces, B1, B2 ∈ Rm×d, where m is the dimension of fea-
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Figure 1. Top two rows: some images from an image set in our
face database. Bottom row: the 5 leading bases of the subspace
that spanned by the image set.

ture vectors and d is the number of basis vectors, canonical
correlations are the singular values of BT

1 B2. In [7], Hamm
and Lee discussed several distances and adopted the Projec-
tion metric

dP (B1, B2) = (d−
∑

cos2 θi)0.5 (1)

which produces a positive definite kernel function

k(B1, B2) =
∑

cos2 θi = ‖BT
1 B2‖2F (2)

thus it can be easily used for kernel methods in Hilbert
spaces (see details in [7]). This distance is also computa-
tionally efficient, as only the Frobenius norm needs to be
calculated, without explicitly computing the canonical cor-
relations. Therefore, we also use this distance in our work.

2.2. Linear Discriminant Analysis

LDA seeks a linear transformation f(x) = WT x that
maximizes the between-class distance dB and minimizes
the within-class distance dW simultaneously, where x ∈
Rm is a data sample and W = (w1, · · · ,wr) ∈ Rm×r(r ≤
m) is the transformation matrix. There are mainly two cri-
teria to implement this idea. Fisher LDA is to maximize the
Fisher Criterion [4]

dB

dW
=

tr(WT SBW)
tr(WT SW W)

(3)

where SB and SW are the between-class and within-class
scatter matrices respectively. The solution is the eigenvec-
tors of the generalized eigen-problem SBw = λSW w as-
sociated with the largest eigenvalues. The main problem of
Fisher Criterion is that the matrix inverse S−1

W is involved,
while SW could be singular, especially in small sample size
problems or in kernel methods [14]. To address this prob-
lem, PCA is usually adopted to reduce the dimension of the
data [1]; however, this step may remove discriminative in-
formation.

The other criterion is Maximum Margin Criterion intro-
duced in [11], which is to maximize the difference dB−dW .
With the constraint wT w = 1, the solution is obtained by
solving the eigen-problem (SB −SW )w = λw. Compared
to Fisher Criterion, no matrix inverse is involved in MMC,
thus it avoids the singularity problem and is more compu-
tationally efficient. MMC is closely related to Fisher Cri-
terion, which can be derived from MMC by incorporating
the constraint tr(WT SW W) = 1. Recent papers [18, 20]
have further extended MMC to weighted MMC, that is, to
maximize βdB − αdW .

2.3. Regularized LDA

Regularization has been considered to address the sin-
gularity problem in Fisher LDA. A common approach is
adding µI to SW [5, 14]. In [8], a diagonal matrix was
introduced into SW . Lu et al. [13] further modified SW

to ηSW + SB . On the contrary, few studies have consid-
ered regularization on MMC, since MMC does not have
the singularity problem. In a more recent work [16], Xue
et al. presented Discriminatively Regularized Least-Squares
Classification (DRLSC), which aims to maximize dB , while
at the same time minimize dW and the square loss Lsq =∑ ‖f(xi)− yi‖2. Specifically, DRLSC is to minimize

JDR = Lsq + ηdW − (1− η)dB (4)

so can be regarded as the regularized (weighted) MMC.
An important but unsolved problem is, is there any rela-

tion between regularization on Fisher Criterion and MMC?
As discussed above, with a suitable constraint MMC leads
to Fisher LDA. Considering MMC doesn’t has the singu-
larity problem and is more computationally feasible, it is
necessary to explore the relation between regularized Fisher
LDA and regularized MMC. This can result in better under-
standing on regularized LDA. In the next section, we inves-
tigate their relation and present a general framework for reg-
ularized LDA, which unifies both regularized Fisher LDA
and regularized MMC as a constrained optimization prob-
lem. A main problem of DRLSC is how to set the weighting
coefficients of dW and dB . Without sound theoretical anal-
ysis, an ad hoc setting η and 1 − η were used [16], and the
authors failed to provide a solution on how to determine η.
With the proposed unified framework, we obtain the relation
of the weighting coefficients, leading to a flexible approach
to parameter setting.

3. A Unified Framework for Regularized LDA
Regularized Fisher LDA aims to maximize

JFC(v) =
dB(v)

dW (v) + reg(v)
α

(5)

s.t. v ∈ Ω
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where v is the variable, for example v can be W and b in
the transformation f(x) = xT W + b, reg(v) ≥ 0 repre-
sents the regularization term, α > 0 is the regularization
parameter, and Ω is a closed set1. We use reg/α instead of
α ·reg for the simplicity of the subsequent analysis. Denote
the maximum of JFC(v) as JFC,max = maxv∈Ω JFC . We
have Theorem 3.1 (with proof in Appendix A).

Theorem 3.1. (1). The maxima of JFC(v) also minimizes
J(v), and minJ(v) = 0, where

J(v) = reg + αdW − α

JFC,max
dB (6)

s.t. v ∈ Ω

(2). The minima of J(v) also maximizes JFC(v).
(3). Jmin(α, β) = 0 if and only if β = α

JF C,max
, where

Jmin(α, β) = min
v

(reg + αdW − βdB) (7)

s.t. v ∈ Ω

According to Theorem 3.1(1)(2), maximizing JFC is
equivalent to minimizing J . Thus we can reformulate the
problem as

minJ(v) = reg + αdW − βdB (8)
s.t. v ∈ Ω

β =
α

JFC,max

J(v) can be viewed as the regularization on weighted
MMC, so regularized Fisher Criterion is equivalent to
regularized weighted MMC with the constraint β =
α/JFC,max. Therefore, regularized Fisher LDA and reg-
ularized MMC can be unified in a framework. In this way,
the ratio-form maximization of regularized Fisher LDA can
be reduced to the difference-form optimization with an ad-
ditional constraint, which is easy to be solved to a certain
extend. Our framework also sheds some insight on the rela-
tionship between parameters α and β, rather than an ad hoc
setting α + β = 1 in [16]. Furthermore, the parameter set-
ting becomes more flexible. That is, instead of predefining
α and finding the optimal β, we can also predefine β and
solve

minJ(v) = reg + αdW − βdB (9)
s.t. v ∈ Ω

α = βJFC,max

This is very useful, as in some cases it is easy to predefine
one of α or β.

1v ∈ Ω is a short expression for some general constraints such as the
equal constraint ceq(v) = 0 and the unequal one cleq(v) ≤ 0. A closed
Ω makes sure that the optima is within Ω.

Given α and β, J(v) = reg + αdW − βdB can be mini-
mized. However, only α is predefined, and β = α/JFC,max

depends on the unknown JFC,max (or vice versa). To derive
the optimal β, we have the following theorem.

Theorem 3.2.

β = argβ′{Jmin(α, β′) = 0} (10)

Proof. From Theorem 3.1(3), we know Jmin(α, β) = 0 if
and only if β = α/JFC,max. Thus the optimal β satisfies
Jmin(α, β) = 0, and any other β makes it nonzero.

Similarly, if β predefined, the optimal α can be obtained
from

α = argα′{Jmin(α′, β) = 0} (11)

Whether α or β predefined depends on which one is easy
to select. In a specific application, if Jmin(α, β) can be for-
mulated explicitly (for example, SLR-LDA in Section 4),
we can obtain the optimal β according to Theorem 3.2 (or
α from Eqn. (11)). In cases where Jmin(α, β) cannot be ex-
plicitly formulated, we have an iterative approach to com-
pute the optimal β (or α). Due to the page limit, we omit
the discussion in this paper.

4. Square Loss Regularized LDA (SLR-LDA)

For regularized LDA, it is critical to choose a suitable
regularization term reg. As discussed above, a common ap-
proach is adding µI to SW [5, 14]. This kind of regulariza-
tion term is helpful for smoothing the function. However,
for classification purposes, a smoothness constraint is not
always useful. In supervised learning, the empirical loss
L =

∑
V (f(xi),yi) between the desired and actual out-

puts provides the discriminative information for classifica-
tion. Following DRLSC [16], we take the empirical loss as
reg in this work. As shown above, DRLSC is regularized
MMC reg + αdW − βdB , and can be unified in our frame-
work. The main problems of DRLSC include using an ad
hoc setting α + β = 1, and how to select the parameter η.
Here, with the proposed framework, we provide a general-
ized Square Loss based Regularized LDA (SLR-LDA). We
also give suggestion on how to choose the parameter. Our
approach can be extended for image set classification using
the kernel technique.

For C-class problems, let yi ∈ R1×C be the class label
for sample xi ∈ Rm. The indicator matrix Y is defined
with its i-th row as yi. If xi is in class c, yi can be defined as
a vector of all zeros except that its c-th element is one. For
a linear classifier f(x) = xT W + b, where W ∈ Rm×C

and b ∈ R1×C , the square loss is defined as

Lsq =
∑

‖f(xi)− yi‖2 = ‖XT W + bN −Y‖2F (12)
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where the i-th column of X ∈ Rm×N is the sample xi, N is
the number of samples, and all the rows of bN ∈ RN×C are
b. Denote 1N ∈ RN as the vector with all ones, we have
bN = 1Nb. The scatter distances dB and dW are defined
using the kNN method [2, 16], which gives the distances as

dB = tr(WT XLBXT W) (13)

dW = tr(WT XLW XT W) (14)

See [16] for details. SLR-LDA is to maximize dB

dW +Lsq/α ,
with a predefined α, which is reduced to minimizing

J = Lsq + αdW − βdB (15)
s.t. β = α/JFC,max

We first provide the explicit form of Jmin(α, β) =
minW,b(Lsq +αdW −βdB). Based on ‖A‖2F = tr(AT A),
we have

J =Lsq + αdW − βdB

=‖XT W + bN −Y‖2F
+ tr(WT X(αLW − βLB)XT W)

=tr(WT X(IN + αLW − βLB)XT W)

− 2tr(WT X(bN −Y)) + ‖bN −Y‖2F (16)

where IN ∈ RN×N is the identity matrix. The derivatives
with respect to b and W are

{
1
2

∂J
∂b = 1T

N (XT W + bN −Y)
1
2

∂J
∂W = XLα,βXT W −X(Y − bN )

(17)

where Lα,β := IN+αLW−βLB . By setting the derivatives
to zeros, we get the minima as

{
b̃ = 1T

N (Rα,β−IN )Y

1T
N (Rα,β−IN )1N

W̃ = (XLα,βXT )†X(Y − bN )
(18)

where Rα,β := XT (XLα,βXT )†X, and † denotes Moore-
Penrose pseudo inverse. By substituting the minima back
into J , we obtain the minimum

Jmin(α, β) =

tr(YT (Rα,β − IN )(
1N1T

N (Rα,β − IN )Y
1T

N (Rα,β − IN )1N
−Y)) (19)

Given the predefined α, the optimal β can be obtained
from Theorem 3.2. Similarly, we can also derive the optimal
α with the predefined β.

4.1. Parameter β Selection

In reality, the minimum of J should not be −∞. We
show in Appendix B that this can be achieved by setting

βλmax(LB) ≤ 1, where λmax(LB) is the maximal eigen-
value of the matrix LB . Considering β ≥ 0 for the discrim-
ination purpose, we have

β =
1− σ

λmax(LB)
with σ ∈ [0, 1] (20)

So in this case β can be easily predefined. With the defined
β, the optimal α is solved from Eqn. (11).

4.2. SLR-LDA over Image Sets

Using the kernel trick, we extend SLR-LDA for image
set classification using the subspace representation. As-
sume the classifier can be represented as f(x) = b +∑

Wi.k(xi,x), we have

Lsq = ‖KT W + bN −Y‖2F (21)

dB = tr(WT KLBKT W) (22)

dW = tr(WT KLW KT W) (23)

where K is the kernel matrix. The solution is
{

b̃ = 1T
N (Rα,β−IN )Y

1T
N (Rα,β−IN )1N

W̃ = (KLα,βKT )†K(Y − bN )
(24)

where Rα,β = KT (KLα,βKT )†K. In our experiments, K
is calculated using Eqn. (2).

5. Experiments
5.1. Face Recognition

We evaluate the proposed SLR-LDA for image set based
face recognition, where the task is to classify an unknown
set of face images to one of the training classes, each of
which also represented by face image sets.

Database of Face Image Sets — Since there is no large
database of face image sets public available, we built our
own face database. The database consists of face images
extracted from various videos, including movies2, TV pro-
grams [3], face video database3, and face videos we cap-
tured about researchers in our group. There are in total 115
subjects with 62 females, and totally 1,862 image sets in our
database. Each person has 4 to 40 image sets and each set
has about 45 to 60 images. Some example face images from
three sets are shown in Figure 2. All the faces were automat-
ically detected using the Viola-Jones cascaded face detector
[15], without any further processing such as alignment or
background segmentation. As can be observed, the faces
exhibit great variations in terms of head pose, illumination,
expression, resolution, and occlusion. So our database is

2mi.eng.cam.ac.uk/ ˜oa214/academic
3www.perceptual-vision.com/db/video/faces/cvglab
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Figure 2. Example image sets in our face database.

much closer to the conditions for face recognition in real-
life environments. In our experiments, following [9], each
face image is first histogram equalized, and then re-scaled
to 20 × 20 pixels, thus represented by a 400-dimensional
feature vector.

Experimental Settings and Comparative Methods — In
our experiments, p (=2, 3, 4, 5) image sets were randomly
selected for training and the rest were used for testing4. For
each p, we run experiments with 50 random splits and re-
port the average performance. For each image set, PCA was
performed to obtain the subspace representation. The sub-
space dimension was set as 15, which preserves about 98%
of the data energy of each set.

We compare SLR-LDA with the state-of-the-art meth-
ods, including DRLSC [16], GDA1 [7], and DCC [9]. As
discussed above, DRLSC is a special case of our approach
with an ad hoc parameter setting. GDA1 is Kernel LDA
with a smoothing regularization term µI , while DCC ex-
tends LDA for image sets using canonical correlations. For
SLR-LDA, we use σ = 0.5 and thus β = 0.5/λmax(LB)
in all experiments. For DRLSC, the optimal η = 0.999
was found by scanning through [0, 1], which was used in
our experiments. The number of nearest neighbors used in
DRLSC and SLR-LDA is k = 10. For DCC, as recom-
mended in [9], we reduced the dimension of the data using
PCA: for training with 5 image sets, the reduced dimension
was 150; for training with 2-4 sets, the reduced dimension
was 120. The DCC experiments were repeated 20 times,
because it is very time consuming.

Experimental Results — The recognition rates of differ-
ent methods are shown in Figure 3. As can be observed,
all the methods examined perform better when using more
image sets for training. This is because, with more image
sets used, face variations can be better represented, result-
ing in better discriminative functions. SLR-LDA consis-
tently outperforms DCC and GDA1 with a clear margin.
The main reason could be that the SLR-LDA incorporates
the useful discriminative information by taking the loss as
regularization term. In contrast, GDA1 adopts a smooth-

4There are 12 persons in the database only having 4 image sets, so they
are discarded when 5 sets are used for training.

Figure 3. (Best viewed in color) Face recognition rates of different
methods with different training sizes.

Figure 4. (Best viewed in color) Face recognition rates versus pa-
rameter σ for SLR-LDA.

ness regularization constraint that may not be sufficient for
discrimination among classes, and DCC reduces the data di-
mension using PCA to avoid the singularity problem, which
may remove the discriminative information. The benefit of
using the loss as regularization term is also illustrated by
DRLSC. With a properly chosen η, DRLSC also provides
better performance than GDA1 and DCC. It is observed
that SLR-LDA performs lightly better than DRLSC. This
validates our theoretical analysis in Section 3, where we
show that the relation should be β = α/JFC,max rather
than α + β = 1 in DRLSC. We further illustrate in the next
paragraph that DRLSC is sensitive to η, while SLR-LDA is
robust to σ ∈ [0, 1].

Effect of Parameters in SLR-LDA and DRLSC — In
Section 4.1, we make the suggestion 1 − βλmax(LB) =
σ ∈ [0, 1]; σ was set as 0.5 in all the experiments. Here
we verify our suggestion, and investigate the performance
with different σ in SLR-LDA. The performance of SLR-
LDA w.r.t different σ is shown in Figure 4. For comparison,
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Figure 5. (Best viewed in color) Face recognition rates versus pa-
rameter η for DRLSC.

Figure 6. (Best viewed in color) Detailed face recognition rates
versus parameter η close to 1 for DRLSC.

we also show the performance of DRLSC w.r.t η in Figure 5.
We have several observations. (1) The suggestion σ ∈ [0, 1]
holds. For σ < 0 or σ > 1, the performance of SLR-
LDA deteriorates sharply. (2) SLR-LDA is not sensitive to
σ ∈ [0, 1], and provides consistently stable results. While
DRLSC is sensitive to the parameter η ∈ [0, 1]. (3) DRLSC
performs well with η close to 1. In this case DRLSC is re-
duced to minimizing Lsq + dW , which is conflict with the
basic idea to maximize dB . This is possibly due to the ad
hoc setting α + β = 1.

5.2. Object Recognition On ALOI Database

To further verify its effective, we also apply SLR-LDA
for general object or object category recognition. ALOI
database [6] contains 1000 objects captured from 72 views.
In our experiments, we used images of 100 objects, which
were segmented from the background using the masks pro-
vided in the database. For each object, every 12 images with
consecutive view angles were set as an image set, resulting
6 image sets per object. The images were processed using

the same procedure on the face database. The dimension
of subspace representation was 10. Again p (=2, 3, 4, 5)
image sets were randomly selected for training and the rest
were used for testing. For each p, we run experiments with
50 random splits and report the average performance. We
also compare SLR-LDA with DRLSC, GDA1, and DCC.
In SLR-LDA, σ is set to 0.5, while in DRLSC, the optimal
η = 0.995 was used.

Figure 7 shows the recognition results of different meth-
ods. Again, all the methods achieve higher recognition rates
when more sets are used for training. Once more, SLR-
LDA performs slightly better than the optimal DRLSC.
Both SLR-LDA and DRLSC perform better than GDA1 and
DCC, due to taking the empirical loss into account in the
regularization term. We also show the effect of parameters
in SLR-LDA and DRLSC in Figure 7. It is observed that
SLR-LDA achieves stable performance with σ ∈ [0, 1], but
its performance deteriorates sharply for σ < 0 or σ > 1.
For DRSLC, it also provides good performance with η close
to 1, which is conflict with the basic idea to maximize dB .
Compared with the results on the face database, the recog-
nition rates are much lower on the ALOI database. This is
possibly because the images in ALOI have great variation
on view angle, and each set contains much fewer images.

5.3. Object Category Recognition on ETH80

ETH80 database [10] contains 8 object categories, each
of which has 10 image sets. Each set is composed of 41
images taken from different views. The dimension of the
subspace representation was 10. Similarly, p (=2, 3, 4, 5)
image sets were randomly selected for training and the rest
were used for testing. For each p, we run experiments with
50 random splits and report the average performance. We
also compare SLR-LDA with DRLSC, GDA1, and DCC. In
SLR-LDA, σ is set to 0.5 in all experiments. In DRLSC, we
examined different values of η ∈ [0, 1] and use the optimal
setting of 0.995.

The experimental results are shown in Figure 8. Again,
SRL-LDA performs comparably or slightly better than the
optimal DRLSC. Both SLR-LDA and DRLSC provide su-
perior performance to GDA1 and DCC, and this reinforces
our findings in experiments on face and ALOI databases. In
most cases, GDA1 outperforms DCC, which is consistent
with the observation in [7]. While 5 sets in each category
are used for training, the performance among these meth-
ods is small. This is because the ETH80 database is built
under well controlled conditions, and as more sets are used
for training, characteristics of different categories could be
well captured. The recognition rates are much higher than
that on the ALOI database, mainly due to a smaller number
of classes. The observed effect of parameters in SLR-LDA
and DRLSC is also similar to our findings on face database
and ALOI database.
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Figure 7. (Best viewed in color) (Left) Recognition rates of different methods using different training sizes on the ALOI database; (Middle)
Recognition rates versus parameter σ for SLR-LDA; (Right) Recognition rates versus parameter η for DRLSC.

Figure 8. (Best viewed in color) (Left) Recognition rates of different methods using different training sizes on the ETH80 database; (Middle)
Recognition rates versus parameter σ for SLR-LDA; (Right) Recognition rates versus parameter η for DRLSC.

6. Conclusions
Face recognition over image sets is addressed in this

paper. A general framework for regularized LDA is pre-
sented, which unifies both Fisher Criterion and Maximum
Margin Criterion. The ratio-form maximization of regu-
larized Fisher LDA can now be reduced to the difference-
form optimization with an additional constraint. By incor-
porating the empirical loss as the regularization term, we in-
troduce a generalized Square Loss based Regularized LDA
with suggestion on appropriate parameter setting. Our ap-
proach achieves superior performance to the state-of-the-art
methods in face recognition and object (category) recogni-
tion experiments on several databases.

Appendix

A. Proof to Theorem 3.1
Eqn. (5) can be reformulated as the following equation

reg(v) + αdW (v)− α

JFC(v)
dB(v) = 0 (25)

which will be used in the following analysis.

(1) Suppose u ∈ Ω maximizes JFC , for ∀v ∈ Ω we have

J(u) = reg(u) + αdW (u)− α

JFC,max
dB(u) (26)

= reg(u) + αdW (u)− α

JFC(u)
dB(u) = 0, (27)

J(v) = reg(v) + αdW (v)− α

JFC,max
dB(v) (28)

≥ reg(v) + αdW (v)− α

JFC(v)
dB(v) = 0. (29)

So u also minimizes J and

minJ = J(u) = 0. (30)

(2) Suppose u ∈ Ω minimizes J , we have

0 = J(u) = reg(u) + αdW (u)− α

JFC,max
dB(u)

(31)

⇔ reg(u) + αdW (u) =
α

JFC,max
dB(u) (32)

⇔ JFC(u) =
dB(u)

dW (u) + reg(u)
α

= JFC,max, (33)
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So u also maximizes JFC .

(3) We have proved in (1) that when β′ = α/JFC,max,
Jmin(α, β′) = 0. Now suppose Jmin(α, β′) = 0 and u ∈ Ω
is the minima, we need to prove β′ = α/JFC,max. For
∀v ∈ Ω we have

reg(v) + αdW (v)− β′dB(v) ≥ 0 (34)
⇔ reg(v) + αdW (v) ≥ β′dB(v) (35)

⇔ α

β′
≥ dB(v)

dW (v) + reg(v)/α
= JFC(v) (36)

The equality holds for the minima u, which means α/β′ =
JFC(u). So we have JFC(v) ≤ α/β′ = JFC(u), which
means JFC(u) = JFC,max. Thus β′ = α/JFC,max

B. Suggestion on Parameter Selection
In order that it makes sense to minimize J in Eqn. (16),

the minimum should not be−∞. This suggests us to require
that Lα,β is positive semi-definite (PSD).

The definition of a PSD matrix H is that zT Hz ≥ 0, ∀z.
According to Eqn. (16), J is quadratic. For simplicity we
use v = [WT bT ]T to represent the variables b and W.
Using Eqn. (17), we obtain the Hessian matrix

H :=
∂2J

∂v2
=

[
XLα,βXT X1N

1T
NXT 1T

N1N

]
(37)

H should be PSD; otherwise if zT
0 Hz0 < 0, then

limµ→∞(µz0)T H(µz0) = −∞, thus the minimum be-
comes−∞. So now for ∀p ∈ RC and z = [pT 0]T , we have
zT Hz ≥ 0, which results into (XT p)T Lα,β(XT p) ≥ 0.
This suggests that we can require Lα,β = IN +αLW−βLB

to be PSD.
As IN , LW and LB are all PSD (remember that scatter

distances dW ≥ 0 and dB ≥ 0), and the addition of two
PSD matrices is also PSD, we just need to choose β so that
IN − βLB is PSD, which means zT (IN − βLB)z ≥ 0, ∀z.
This can be achieved by selecting βλmax(LB) ≤ 1, where
λmax(LB) is the maximal eigen-value of matrix LB .
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