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Abstract

In the field of biometrics evaluation of quality of biomet-

ric samples has a number of important applications. The

main applications include (1) to reject poor quality images

during acquisition, (2) to use as enhancement metric, and

(3) to apply as a weighting factor in fusion schemes. Since

a biometric-based recognition system relies on measures of

performance such as matching scores and recognition prob-

ability of error, it becomes intuitive that the metrics eval-

uating biometric sample quality have to be linked to the

recognition performance of the system. The goal of this

work is to design a method for evaluating and ranking var-

ious quality metrics applied to biometric images or signals

based on their ability to predict recognition performance of

a biometric recognition system. The proposed method in-

volves: (1) Preprocessing algorithm operating on pairs of

quality scores and generating relative scores, (2) Adaptive

multivariate mapping relating quality scores and measures

of recognition performance and (3) Ranking algorithm that

selects the best combinations of quality measures. The per-

formance of the method is demonstrated on face and iris

biometric data.

1. Introduction

In the field of image and video processing evaluation of

quality of images has a number of important applications.

These include image acquisition, enhancement, reconstruc-

tion, and compression. Image quality metrics designed for

these applications are used as figures of merit to quantify

degradations or improvements in the images due to various

image processing operations [1], [10]. Today it is well un-

derstood that (1) selection of appropriate image quality met-

rics depends on specific applications and (2) image quality

measures “should be instrumental in predicting the perfor-

mance of vision-based algorithms such as feature extrac-

tion, image-based measurements, segmentation tasks, etc.”

(see [1] for details). Rohaly et al. [9] and Corriveau et al.

[2] developed a set of attributes that any good objective im-

age (video) quality metric is expected to posses. The main

three attributes are prediction accuracy, monotonicity, and

consistency.

In all these applications, however, the data after process-

ing, enhancement or compression take the form of images.

Therefore, to find a set of image metrics that satisfy the at-

tributes and display reasonable performance is not that hard.

In recent years biometric community began to pay con-

siderable attention to evaluating quality of biometric sam-

ples. Biometric images are typical biometric samples. Bio-

metric systems are a type of pattern recognition systems. A

typical biometric recognition system operates in two modes,

enrollment and authentication or recognition. During the

enrollment mode, biometric samples representing different

biometric classes are enhanced, processed, encoded and

stored in a biometric database. During the recognition

mode, a new sample submitted for recognition is prepro-

cessed, enhanced and encoded following the list of proce-

dures used during the enrollment mode. Then, the query en-

coded data are compared against each entry in the database

by involving matching metrics.

The main applications of sample quality in biometric-

based recognition systems are (1) to reject poor quality im-

ages during acquisition, (2) to use as enhancement metric,

and (3) to apply as a weighting factor in fusion schemes.

Since a biometric-based recognition system relies on mea-

sures of performance such as matching scores and recogni-

tion probability of error, it becomes intuitive that the metrics

evaluating biometric sample quality have to be linked to the

recognition performance of the system. They should be able

to predict performance of recognition systems.

In the past, research on biometric sample quality was

focused on defining the biometric quality itself. National

Institute of Standard and Technology (NIST) organized

a number of workshops exclusively devoted to biomet-

ric sample quality such as Biometric Quality Workshops

(BQW) I and II.
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The state-of-the art in associating quality of images and

signals with the recognition performance of a recognition

system (biometric system in particular) does not exist in

the form of publications. A few latest ideas were summa-

rized in presentations given at the Multiple Biometric Grand

Challenge (MBGC) kick off meeting held in spring 2008.

These presentations suggested the use of covariate analysis

to relate image/signal quality and recognition performance.

These techniques evaluate the covariance or correlation be-

tween values of a quality metric and the performance val-

ues. Since covariance and correlation are known as second

order statistics, they provide only partial (limited) charac-

terization of the relationship between quality metrics and

performance.

The absence of a reliable method and a tool for evaluat-

ing the effect of a quality metric in predicting performance

of a recognition system creates a gap in the base of knowl-

edge on how to use quality metrics and what metrics to use

in recognition systems. If a reliable method were available,

we would be able to select the best metric among a list of

alternatives; rank quality factors in a vector of quality vec-

tors; and use an appropriate quality measure in data fusion

schemes.

The goal of this work is to design a method for evaluat-

ing and ranking various quality metrics applied to biometric

images or signals based on their ability to predict recogni-

tion performance of a biometric recognition system.

The main contribution of the paper are three-fold: (1)

compared to all previous works it involves pairs of qual-

ity measures assigned to a query biometric sample and to

a biometric sample from a biometric dataset; (2) it imple-

ments multivariate nonlinear mappings to relate vectors of

quality pairs, input variables, and the values of the match-

ing metrics (verification and recognition performance), out-

put variables. Two adaptive multivariate mappings, a Feed-

Forward Neural Network (FFNN) and Multivariate Regres-

sion Analysis Splines (MARS), are used to model the re-

lationship. These models are optimized with respect to the

number of nodes, number of hidden layers, and the number

and frequency of “Hockey stick” spline functions; (3) prior

to performing the nonlinear mapping, in some scenarios it

combines each pair of quality measures into a single score.

This is a relative quality score. In some scenarios, the rela-

tive quality scores are used as additional inputs to nonlinear

mappings.

The designed method was tested on iris and face data.

Two sets of quality measures were evaluated and ranked in

terms of their ability to predict verification performance of

two biometric recognition systems. The systems are (1) an

iris recognition system implementing Gabor filter-based en-

coding [8] and relying on iris image quality designed by

Kalka et al. [5] and (2) a commercial face recognition al-

gorithm, called FaceIt G6 matching algorithm provided by

Identix Inc. and a face quality package FaceIt G6 quality

module.

2. Proposed Method

The importance of quality metrics is evaluated based on

their ability to predict recognition performance. In many

recognition systems, neither physical nor mathematical re-

lationship between image/signal quality measures and mea-

sures of recognition performance can be established. In this

case, engineers appeal to so-called “black-box approach.”

A black-box approach does not assume any specific rela-

tionship between two or more sets and does not support any

physical model describing a relationship.

The block-diagram describing the implementation of the

proposed prediction method is displayed in Figure 1. The

diagram links the values of the quality measures and the val-

ues of the matching metrics of a recognition system. This

section will carefully describe the operation of the three

blocks displayed in Figure 1.

Figure 1. Block-diagram describing the proposed method.

2.1. Input preprocessing block

A distinctive feature of the proposed method is that qual-

ity vectors or individual factors come in pairs, (Quality of

Image A, Quality of Image B). The goal of Preprocessing

Block in Figure 1 is to form a set of relative quality mea-

sures in addition to the original quality measures. Prepro-

cessing of quality measures may assume a nonlinear map-

ping that maps an input quality pair into a single combined

or relative quality measure. These combined or relative

quality measures can be involved as additional inputs to the

multivariate adaptive mapping.

In this work Preprocessing Block operates according to

the following three scenarios: (1) Input to Adaptive Map-

ping is a 2K dimensional vector composed of K quality
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metrics characterizing image A and K quality metrics char-

acterizing image B. (2) Input to Adaptive Mapping is a K-

dimensional vector. Each component is a nonlinear func-

tion of a pair (i-th quality measure of biometric sample A,

i-th quality metric of biometric sample B). (3) Input to the

nonlinear mapping is a 3K dimensional vector. The entries

include 2K dimensional vector from scenario 1 and K di-

mensional vector from scenario 2.

Denote by Q(A) = [Q1(A), Q2(A), . . . , QK(A)]T

and Q(B) = [Q1(B), Q2(B), . . . , QK(B)]T two K-

dimensional vectors of quality measures for two biometric

samples A and B. Two specific nonlinear functions used in

scenario 2 include:

Qi(relative) = tanh

[

π
|Qi(A) − Qi(B)|

Qmax − Qmin

]

(1)

and

Q(relative)i =
2

1 + exp
[

−α |Qi(A)−Qi(B)|
Qmax−Qmin

] −
1

2
(2)

where Qmax − Qmin is the range of the values that a

quality measure takes. We have explored other relative

mappings such as min(Qi(A), Qi(B)), |Qi(A) − Qi(B)|,
Qi(A) + Qi(B), Qi(A) × Qi(B) and various composi-

tions of these functions with other non linear mappings.

Our findings are such that functions involving the differ-

ence |QiA) − Qi(B)| consistently improve prediction per-

formance. For simplicity of implementation Preprocessing

Block applies the same transformation to every pair of qual-

ity scores.

2.2. Multivariate adaptive mapping

The adaptive mapping shown as the second block in Fig-

ure 1 requires training and testing. The training of the

mapping block is reduced to estimating a multivariate func-

tion relating quality metrics and recognition performance.

Recognition performance is in the form of a distance mea-

sure or similarity measure defined on a pair of templates,

processed and encoded biometric data. If two templates

characterize the same biometric class, the pair is genuine

and the matching score is genuine. If two templates char-

acterize two different biometric classes, the pair is imposter

and the matching score is imposter.

After the adaptive mapping is trained, that is, the map-

ping function is estimated, the testing of the mapping block

is performed by feeding testing data (quality measures)

in the nonlinear mapping block and predicting matching

scores. Note that training and testing data do not overlap.

Also note that the sets of imposter and genuine pairs have

to be processed separately. If these two types of data are

combined, the estimated mapping looses structure.

Mathematically, the modeling problem is stated as a mul-

tivariate regression problem. A general model can be ex-

pressed as

Ŷ = f(X), (3)

where Ŷ is the dependent variable, in this case the match-

ing score (recognition performance), and “hat” stands for an

approximation to the output Y, X is a vector of predictive

variables, such as pairs of quality measures for biometric

samples A and B.

2.2.1 Multivariate Adaptive Regression Splines

(MARS)

The MARS model employs a special set of spline functions

called “hockey stick” basis functions. These two-sided trun-

cated functions map variable X to a new variable X∗ ac-

cording to X∗ = (X − t)+ or X∗ = (t − X)+ (a flipped

copy), where t is a knot of the basis function.

Suppose that for each input variable Xi, i = 1, . . . , K
there are N observed values {xi,j |j = 1, . . . , N}. A pair

of basis functions is knotted at each of the observed values

and linked as a reflected pair. These 2NK basis functions

form an initial collection of basis functions B,

B = {(Xi−t)+, (t−Xi)+|t ∈ {xi,1, . . . , xi,N}; i = 1, . . . , K}.

MARS uses the combination of basis functions to approx-

imate model (3). Let f̂M (·) be a MARS approximation to

(3), that is,

f̂M (X) = β0 +

M
∑

m=1

βmBm(X), (4)

where M is the number of basis functions, Bm(X) is the

mth basis function which is either a function in the collec-

tion B or a product of two or more such functions. Given

a choice for Bm(X), the coefficients {βm|m = 0, . . . , M}
are estimated by minimizing the sum of squared residuals.

Basis functions can be highly nonlinear functions of X, but

the mapping Ŷ = f̂(X) is a linear function of the basis

functions. By analogy with f̂M (·), Ŷ is an approximation

to the output Y.
The advantage of MARS is in its ability to estimate in an

adaptive fashion the location and number of basis functions

to guarantee local and global fit of approximation function

f̂M (·) into a set of output measurements. The output points

that undergo abrupt changes in their values are described by

a large number of closely spaced basis functions to achieve

good fit. Conversely, if the output function is smooth and

slowly varies within some regions of support, the number

of supporting basis functions selected by the MARS is small

and sparsely located. In general, MARS trades off complex-

ity of the model and the accuracy of representation, which

makes the approach economical and more robust.
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MARS operates in two steps: forward selection and

backward deletion. In the first step, MARS selects a pair of

basis functions which fit the model best at the current stage.

To prevent the final model from being overfitted, a back-

ward deletion step is processed to prune basis functions. A

modified form of the generalized cross validation criterion

is used as the lack-of-fit criterion. As a result of these oper-

ations, MARS automatically determines the most important

independent variables as well as the most significant inter-

actions among them. Further details on MARS modeling

are given in [3].

2.2.2 Neural Network

A Feed Forward Neural Network (FFNN) is selected as a

nonlinear mapping [4, 6]. The topology of the network is es-

tablished by adopting the classical trial and error approach.

Starting from a small size network parameterized by a few

links and neurons, the network is allowed to grow until a

desired value of the Mean Square Error (cost function) is

attained. This operation is performed using training data.

The final design is achieved by trading off the com-

plexity and the performance of the network. The analysis

of the designed FFNN using different biometric data have

shown that a single hidden layer is sufficient to describe the

non linear relationship between quality scores and matching

scores. Also, for these data, the design based on sigmoidal

neurons achieve better performance than the design based

on non linear tanh functions. The number of neurons re-

quired to approximate the nonlinear mapping between input

and output biometric data depends on the type of biometric

data and is also distinct for genuine and imposter cases.

The optimization of FFNN is based on Levenberg-

Marquardt back-propagation algorithm [7] used to train the

adaptive network and to obtain the network weights. The

validation process is repeated L times, each time gener-

ating a different surrogate of the data by permutating the

order of data. An ensemble of L models is obtained, and

the final non linear model is selected as a weighted average

of L individual functions. This procedure improves vali-

dation results for all considered biometric data. The pa-

rameter L is optimized by repeating the procedure several

times. The L averaging weights are chosen according to

wi = R2
i /

L
∑

j=1

R2
j , i = 1, . . . , L, where R2

i is square cor-

relation between predicted values and actual values in the

training set and
L
∑

i=1

wi = 1.

The drawback of this method is in the requirement of

long training time. However, in all experiments a single val-

idation stopped at about 30 epochs. This makes the actual

training process computationally feasible.

2.3. Performance measures

The goodness of fit between the predicted matching scores

and the measured matching scores was evaluated using

three criteria (1) the mean square error (MSE), (2) the

square of correlation coefficients (R2), and (3) F statistic.

The two equations below are the mathematical definitions

of the first and second criteria:

MSE =
1

N

N
∑

i=1

(ŷi − yi)
2
, (5)

R2 =

(

∑N

i=1 (yi − ȳ)
(

ŷi − ¯̂y
)

(N − 1)sysŷ

)2

, (6)

where ŷi is the estimated matching score and ¯̂y is the sam-

ple mean of the estimated matching scores, sy and sŷ are

the sample standard deviations of the measured matching

scores and the estimated matching scores, and N is the

number of samples.

The F statistic evaluates the ratio between the mean

square error of the linear model and the mean square er-

ror of the prediction error. In this paper the F statistic is

used as an absolute measure.

There are many other statistical measures (such as re-

ceiver operating characteristic, Kullback-Leibler distance,

etc.) and goodness of fit tests that can be applied to ana-

lyze the data. However, the authors found the traditional

measures such as R2, MSE, or F -statistic to be quite in-

formative and intuitive. Apart from this, they are easy to

compute.

2.4. Ranking block

The current version of the ranking block performs exhaus-

tive search of the best possible combination of quality mea-

sures submitted as an input to Adaptive Mapping. The rank-

ing is based on the quality measures described in the previ-

ous section. If K is the length of the vector of quality mea-

sures, the number of possible combinations is (2K − 1). If

the vector of quality measures is long, then a more efficient

algorithm (for instance, brunch and bound) can be designed

to rank individual and combinations of quality measures.

3. Numerical Results

3.1. Iris dataset and experimental results

This section presents the results of analysis performed on

West Virginia University (WVU) non-ideal iris dataset.

This dataset is composed of 350 classes for a total of 2,413

images. Iris images were processed and encoded using Li-

bor Masek’s Matlab adaptation [8] of John Daugman’s al-

gorithm. Encoded images in the form of binary IrisCodes
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were further pairwise compared by using Hamming dis-

tance. Since images were labeled (iris images were assigned

iris classes), the matching scores were labeled too. The

scores formed using IrisCodes from the same iris class are

genuine scores. The scores formed using IrisCodes from

two different iris classes are imposter scores. Processing

this dataset returned 8,806 genuine matching scores and

2,889,848 imposter scores. Since the number of imposter

scores is redundant, the set of imposter scores was subsam-

pled. A representative subset of 109,000 imposter scores

was formed.

The computation of the quality of iris images followed

the work by Kalka et al. [5]. It suggests six individual qual-

ity measures: (1) Motion blur, (2) Defocus, (3) Illumina-

tion, (4) Occlusion, (5) Specular Reflection, and (6) Pixel

Count and a combined quality measure due to Dempster-

Shafer combination rule. Therefore the vectors of quality

measures used in this experiment are composed of six com-

ponents. Since the adaptive multivariate mapping that maps

individual and vectors of quality measures into matching

scores has to be trained and tested, the authors chose to use

half of genuine input-output pairs (4,403 pairs) to train the

mappings. The other (nonoverlapping half) was used for

validating the performance of the proposed method. For the

imposter case, 9, 000 input-output pairs were used for train-

ing and 100, 000 for testing.

To perform numerical analysis, the authors used Neural

Net Matlab Toolboox and polspline package of R Software.

The polspline package provides a non commercial adapta-

tion of Friedman’s algorithm (few differences exist).

To evaluate the prediction ability of quality measures and

find their best combination, the authors varied the number

of quality measures on the input to the adaptive multivariate

mapping. Both individual quality measures and their possi-

ble combinations were considered. For each combination, a

number of performance measures were evaluated (see Sec.

2.3 for details).

Table 1 presents the results of performance evaluation

obtained using FFNN. The processing block implemented

the prediction scenario 1. The first six rows in the table

describe the ability of individual quality measures to predict

the performance of the considered iris recognition system.

Factor 7 is the combined quality measure due to Dempster-

Shafer rule. The following rows in the table present the best

combination of two, three, four and five quality measures.

The last row describes the case when all quality measures

were used.

From the analysis of the data one may conclude that the

best individual quality measures are Factor 6 (pixel count)

and 4 (occlusion). The R2 for the two factors are 0.20 and

0.19, respectively. The best pair of quality measures is the

pair of Factors 4 and 5 (occlusion and specular reflections)

with R2 = 0.27. Note that as the number of involved qual-

ity Factors increases, their ability to predict performance

of iris recognition system improves. Note that Dempster-

Shafer metric (Factor 7) when used as a single factor per-

forms worse than Factor 6 or Factor 4. This result indicates

that vectors of quality measures are considerably more in-

formative compared to the Dempster-Shafer score in terms

of their ability to predict recognition performance.

A similar set of experiments was performed using

MARS as a multivariate adaptive mapping. The results are

summarized in Table 2. The results and conclusions are

very similar to the results and conclusions above. Note that

the performance of MARS is slightly inferior to the perfor-

mance of the FFNN.

Table 1. Performance of prediction scenario 1 for genuine iris set.

The results are obtained with a single hidden layer FFNN com-

posed of 10 neurons.

Factors R2 MSE F
1 0.0708 0.0049 335.40

2 0.0533 0.0050 247.95

3 0.1370 0.0046 698.69

4 0.1956 0.0043 1070.63

5 0.1643 0.0044 865.50

6 0.2046 0.0042 1132.18

7 0.1841 0.0043 993.32

4,5 0.2699 0.0039 1627.62

1,3,4 0.3496 0.0034 2366.55

1,3,4,6 0.3617 0.0034 2494.60

1,3,4,5,6 0.3857 0.0033 2763.62

1,2,3,4,5,6 0.3948 0.0032 2871.72

Table 2. Performance of prediction scenario 1 for genuine iris set.

The results are obtained using MARS.

Factors R2 MSE F
1 0.0219 0.0052 98.95

2 0.0314 0.0052 142.86

3 0.1188 0.0047 593.67

4 0.1563 0.0045 815.69

5 0.1245 0.0046 626.11

6 0.1663 0.0044 878.16

7 0.1727 0.0044 918.94

4,5 0.2043 0.0042 1130.35

1,3,4 0.2949 0.0037 1841.45

1,3,4,6 0.3084 0.0037 1963.20

1,3,4,5,6 0.3265 0.0036 2134.12

1,2,3,4,5,6 0.3091 0.0036 1969.34

Figures 2-5 show the scatter plots of the predicted match-

ing scores versus the measured matching scores for genuine

and imposter scores, separately. In addition to the measures

of performance listed in Tables 1 and 2, the scatter plots pro-

vide information for subjective (visual) evaluation as well
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as objective measures such as bias and slope of a straight

line fitted into the data. These measures provide additional

information about correlation between predicted and mea-

sured matching scores.

Note that the results related to the ability of quality met-

rics to predict imposter matching scores is less intuitive.

Overall, the scatter plots using imposter scores are very

compact in the case of iris. Both the range of predicted

matching scores and measured matching scores is narrow.

They are in a relatively good agreement, apart from a few

outliers.

The results summarized in the tables are for prediction

scenario 1 only. The authors evaluated both scenario 2 and 3

and concluded that scenario 3 always outperforms scenario

1.

Figure 2. Scatter plot of predicted matching scores versus mea-

sured matching scores for the genuine case. The results are ob-

tained with a single hidden layer FFNN composed of 10 neurons.

The plot is obtained following prediction scenario 3 and involv-

ing all quality measures (six quality measures per iris image) as an

input. The equation of regression line (red line) is provided.

Figure 3. Scatter plot of predicted matching scores versus actual

matching scores for the genuine case. The results are obtained

using MARS. The plot is obtained following prediction scenario 3

and involving all quality measures per iris image.

3.2. Face dataset and experimental results

WVU Face dataset is composed of 1,745 face images

for a total of 270 biometric classes. The FaceIt G6 match-

ing algorithm was applied to process and encode each im-

age in the set. This resulted in 6,074 genuine comparisons

and 1,515,566 imposter comparisons. Only a representative

Figure 4. Scatter plot of predicted matching scores versus actual

matching scores for the imposter case. The results are obtained

with a single hidden layer FFNN composed of 12 neurons and in-

volving quality factors 1,4,6 and prediction scenario 1. The equa-

tion of the fitted regression line (red line) is provided.

Figure 5. Scatter plot of predicted matching scores versus actual

matching scores for the imposter case. The results are obtained

using MARS and involving quality factors 1,4,6 and prediction

scenario 1.

subset of 109,000 imposter scores is used to evaluate the

ability of various face quality measures to predict perfor-

mance of the face recognition system. The quality of face

images are estimated by using FaceIt G6 quality module.

The module outputs eleven quality scores per image: (1)

Darkness, (2) Brightness, (3) Exposure, (4) Focus, (5) Res-

olution, (6) Cropping, (7) Glare, (8) Faceness, (9) Contrast,

(10) Texture, and (11) Overall quality factors obtained as

minimum of a selected combination of quality factors. Half

of genuine scores is chosen as a training set and remaining

half as a testing set. In the imposter case, we use 9,000

scores for training purpose and remaining 100,000 scores

for testing.

The results in Table 3 summarize prediction performance

of the FFNN with a single hidden layer composed of 10 neu-

rons applied to genuine testing data. Note that the individual

factors such as Factor 3 (exposure) or Factor 5 (Resolution)

considerably outperform the Overall metric. Their R2 are

0.27, 0.22, and 0.18, respectively. The vectors of 9 and 10

scores predict performance of the recognition system based

on FaceIt best.

Table 4 presents similar results when FFNN is replaced

by MARS.

Figures 6-9 show the scatter plots of the predicted match-
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Table 3. Performance of prediction scenario 1 using genuine face

matching scores. The results are obtained using FFNN with a sin-

gle hidden layer composed of 10 neurons.

Factors R2 MSE F
1 0.1973 510.95 746.36

2 0.0834 598.47 276.30

3 0.2751 458.11 1151.95

4 0.0947 574.88 317.70

5 0.2212 493.05 862.12

6 0.0038 631.05 11.69

7 0.0011 632.46 3.46

8 0.1433 546.76 507.81

9 0.0401 606.92 126.93

10 0.0207 621.30 64.16

11 0.1834 521.75 682.00

1,2 0.2951 443.33 1270.82

1,3,8 0.3773 392.08 1839.20

1,2,3,4 0.3564 404.92 1680.77

3,4,5,6,7,8 0.4992 318.89 3026.14

2,5,6,7,8,9,10 0.3946 381.62 1978.24

1 through 9 0.5177 304.48 3258.52

1 through 10 0.5100 310.55 3159.23

Table 4. Performance of prediction scheme (1) for genuine face

matching scores. The results are obtained with MARS.

Factors R2 MSE F
1 0.1072 565.63 364.76

2 0.0755 603.35 248.03

3 0.1332 548.69 466.45

4 0.0801 581.93 264.29

5 0.1304 549.27 455.25

6 0.0000 633.11 x

7 0.0000 633.11 x

8 0.0793 581.89 261.67

9 0.0000 633.11 x

10 0.0178 621.90 55.07

11 0.1005 568.54 339.30

1,2 0.1450 550.64 514.81

1,3,8 0.1771 517.59 653.25

1,2,3,4 0.2028 516.41 772.29

3,4,5,6,7,8 0.1653 526.65 601.27

2,5,6,7,8,9,10 0.2034 522.84 775.11

1 through 9 0.3214 426.54 1437.96

1 through 10 0.3255 424.22 1465.26

ing scores as a function of measured matching scores for the

face biometrics. Note the compactness of both predicted

and measured imposter scores. The range of values they

take is very small. They are clustered in the positive quad-

rant around zero. Therefore, the plots involving imposter

matching scores are not informative. Alternatively, the plots

based on genuine scores provide additional information that

is not included in the tables. Again scenario 3 outperforms

scenario 1. Based on the plots and tables, the quality mea-

sures due to FaceIT G6 have much higher ability to pre-

dict recognition performance compared to the ability of iris

quality measures described in [5] to predict performance of

iris recognition system based on IrisCode.

Figure 6. Scatter plot of predicted face matching scores versus ac-

tual matching scores in the genuine case. The results are obtained

with a one hidden layer FFNN with 10 neurons and involving all

quality factors and prediction scheme (3).

Figure 7. Scatter plot of predicted face matching scores versus

actual matching scores in the genuine case. The results are ob-

tained with MARS and involving all quality factors and prediction

scheme (3).

4. Conclusions

This paper presents a method for selecting and ranking qual-

ity measures designed to operate on raw biometric samples

(in the form of images and signals). Since the relationship

between quality measures and recognition performance (in

the form of matching scores and probability of recognition

error) is highly nonlinear, the authors approximate this rela-

tionship using adaptive multivariate mappings. MARS and

FFNN were selected and optimized for this purpose.

The designed methods operate on pairs of quality val-

ues that are produced when a quality measure is applied to

a query biometric sample and to a selected enrolled sam-

ple. Three scenarios for preprocessing quality pairs are de-
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Figure 8. Scatter plot of predicted face matching scores versus ac-

tual matching scores in the imposter case. The results are obtained

with a one hidden layer FFNN with 12 neurons and involving qual-

ity factors 1-9 and prediction scheme (1).

Figure 9. Scatter plot of predicted face matching scores versus

actual matching scores in the imposter case. The results are ob-

tained using MARS and involving quality factors 1-9 and predic-

tion scheme (1).

scribed. The scenario involving direct and relative measures

outperforms the other two.

The performance of the proposed method for selecting

and ranking quality measures was evaluated by compar-

ing predicted matching scores versus measured matching

scores. A number of objective statistics such as R2, F
statistic, and MSE were evaluated.

The numerical analysis performed using iris and face

biometric data resulted in a number of observations and

conclusions. Based on the obtained results: (1) relative

quality measures carry additional information compared

to the original individual quality measures; (2) vectors of

metrics perform considerably better compared to combined

metrics, unless a combination rule is found that preserves

the information contained in a vector of quality measures.
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