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Abstract

In this paper we study the application of hardware fin-

gerprinting based on PRNU noise analysis of biometric fin-

gerprint devices for sensor identification. For each finger-

print sensor, a noise reference pattern is generated and sub-

sequently correlated with noise residuals extracted from test

images. We experiment on three different databases includ-

ing a total of 20 fingerprint sensors. Our results indicate

that fingerprint sensor identification at unit level is attain-

able with promising prospects. Our analysis indicates that

in many cases identification can be performed even when

one only has access to a limited number of samples. For

two of the three databases one can train on less than 8 im-

ages per device and establish sensor identification with lit-

tle or no misclassification error. On the third database, high

levels of identification performance can be achieved when

training on similar amounts of images required for other

types of sensor identification such as cameras or scanners.

1. Introduction

As the field of biometrics continues to grow, so does its

areas of application. Such areas can include access con-

trol in protected sites and border control, remote authen-

tication in commercial applications, and identification of

criminal suspects or enemies on the battlefield. Regard-

less of the intended application, various measures must be

taken to ensure the accuracy and integrity of these deploy-

ments. Two ways that biometric systems can be compro-

mised include fabrication and alteration of data. Fabrica-

tion of biometric data could occur at many points within

a biometric system and usually is the result of an act with

malicious intent. Whether at the time of data acquisition,

matching, or database access, various vulnerabilities may

allow raw biometric images to be created and maliciously

injected into a system. Similarly, biometric data may also

be maliciously altered throughout the course of operation

in a biometric system [1]. Besides actions with malicious

intent, unintentional alteration of images during the collec-

tion, transmission, or storage blocks of a system can take

place. To make matters worse, whether intentional or un-

intentional, there often is no obvious cue that that an im-

age has been fabricated or altered in the first place. This

is of particular importance to applications where a “chain

of evidence” must be established. Such a chain is useful

in assembling cases to prosecute criminal activity, estab-

lishing identity dominance in the battlefront, and discover-

ing fraudulent activity in commercial systems. In an ef-

fort to minimize the presence of fabricated / altered im-

ages in such systems, the notion of source identification is

applied. Falling under the field of digital forensics, digi-

tal hardware fingerprinting provides the ability to identify

and validate the source hardware which captured an image.

Whether establishing a chain of evidence or addressing a

specific biometric vulnerability, application of digital hard-

ware fingerprinting for biometric image source validation

should prove to be very useful. Digital hardware finger-
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Figure 1. Source Hardware Identification Levels.

printing is the process of identifying the source hardware

used to capture an image regardless of the scenery or pri-

mary image content. The primary method of identifying

the source hardware from which an image originated is an-
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alyzing differences in images resulting from imaging sensor

imperfections [2]. Due to slight inconsistencies in the pro-

duction process, all sensors are subject to small manufactur-

ing imperfections. These imperfections lead to the neces-

sary observance of noise (sometimes visually undetectable

by humans) in images collected. Although previous work

has focused on devices using optical technology to capture

images, such noise would also be present in sensors relying

on different technologies for image capture such as capac-

itance, thermal, or piezoelectric. Identification of source

hardware can potentially occur at different levels of granu-

larity. Figure 1 shows four levels that may be considered

in a source hardware identification problem: technology,

brand, model, and unit. Based on the four levels, various

questions can be answered:

• Was the image in question captured from a sensor re-

lying on technology X or technology Y? (Technology)

• Was the image in question captured from a device man-

ufactured by vendor X or vendor Y? (Brand)

• Was the image in question captured from a device cor-

responding to model X or model Y manufactured by

vendor Z? (Model)

• Was the image in question captured from a unit A or

unit B of model X manufactured by vendor Z? (Unit)

Naturally, unique challenges exist to performing source

model identification at different levels. In this paper, we

will determine source identification at the brand (2) and

unit levels (4) using photo-response nonuniformity noise

(PRNU) across multiple units of two different biometric fin-

gerprint readers. The contribution of the work is two-fold.

To our knowledge, it is the first work to demonstrate the

ability to identify the hardware source used to collect bio-

metric fingerprint images. To do so, we adopt the technique

presented by Lukas et al. in [2]. Secondly, we formally

establish the effect of varying the amount of images used

to arrive at reference templates for readers at the unit and

brand level. The remainder of the paper is broken down as

follows: Section 2 outlines past work in identification of

image source captured by digital cameras or scanners, Sec-

tion 3 defines the algorithm applied for digital hardware fin-

gerprinting, Section 4 outlines the design of the experiment

including a description of the data set and testing method-

ology, Section 5 presents the results of the identification ex-

periment, Section 6 provides a discussion including consid-

erations of interest, finally Section 8 summarizes the contri-

bution of the work.

2. Related Work

While the authors are not aware of any prior work on

digital hardware fingerprinting specific to biometric cap-

ture devices, a large bed of research exists on digital image

forensics, specifically images captured from photographic

cameras and document scanners. There are many proposed

approaches to performing source hardware identification at

different levels that are well summarized in a survey of the

field by Khanna et al. in [3]. In particular, Choi et al. pro-

posed an approach based on lens distortions in [4]. Geradts

et al. proposed a technique relying on sensor imperfections

such as dead pixels in [5]. Kharrazi et al. outline 34 image

features including average pixel values, RGB pair correla-

tions, and neighbor distribution center of mass [6]. Simi-

lar to image features, Bayram et al. proposed a technique

relying on the measurement of interpolation artifacts in an

image due to the use of a color filter array (CFA) [7]. Ad-

ditionally, although not inherent to the capture devices, the

notion of sensor dust characteristics has been explored by

Dirik et al. in [8]. The approach proposed by Lukas et al.

in [2] based on measuring pixel nonuniformity (PNU) noise

is the basis of this work and is arguably the most promising

technique to date. For the purposes of brevity, we defer to

the cited sources for further details of related approaches.

3. Approach

As a means to identify fingerprint readers at the brand

and unit level, we first adopt the approach proposed by

Lukas et al. in [2]. This approach is based on estimating

pixel nonuniformity (PNU), a portion of the photo-repsonse

nonuniformity (PRNU) inherent to every image captured by

the readers. The remainder of this section is broken down

into two parts: a description of the general framework for

identifying hardware sources through PNU noise and a de-

scription of the wavelet-based denoising algorithm utilized

in [2].

3.1. Identification Process

The process of sensor identification can then be broken

down into two main steps:

1. Calculate Reference Patterns. For each fingerprint

reader, calculate a reference pattern by taking an av-

erage of the noise residual estimates across multiple

training images as seen in Equation 1.

Ri =

∑N

k=1 p(k) − F (p(k))

N
(1)

Here, N represents the number of images used to gen-

erate the reference pattern, Ri, p(k) represents each

image in the training set, and F represents a denoising

filter. It should be noted that while F can represent any

denoising filter, Lukas et al. found that a wavelet-based

approach yielded the best results [2]. The specifics of

the wavelet-based denoising is described later in this

section.
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2. Correlate Noise Residuals to Reference Patterns.

For each image to be tested, extract the noise residual

p(k)−F (p(k)), and measure the correlation, C, to each

reference patterns, Ri, for all of the reference patterns

in question. In [2], Lukas et al. propose the correlation

measure seen in Equation 2, although in theory, any

correlation measure could be applied.

Ci = corr(p, Ri) =
(p − p̄) · (Ri − R̄i)

‖(p − p̄)‖‖(Ri − R̄i)‖
(2)

(a) Microsoft (b) BioTouch
Figure 2. Example reference patterns for Microsoft and BioTouch

Readers (16 images averaged).

3.2. Wavelet­based Denoising Algorithm

The wavelet-based denoising approach in [2] is de-

scribed in four steps.

1. Calculate the first through fourth wavelet decompo-

sitions of the original noisy image using the 8-tap

Daubachies Quadratic Mirror Filters (QMF). The ver-

tical, horizontal, and diagonal subbands are denoted

by v(i, j), h(i, j), and d(i, j) respectively. Here (i, j)
represents the coefficients for each pixel in each of the

three subbands.

2. In each subband, estimate the local variance of the

noise-free image for each wavelet coefficient using

MAP estimation for four sizes of a W × W neigh-

borhood N , for W ∈ {3, 5, 7, 9} as seen in Equation

3.

σ̂2
W (i, j) = max

(

0,
1

W 2

∑

(i,j)∈N

h2(i, j) − σ2
0

)

(3)

Then apply Equation 4 to arrive at the minimum of the

four variances as the final estimate.

σ̂2

W
(i, j) = min

(

σ2

3(i, j), σ2

5(i, j), σ2

7(i, j), σ2

9(i, j)

)

(4)

3. Determine the denoised wavelet coefficients by apply-

ing the Wiener filter as seen in Equation 5

hden(i, j) = h(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

(5)

Similarly, the filter is applied to v(i, j) and d(i, j).

4. Steps 1-3 are repeated for each level and color channel.

In [2], the authors used σ0 = 5 in the experiments as do we

in this work. It should be noted that due to the grayscale na-

ture of the fingerprint images, it is not necessary to perform

Step 4 across multiple color channels.

4. Experimental Design

Three different datasets were considered in this experi-

ment. The first is a WVU collection consisting of images

from two sensor models (3 units each). The second collec-

tion comes from both WVU and Clarkson which consists of

images from three sensor models (2 units each). The last

set is from the first three years of the Fingerprint Verifica-

tion Competition (FVC) which consists of images from 8

different units. The WVU data was collected specifically

with hardware fingerprinting experiments in mind, while

the other two datasets were collected primarily for biomet-

ric testing purposes. Along those lines, the WVU dataset

fingerprint images resulted from 4 subjects providing 100
images per sensor (25 images from 4 digits) for a total of

2, 400 images. The WVU / Clarkson datasets each have

substantially more images and the experiment only used a

subset of the fingerprint images available from each. Specif-

ically, we randomly selected 1000 images per sensor per-

taining to the right index and thumb. The FVC dataset was

comprised of 10 subjects with 8 images per subject, col-

lected from the index and middle finger, totaling 640 im-

ages. A summary of the sensors used including details, ex-

ample images, and noise residuals can be found in Figure

3.

Although the amount of users found in the WVU or FVC

data may be prohibitively small for a traditional biometric

experiment, we note the experiment is not studying biomet-

ric recognition or identification. Instead, we are studying

sensor identification. To that effect, we believe the variety

subjects and associated fingerprint digits provides sufficient

variation for our tests. We applied a cross-validation frame-

work for all three datasets for testing the proposed methods.

In our experiments, we tested the success of the digital fin-

gerprinting techniques while varying the amount of images

used to generate reference patterns using the methodology

described in the previous section. Table 1 lists the train-

ing and testing breakdowns for each dataset. It is important

to note that 10 fold cross validation was applied for each
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Sensor Fing. Noise Sensor Fing. Noise

WVU Identix #1 WVU Microsoft #1

WVU Identix #2 WVU Microsoft #2

WVU Identix #3 WVU Microsoft #3

WVU Precise Clarkson Precise

WVU Secugen Clarkson Secugen

WVU CrossMatch Clarkson CrossMatch

FVC KeyTronic FVC Microelectronics

FVC Identicator FVC Identix

FVC Biometrika FVC Precise

FVC CrossMatch FVC DigitalPersona

(a) Example fingerprints and noise residuals from three different data sets.

Brand Model Tech. Width Height

Microsoft Fingerprint
O 355 390

(WVU 1-3) Reader

Identix BioTouch200
O 256 255

(WVU 1-3)

Precise Biometrics AX 100
C 200 200

(WVU / Clarkson)

Secugen Hamster III
O 260 300

(WVU / Clarkson)

CrossMatch Verifier 300 LC
O 640 480

(WVU / Clarkson)

KeyTronic Secure
O 300 300

(FVC) Desktop Scanner

Microelectronics TouchChip
C 256 364

(FVC)

Identicator Technology DF-90
O 448 478

(FVC)

Identix TouchView II
O 388 374

(FVC)

Biometrika FX2000
O 296 560

(FVC)

Precise Biometrics 100 SC
C 300 300

(FVC)

CrossMatch V300
O 640 480

(FVC)

DigitalPersona U.are.U 4000
O 328 364

(FVC)

(b) Fingerprint sensor details from three different data sets. Tech. =

Technology {O=optical, C=capacitive}.

Figure 3. Fingerprint images, noise residuals, and sensor details for each sensor in the three databases.

WVU

Train 1 2 4 8 16 32 64 128 256

Test 399 398 396 392 384 368 336 272 144

WVU / Clarkson

Train 1 2 4 8 16 32 64 128 256

Test 500

FVC

Train 1 2 4 8 16 32 64 n/a n/a

Test 79 78 76 72 64 48 16 n/a n/a

Table 1. Experimental training variation measured in images / sen-

sor.

test. Therefore, total number of tests in the WVU and FVC

datase results range depending on the split with WVU rang-

ing from 3, 990 (399 * 10) to 1, 440 (144 * 10) and FVC

results range from 790 (79 * 10) to 160 (16 * 10) tests. On

the other hand, the test size was constant for the WVU /

Clarkson set due to the availability of images and includes

includes 5, 000 tests (500 * 10 folds).

5. Experimental Results

The results in this section reflect attempts to perform sen-

sor identification at the unit level. In this case, we wish to

distinguish which unit the image was captured from given a

pool of units. Therefore, a test noise residual is compared

against reference patterns for each unit from the dataset in

consideration. For each dataset, we provide example his-

tograms of match / non-match distributions, confusion ma-

trices for specific train / test sets, and Cumulative Match

Characteristic (CMC) curves as the train / test splits vary.

5.1. FVC Dataset

The first set of experiments was performed on the FVC

data. Figure 4 displays the difference in correlation between

match and non-match comparisons of test noise residuals

and sensor reference patterns. As can be seen in the figure,

perfect separation is achieved when considering Identicator

test residuals against reference patterns produced from 32

training images per sensor. While perfect separation was

achieved in this instance, this was not the case across all

sensors in all train and test splits. An example of which

can be seen in Table 2. In the table, we see that the Iden-

tix test residuals are occasionally misclassified as having

originated from other sensors. It is interesting to note that

the distribution of errors is fairly uniform across the other

seven sensors. With the exception of the Identix sensor, no

errors are made on experiments training on at least 8 im-

ages. Figure 5 shows a Cumulative Match Characteristic

(CMC) plot which indicates the overall accuracy across sen-

sors as the train / test splits are varied. Here we see the rank

one identification rate when training on 1 image per sensor

falls around 85%. This is fairly high considering this is the

smallest amount of data that could be used to generate a
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reference pattern for a sensor. When 64 images are used to

generate reference patterns for each sensor, the rank 1 iden-

tification rate exceeds 98%. Furthermore, the only reason

the identification rate is not 100% is due to a small amount

of errors made on classifying the Identix noise residuals.
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Figure 4. FVC example match and non-match distributions with

32 training images per sensor.
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Figure 5. FVC sensor identification as a function of training set

size.

5.2. WVU Dataset

The performance on the WVU dataset is the highest

among the three datasets considered. Virtually all instances

achieve perfect separation, therefore it is not beneficial to

display a histogram of match and non-match distributions.

However, in Table 3, the confusion matrix resulting from

training on 1 image per sensor is displayed. Again consider-

ing the minimal training requirement, we see only sporadic

errors across the 3, 990 test cases per sensor. This high level

of performance is reflected in the CMC curve shown in Fig-

ure 6. Here, only 2 train / test scenarios do not achieve

perfect rank 1 identification (training on 1 and 2 images per

sensor). Even still, the rank 1 identification when using only

1 image per sensor exceeds 99%.
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Figure 6. WVU sensor identification as a function of training set

size.

5.3. WVU / Clarkson Dataset

The most challenging dataset for sensor identification

ending up being the WVU / Clarkson dataset. Observing

a notable difference compared to the previous to databases,

Figure 7 shows a slight overlap between match and non-

match distributions when generating reference templates

from 128 training images. In all but one sensor in the

WVU and FVC datasets, training on 128 images was un-

necessary to achieve perfect separation. This pattern can

also be seen in Table 4 which displays the confusion ma-

trix when training on 128 images. While the results can still

be considered promising as the overall rank 1 identification

accuracy is near 90%, we observe far more errors across

the test cases. It is also interesting to note where the errors

are made. Somewhat intuitively, more errors are made mis-

classifying the WVU Secugen noise residuals as Clarkson

Secugen noise residuals than any other sensor’s residuals.

This may be the case as they are the same model sensor.

Surprisingly, this pattern does not hold true for the WVU

CrossMatch residuals as they are misclassified as Clarkson

residuals the fewest number of times when compared to the

other sensors. We are still investigating why this may be the

case. Figure 8 displays the CMC plots for the final dataset.

Once again, this data proved to be the most challenging

of the three sets as we see the rank 1 identification accu-

racy drops to 45%. However, any reasonable application

of source identification will likely have access to more than

one training image to generate reference patterns. Along
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`
`

`
`

`
`

`
`

Actual

Classified
KeyTronic Microelectronic Identicator Identix Biometrika Precise CrossMatch DigitalPersona

KeyTronic 480 0 0 0 0 0 0 0

Microelectonic 0 480 0 0 0 0 0 0

Identicator 0 0 480 0 0 0 0 0

Identix 14 19 25 357 9 18 13 25

Biometrika 0 0 0 0 480 0 0 0

Precise 0 0 0 0 0 480 0 0

CrossMatch 0 0 0 0 0 0 480 0

Digital Persona 0 0 0 0 0 0 0 480

Table 2. FVC confusion matrix when training on 32 images per sensor

`
`

`
`

`
`

`
`

Actual

Classified
BioTouch #1 BioTouch #2 BioTouch #2 Microsoft #1 Microsoft #2 Microsoft #3

BioTouch #1 3942 14 32 1 1 0

BioTouch #2 6 3967 17 0 0 0

BioTouch #3 3 10 3977 0 0 0

Microsoft #1 0 0 0 3989 1 0

Microsoft #2 0 0 0 0 3990 0

Microsoft #3 0 0 0 0 0 3990

Table 3. WVU confusion matrix when training on 128 images per sensor

those lines, the rank 1 identification rate when training on

256 images is approximately 95% which can once again be

considered promising results.
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Figure 7. WVU / Clarkson example match and non-match distri-

butions with 128 training images per sensor.

6. Discussion

While the results of the experiments clearly demonstrate

that inherent PNU noise can be used as a means for per-

forming sensor hardware identification in biometric finger-

print readers, there are a number of considerations which

must be mentioned. Most notably, the databases tested

only contain limited sets of pairs of identical units (3 sen-

sors of each model in WVU and 2 sensors of each model

in WVU / Clarkson). Increasing the number of identical

units may result in a decrease in identification performance.

At this point, it is unclear if sensor identification with the
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Figure 8. WVU / Clarkson sensor identification as a function of

training set size.

applied technique would be possible in a pool of 100’s or

1, 000’s of the same model sensor at the unit level. Addi-

tionally, as different models of fingerprint readers capture

images at different resolutions (see Figure 3) cropping of

noise residuals was performed when necessary as the cho-

sen method of correlation requires that the noise residuals

have the same dimension. Although the results seem to in-

dicate this method of handling dissimilar images sizes is

sufficient, there are a number of options one may choose to

exercise when dealing with this issue, not the least of which

is resizing the original image before denoising. The images

could be resized but this may introduce artifacts that could

artificially enhance performance. To avoid this, different

correlation procedures could be applied such as normalized

cross correlation which would not require equally sized im-

ages.
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`
`

`
`

`
`

`
`

Actual

Classified
WVU Precise WVU Secugen WVU CrossMatch Clarkson Precise Clarkson Secugen Clarkson CrossMatch

WVU Precise 4979 0 0 21 0 0

WVU Secugen 364 3146 179 492 596 223

WVU CrossMatch 313 188 3781 366 246 106

Clarkson Precise 32 3 0 4963 2 0

Clarkson Secugen 14 25 7 14 4940 0

Clarkson CrossMatch 27 1 2 1 10 4959

Table 4. WVU / Clarkson confusion matrix when training on 128 images per sensor

7. Future Work

Many areas of this work require further investigation and

the work is ongoing. Obvious tasks such as increasing the

amount of sensors in the identification pools are being con-

sidered but more fundamental issues are the primary areas

of concern. For instance, we are working on improving

the noise residual extraction method such that it is specif-

ically tailored to the features of fingerprint sensors. Note

this is different than attempting to tailor the approach to the

signal of fingerprint images (locally approximated 2D sinu-

soid). The distinction is important because an effort should

be made to characterize the scenery independent noise im-

perfections as opposed to characteristics which may define

the foreground signal. It will also be interesting to see if a

method can be devised to differentiate between images at

other levels such as model, brand, or technology. Addition-

ally, we are testing the technique on other biometric modali-

ties such as iris. Since iris images are captured with devices

operating in the infrared region of the electromagnetic spec-

trum, the optical sensors in iris capture devices are different

than those found in optical fingerprint readers which will

likely result in a different noise signature. Finally, a frame-

work is being developed such that the technology could be

integrated as a method of source validation in a digital chain

of evidence.

8. Conclusion

This paper investigated the notion of sensor identifica-

tion in biometric fingerprint devices. We established the

prospects of performing identification based on estimating

PNU noise inherent to image through wavelet based denois-

ing as proposed by Lukas et al. in [2]. Beyond presenting

the ability to perform sensor fingerprinting on biometric fin-

gerprint devices at the unit level, we established the effect

of varying the number of images used in arriving at ref-

erence patterns. Having looked at the minimum training

requirements, we concluded that sensor identification can

be performed with a great deal of accuracy (in two of the

databases) even if one has access to only 1 image in which

to establish a reference pattern. The application of a digi-

tal hardware fingerprinting technique such as the one tested

in this work can be used both as a method of counteracting

injection attacks at the time of check in biometric systems

as well as allowing an individual to establish a “chain of

evidence” which is often critical in systems such as assem-

bling cases to prosecute criminal activity, establishing iden-

tity dominance in the battlefront, and discovering fraudulent

activity in commercial systems.
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