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Abstract

This paper presents a completely automated facial ac-
tion and facial expression recognition system using 2D+3D
images recorded in real-time by a structured light sensor. It
is based on local feature tracking and rule-based classifica-
tion of geometric, appearance and surface curvature mea-
surements. Good performance is achieved under relatively
non-controlled conditions.

1. Introduction
Next generation computing systems are expected to in-

teract with users in a way that emulates face to face encoun-
ters. Face to face communication relies significantly on the
implicit and non verbal signals expressed through body and
head posture, hand gestures and facial expressions for de-
termining the spoken message in an non-ambiguous way
[11]. Facial expressions in particular are considered to be
one of the most powerful and immediate means for humans
to communicate their emotions, intentions and opinions to
each other and this is why much effort has been devoted
to their study by psychologists, neuroscientists and lately
computer vision researchers [5][15].
Several approaches have been reported towards auto-

matic facial expression recognition from 2D static images
or video sequences [15]. In all of these works, after the face
has been detected, facial features that are relevant to the dis-
play of expressions are extracted and classified into a prede-
fined set of facial actions or furthermore to emotion related
expressions. The majority of facial expression analyzers
recognize expressions corresponding to the basic emotions,
i.e. happiness, sadness, anger, fear, surprise and disgust,
the display of which is thought to be universal. However,
there is a growing number of approaches, which instead try
to detect a set of facial muscle movements known as Facial
Action Units, which are more subtle but their combinations
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may describe effectively any facial expression [5].
Facial features used for expression recognition are geo-

metric, e.g. distances between facial points [9], appearance-
based such as Gabor filter responses [1] or holistic such
as optical flow fields [2]. Classification methods can be
roughly divided to static and dynamic ones. Static classi-
fiers use feature vectors related to a single frame. In the
case of image sequences, this frame corresponds to the peak
of the depicted expression. Probabilistic as well as rule-
based techniques are popular [9, 16]. Temporal classifiers
on the other hand try to capture the temporal pattern in the
sequence of feature vectors related to each frame [4].
A problem with existing techniques is that the subtle

skin deformations that characterize facial expressions are
not captured by a 2D camera. Moreover, 2D techniques
are prone to illumination changes and pose variations that
affect the perceived geometry and appearance of facial fea-
tures. To handle problems caused by pose variations, some
researchers proposed the use of multiple views of the face
[16] or 3D images. Although the advantages of using 3D
facial images are self evident, very few works have exam-
ined 3D facial expression recognition. Wang et al. [8] use
a surface labelling approach based on the distribution of
principal curvature descriptors defined over different face
regions. Tang and Huang [19] propose a feature selection
technique based on maximizing the entropy of class con-
ditional feature distributions and apply it on a pool of nor-
malized 3D Euclidean distances between preselected fea-
ture points. These distances are subsequently classified us-
ing AdaBoost and a set of different classifiers. A similar
approach is followed by Soyel and Demirel [17], which em-
ploy six characteristic facial feature distances (eye opening,
mouth width, etc) and a probabilistic neural network clas-
sifier. These works do not address the problem of face lo-
calization, i.e. facial feature points are manually selected.
In [14], feature localization is addressed using an elasti-
cally deformable model which establishes point correspon-
dence between facial surfaces, while face and facial ex-
pression recognition is based on bilinear models that ef-
fectively decouple identity and facial expression. A hier-
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archical framework based on deformable shape models is
proposed by Huang et al. in [7] for tracking facial expres-
sions in sequences of face scans. Fitting between face mod-
els and range scans is based in cubic B-spline based Free
Form Deformations. No facial expression recognition re-
sults are reported in this work, while an initial fitting be-
tween the model and the first frame scan is manually per-
formed. Chang et al. [3] propose a framework for facial
expression analysis and editing based on a generalized ex-
pression manifold, which is built by transferring facial de-
formations computed in range sequences of six subjects to
a standard face model. Face tracking is based on 2D fea-
ture tracking followed by fitting a coarse 3D mesh model.
In [18], a spatio-temporal approach is adopted based on
primitive 3D surface descriptors [8] and 2D Hidden Markov
Models. Good recognition rates are reported, however the
proposed method relies on semi-automatic face tracking and
computationally expensive curvature estimation.
In this paper, we address the problem of facial expression

recognition by a combination of 2D and 3D image streams,
which allows us to achieve real-time, accurate, pose and il-
lumination invariant recognition of facial actions and facial
expressions. We employ a model-based feature tracker ap-
plied to sequences of 3D range images and corresponding
grayscale images recorded by a novel real-time 3D sensor
[13]. To achieve real-time performance we do not rely on
dense mesh registration algorithms, but instead on feature
based 3D pose estimation followed by iterative tracking of
81 facial points using local appearance and surface geom-
etry information. Special trackers are developed for im-
portant facial features such as the mouth and the eyebrows
that account for the non-linearity of the appearance of these
features. A set of measurements (geometric, appearance
and curvature-based) is subsequently extracted, which ef-
fectively model changes in the shape of facial features and
their geometrical arrangement as well as deformations of
the face surface caused by wrinkles or furrows. We use
these measurements to recognize 4 facial expressions as
well as 10 facial action units using a rule-based approach.
Finally, the efficiency of the 3D face analyzer is evaluated in
a database with more than 50 subjects and 1000 sequences.
To the best of our knowledge this is the first fully au-

tomatic real-time 3D facial expression recognition system.
Additional contributions of this paper are:

• Unlike related 2D or multiview tracking techniques,
the proposed tracker is drift-free, works robustly on
noisy or incomplete 3D data and does not require any
first frame initialization, calibration or per user adap-
tation. In addition, it can withstand moderate pose and
illumination variations.

• We explore 3D geometric distances as well as 3D sur-
face features. This alleviates the need for feature nor-

malization and enables detection of subtle facial defor-
mations around the nose and the mouth.

The paper is organized as follows. The face tracker and
the local facial feature detectors are described in Section 2.
A set of geometric and surface deformation measurements
is presented in Section 3, while a set of rules for facial ex-
pression and facial action unit classification is outlined in
Section 4. The performance of the proposed system is eval-
uated in Section 5. Finally, Section 6 concludes the paper.

2. Face and facial feature tracking
The first and most important step towards automatic

recognition of facial expressions is accurate detection of the
position of the face and prominent facial features such as
the eyes, eyebrows, mouth, etc. In this section, we present
a novel 3D face tracker based on the well-known Active
Shape Model (ASM) technique [10], which was extended
to handle 3D data and also cope with measurement uncer-
tainty and missing data.
The ASM is a point distribution model (PDM) accom-

panied by a local appearance pattern for every point, which
effectively models the shape of a class of objects, faces in
our case. Point and local appearance distributions are ob-
tained using a set of annotated training images. Although
ASMs have been demonstrated less accurate than AAMs,
they have the advantage of robustness to illumination vari-
ations (using local gradient search) and are very efficient
computationally.
Our approach employs 2D and 3D facial information in

the form of pairs of depth and associated grayscale images
recorded by a novel 3D sensor based on NIR structured light
[13] (see Section 5). Pixel values of depth images repre-
sent the distance of the corresponding point from the camera
plane. Using the one-to-one pixel correspondence of depth
and grayscale images as well as camera projection param-
eters, we can directly associate every image point with its
3D coordinates and a texture value.
The shape s of the face is represented as a sequence of

n=81 points corresponding to salient facial features as can
be seen in Fig.1.a. The PDM is then expressed as

s = s̃ +
m∑

i=1

aisi = s̃ + a · S (1)

where s = {x1, y1, z1, ..., xn, yn, zn} is the vector of n
landmark coordinates, si are the basis shapes computed by
applying the Principal Component Analysis to a set of man-
ually annotated training examples which are aligned to a
common coordinate frame (called model coordinate frame),
s̃ is the mean shape computed in the same space and a is a
vector of shape parameters.
Note here, that image alignment involves 3D rotation

and translation of original image pairs so that all faces have
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Figure 1. a) The 81 landmarks and corresponding segments of the
ASM. b) Polygon areas defined in the face surface for detecting
the presence of wrinkles (see Section 3).

a frontal orientation and be at the same distance from the
camera plane as well as linear interpolation of missing depth
values as proposed in [12].
The local appearance model for each landmark Li is

computed from image gradient information gathered in all
2D training images along a line passing through pi, the pro-
jection of Li in the 2D image plane. This line is chosen to
be perpendicular to the boundary of the shape of the fea-
ture that Li belongs to (e.g. eyebrow, mouth, etc). A set of
shape boundaries is defined in terms of connectivity infor-
mation between landmarks as illustrated in Fig. 1.a. Let us
assume that Li is connected to Lk and Lm. Then the nor-
mal at pi is equal to ni = (uki + uim)/2, where uki and
uim are unit vectors perpendicular to segments defined by
pi, pk and pi, pm respectively. Note that since all bound-
ary curves have been defined clockwise, the direction of ni

(and uki, uim) is always from the inside to the outside of
the specific feature.
Based on the estimated normal direction, we then define

a set of 2·mq+1 pixels qj along ni, where qj = j · ni +
pi, j = −mq . . . mq . Obviously q0 = pi. For each pixel
qj , we compute a gradient measurement

gj =
mg∑

k=1

zk · (cj+k − cj−k) (2)

where cj is the intensity of qj , mg the Gaussian kernel
width and zk the kernel weights. We set mg=3. The es-
timated gradient values represent the local gradient profile
g = [gj ] of pi.
After computing the gradient profiles of Li in all train-

ing images, we can built a local model of gradient changes
associated with this feature assuming a unimodal Gaussian
distribution. The same procedure is applied for every land-
mark thus obtaining n local appearance models.
Using Eq. 1, we can represent the shape of any face in

the model coordinate frame. To express the same shape in

the real-world coordinate frame we use

x = R · s + T = R · (̃s + a · S) + T (3)

whereR is the 3D rotation matrix and T the 3D translation
vector that rigidly align the model coordinate frame with
the real-world coordinate frame and x represents the land-
mark coordinates in the real-world coordinate frame. By
projecting x in the image plane we obtain the correspond-
ing 2D ASM shape v = P (x), where P represents a cam-
era projection function that models the imaging process. v
represents the landmark positions in the 2D image.
To estimate the landmark positions in a new pair of 2D

and 3D images the following steps are taken:

1. Let R be the 3D rotation matrix and T the 3D trans-
lation vector that rigidly align the model with the face.
A first estimate of these is obtained using the 3D face
detection and 3D pose estimation technique proposed
in [12]. The shape parameters a are initialized to zero,
i.e. we start from the mean face shape s̃.

2. The current shape s is transformed to the real-world
coordinate frame using the rigid transformation (R,T)
and is subsequently projected on the 2D camera plane
through P . A local search is then performed around
each projected landmark position to find the point that
best matches the local appearance model. To do this,
first we compute the normal vector at the specific loca-
tion as described above. Then, we define a set of candi-
date pixels along this line and compute a local gradient
vector for each of them exactly as in the case of train-
ing images. Similarity between extracted gradient pro-
files and the corresponding local appearance model is
measured using the Mahalanobis distance. The point
associated with the lowest distance is selected. The
same procedure is applied for all landmarks and a set
of new landmark positions is estimated in the 2D im-
age. These are subsequently back-projected in the 3D
space using the inverse projection function P−1 and
the z values of the corresponding pixels of the depth
image. Thus a new 3D shape x is defined in the real-
world coordinate frame. Moreover, each landmark is
associated with a weight set to be the reciprocal of
the computed Mahalanobis distance. In case the cor-
responding z value of a point is undefined, the median
depth value in the neighborhood of this pixel is used.
If no depth is defined in the greater area of this pixel,
then a zero weight is assigned to this landmark, so that
it is neglected in model estimation.

3. A new rigid transformation (R,T) aligning the new
shape x with the current template s is estimated us-
ing the Horn’s quaternion method [6]. A new rectified
shape y = R−1 · (x − T) is computed in the model
coordinate frame.
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4. A new set of parameters a is estimated by minimiz-
ing ‖ỹ − s̃ − a · S‖2 + λ · ‖a‖2, where the sec-
ond term is a regularization constraint. A weighted
least squares approach is adopted where each land-
mark point is weighted proportional to its strength. We
also exclude points that may be occluded, for example
points on the side of the face or nose, which may be
easily determined using the estimated face orientation.
Once a new set of parameters a is estimated, a new
shape s is synthesized using Eq. 1.

5. Steps 2-5 are repeated until convergence of the fitting
error e = ‖y − s‖ or until a number of iterations is
reached. Then a new real-world shape x is computed
from s using Eq. 3.

For each subsequent frame, initialization is performed
based on the previous frame and if the model has not con-
verged we re-initialize the tracker, i.e. repeat face detection,
pose estimation and model fitting. For faster convergence
we use a multi-resolution scheme with three layers.
The proposed tracker achieves small localization errors

per landmark, however there are cases where localization
of individual features such as the eyebrows and the mouth is
not accurate enough for our purpose as can be seen in Fig. 2.
This is due to the inadequacy of the linearity assumption in
the PDM, but also due to the unimodal distribution chosen
for local appearance variations (e.g. appearance of teeth
when opening the mouth). Instead of resorting to non-linear
modelling techniques, we propose a set of dedicated local
facial feature detectors, presented in the following.

2.1. Local eyebrows detector
Eyebrow localization may be inaccurate if the eyebrow

hair is light coloured or very sparse or the eyebrow itself
is very thin. In such cases, gradient changes in eyebrow
boundaries may be very subtle thus leading to erroneous
landmark estimates.
To enhance the eyebrows estimation, we use a local 3D

ASM with 16 landmarks and introduce a new model fitting
technique. Instead of matching the local gradient profiles
of candidate points against the local appearance model, we
employ a simpler selection criterion based on area intensity
differences. For each candidate landmark position, we de-
fine two rectangle areas lying on the positive and negative
values of the axis defined by the normal in this position, and
we compute their average intensities S1 and S2. Since the
eyebrow landmarks lie in the boundary between dark (eye-
brow hair) and light-coloured (skin) areas, candidate points
should maximize S1−S2. In addition to this criterion, we
ask that S1−S2>T1 and S2<T2. The first condition implies
that the landmark point should be in an area of adequate gra-
dient change. The second is used to overcome the problem
of shadows, which results in selecting a candidate point that

Figure 2. Examples of eyebrow and mouth boundary localization
using the global model (red line) and local detectors (yellow line).

Figure 3. Examples of facial feature tracking using the proposed
global tracker and local feature detectors.

lies in the border of shadowed and non-shadowed skin areas
instead of lying in the border of eyebrow and skin areas.
The proposed 3D ASM is initialized using the eyebrows

estimation provided by the global 3D ASM and is fitted in
the input image using steps 2-5 above. Note here that in
this case, landmark points are weighted proportional to the
corresponding intensity difference S1 − S2. As can be seen
in Fig. 2, the proposed local eyebrow detector greatly en-
hances the estimation provided by the global ASM.

2.2. Local mouth detector

Lip boundaries are also problematic due to the unimodal
Gaussian distribution assumption used for the representa-
tion of local mouth appearance patterns, which however is
not appropriate for landmarks lying in the inner lip bound-
aries, since their local gradient patterns are significantly af-
fected by whether the mouth is open or closed. To overcome
this problem, we propose a two-step approach for localizing
lip boundaries. First, a two-class Support Vector Machine
classifier with an RBF kernel is used to decide whether the
mouth is open or closed. Then an open or closed mouth lo-
cal 3D ASM is fitted on the face to localize the position of
outer and inner lip boundaries.
Mouth openness classification is based on a 16-

dimensional feature vector computed from local 3D geo-
metric and 2D appearance measurements over the area de-
fined by the current fit. After the mouth is classified as open
or closed, the corresponding model, comprised of 18 points
corresponding to lip boundaries, is fitted on the face. Model
fitting is based on image gradient profiles, but instead of
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Measurement name Measurement
M1 Inner eyebrow displacement d5,22, d9,27

M2 Outer eyebrow displacement d7,17, d15,26

M3 Inner eyebrow corners dist. d5,9

M4 Eyebrow from nose root dist. d5,35, d9,45

M5 Eye opening d20,24 , d29,33

M6 Eye shape d20,24/d18,22

M7 Nose length (d35,36 + d45,44)/2
M8 Nose width d36,44

M9 Cheek lines angle a(ε37,48, ε43,50)
M10 Upper lip boundary shape a(ε51,57, t63)
M11 Lower lip boundary length l51,68,67,66,57

M12 Lower lip boundary shape a(ε51,57, t68)
M13 Mouth corners dist. d51,57

M14 Mouth opening d64,67

M15 Mouth shape d64,67/d51,57

M16 Nose - mouth corners angle a(ε38,51, ε42,57)
M17 Mouth corners to eye dist. d17,51, d26,57

M18 Mouth corners to nose dist. d51,40, d57,40

M19 Upper lip to nose dist. d54,40

Table 1. Geometric facial measurements. di,j is the 3D Euclidean
distance between landmarks Li, Lj . εi,j is the 2D line defined by
the projections of Li, Lj in the 2D image plane. lijk is the length
of the 3D curve defined by Li, Lj , Lk. ti is the tangent vector
computed in Li. a(εa, εb) is the angle between 2D lines εa,εb.

searching for candidate points along the normal, we search
in a narrow rectangular area centred on the current landmark
position.
Experimental results show that the local mouth detector

significantly improves the initial lip boundary estimation,
especially when the mouth is open (see Fig. 2).

3. Extraction of facial feature measurements
To encode facial movements, we adopt the Facial Action

Coding System (FACS) developed by Ekman and Friesen
[5]. In this system, facial appearance changes are described
in terms of 44 facial action units (AUs), each of which is
related to the contraction of one or more facial muscles. To
detect the presence of an AU, several geometric and surface
deformation measurements have to be computed, but once
a system detects these 44 AUs, then the emotional state of
the human subject can be inferred usually with the help of
context information. In our case, AU estimation is achieved
by a means of 22 geometric, appearance and surface defor-
mation measurements denoted asM1-M22.
Geometric measurements such as eye opening, eyebrow

displacement, mouth shape, etc are computed using the es-
timated positions of the 81 landmarks Li depicted in Fig.
1.a. We have developed a set of 19 measurements, which
are presented in Table 1.
Surface deformation measurements are associated with

wrinkles appearing on the skin due to muscle contractions.
These include cheek wrinkling (M20), forehead wrinkling
(M21) and nose wrinkling (M22). The approximate posi-

tion of the wrinkles is easily determined using the estimated
landmark positions.
To detect the presence of cheek wrinkles, we define two

rectangles P1 and P2 enclosing the left and right cheek lines
and cheek surface and we compute the average intensity
gradient perpendicular to segments defined by the 2D pro-
jections of landmarks L47, L48 and L49, L50 respectively
(see Fig. 1.b). We also compute the mean surface gra-
dient and mean Gaussian curvature inside these rectangles
using the corresponding 3D image. When cheek wrinkles
appear in the face, then the mean Gaussian curvature (M3

20)
increases significantly due to cheek raising. The ratio of
maximum to mean intensity gradient (M1

20) and the mean
depth gradient (M2

20) also increase, especially when smil-
ing is very intense. In case of subtle smiles, lip corners and
cheeks are gently pulled up thus cheek lines are not accen-
tuated and image gradient does not change. However, depth
gradient changes are still detectable.
Measurement of forehead wrinkling is based on edge

tracing inside a rectangle area P3 on the forehead, which
is defined using the middle points of the upper eyebrow
boundary segments. The appearance of wrinkles in the fore-
head, usually caused by eyebrow raising, results in signifi-
cant increment of the percentage of pixels representing edge
points (M21).
Finally, when someone crinkles up his nose, usually

to express disgust or displeasure, wrinkles appear in the
nose surface, along the lateral nose boundaries and in the
glabella. To detect the presence of such wrinkles, we de-
fine polygons P4 − P8 in the face area (see Fig. 1.b) and
compute a set of 6 measurements including intensity gra-
dient changes in the 2D image and surface curvature mea-
surements (Gaussian, mean and principal curvatures) in the
corresponding 3D image. Nose wrinkling is associated with
a) increment of the number of edges in P4 usually accom-
panied by increment of surface gradient, b) increment of
mean depth gradient, mean Gaussian and mean curvature in
P5 ∪ P6 and c) increment of mean Gaussian curvature in
P7 ∪ P8. These measurements are defined asM1

22 − M6
22.

Our experiments showed that wrinkling detection can
be significantly improved by the use of 3D information
especially in the case of nose and cheek wrinkles, since
changes in curvature values are usually stronger compared
to changes caused to appearance descriptors such as inten-
sity gradient.

4. Facial action unit and facial expression
recognition

The set of facial measurements presented in Section 3
is used for detecting a set of 10 action units (AU1, AU2,
AU4, AU5, AU7, AU9, AU12, AU15, AU26 and AU27)
[5] and recognizing four basic expressions (happy, sad, sur-
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AU1 Raises the inner eyebrow corners
IF (inc(M1)>10 AND inc(M3)>10) OR inc(M21)>30 THEN AU1=true

AU9 Wrinkles the nose
IF inc(M1

22)>15 AND inc(M
3
22)>20 AND inc(M

4
22)>20 AND inc(M

5
22)>20 AND inc(M

6
22)>15 AND

(dec(M7)>10 OR inc(M8)>10) THEN AU9=true
AU12 Pulls lip corners upwards obliquely

IF inc(M11)>5 AND inc(M12) ANDM12>5o AND dec(M17)>5 AND inc(M16)>8 THEN AU12=true
E1 Disgust

IF AU9=true AND dec(M4)>15 AND dec(M5)>10 AND inc(M3
20)>40 THEN E1=true

E2 Happy
IF inc(M11)>10 AND inc(M13)>10 AND inc(M12) ANDM12>5o AND (inc(M9)>8 OR inc(M16)>8)
AND dec(M17)>10 AND (inc(M1

20)>10 OR inc(M
2
20)>10) AND inc(M

3
20)>40 AND AU9=false THEN E2=true

IF inc(M11)>5 AND inc(M13)>5 ANDM14=0 AND (inc(M9)>8 OR inc(M16)>8) AND
(inc(M1

20)>10 OR inc(M
2
20)>10) AND inc(M

3
20)>40 AND AU9=false THEN E2=true

E3 Sad
IF dec(M12) ANDM12<-4o AND dec(M19)>15 AND dec(M3)>10 AND dec(M5)>10 AND AU9=false THEN E3=true

E4 Surprise
IF inc(M1)>10 AND inc(M2)>10 AND inc(M5)>15 ANDM15>0.25 AND inc(M18)>10 AND dec(M17) AND
dec(M16)>10 THEN E4=true

IF inc(M1)>15 AND inc(M2)>15 AND inc(M5)>15 THEN E4=true

Table 2. Rules for recognizing facial action units and facial expressions. Mi is the value of measurement i computed in the current frame
and Ri is the corresponding reference measurement. inc(Mi)>a (dec(Mi)>a) denotes an increment (decrement) of more than a% in the
value of Mi compared to Ri. inc(Mi)/dec(Mi) denotes that the value of Mi has increased/decreased. All threshold values have been
determined experimentally.

prise, disgust) in 2D+3D image sequences. A rule-based
approach is adopted, which is based on direct comparison
of the facial measurements extracted from a new image to
the measurements obtained from a reference (neutral face)
image of the same subject. More specifically, given a test
video sequence, we assume that in the first 5-10 frames the
human subject has a neutral expression and we extract a
measurement vector from each of these frames. Then we
compute the median of each measurement Mi and form a
reference neutral face measurement vector.
To recognize the facial expression appearing on a new

frame, first we localize the positions of the 81 landmarks as
described in Section 2. Then, we extract the set of facial
measurements and finally, we classify the depicted facial
expression or action unit using a set of rules that compare
these measurements to the reference measurement vector.
These rules have been defined based on [5] and thor-

ough examination of video sequences of facial behavior.
For each action unit or facial expression a list of associated
appearance changes was determined and was subsequently
translated in changes of facial measurement values. For ex-
ample, happy (smiling) expressions are associated with lip
corners being raised obliquely, lower lip getting a ∪-shape,
wrinkles appearing on the cheeks and eyelids narrowing.
Based on such observations, a set of rules was defined for
detecting action units and recognizing facial expressions.
Some of these rules are presented in Table 2.
For example, the first rule for happy is used to describe

cases when smiling is intense, causing lip corners to rise
significantly and cheek wrinkles to appear or become more
intense if already present. This can be translated in the fol-

lowing changes in facial measurement values: the length
of the lower lip line (M11) and the mouth corners distance
(M13) increase, the concavity of the lower lip line (M12) has
a positive value, the cheek lines angle (M9) and the angle
of nose - mouth corner lines (M16) increase and the mouth
corners to eyes distance (M17) decreases significantly. Fi-
nally, cheek wrinkling measurements (M20) also increase.

5. Experimental results

A new 2D+3D image database was recorded using the
prototype 3D sensor [13]. The database consists of 1040 se-
quences of 52 participants, 12 female and 40 male, 24 to 40
years old. In each sequence, the human subject displays a
single action unit (13 in total) or mimics a facial expression
(6 basic expressions + neutral) 2-3 times. Facial action peri-
ods last approximately 10s and are proceeded and followed
by short neutral state periods. The duration of each record-
ing is about 40-50s and the framerate is 10 fps. Facial action
and neutral face periods were manually identified in each of
these sequences and an appropriate tag was assigned to each
frame. Fig. 4 illustrates examples of recorded image pairs.
The resolution is 582×782 pixels, while the depth accuracy
is better than 0.3 mm at a mean distance of 60 cm.
First, we evaluate the performance of the 3D face tracker

presented in Section 2. To train the global model as well as
the local detectors we used a set of 400 image pairs depict-
ing an action unit or facial expression at its peak. The 81
landmarks positions were manually located in each image.
To test the proposed face tracker, we use another set of

600 images, where we manually mark the positions of facial
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Figure 4. Examples of facial expression database images. In depth
images warmer colours like red correspond to points closer to the
sensor. Black pixels correspond to undetermined depth values.

landmarks. These serve as the ground truth. For each test
image, we first fit the global model and then enhance this
estimation using the local detectors. The estimated feature
positions are finally compared against their ground-truth po-
sitions. Using the proposed face tracker, we achieve a mean
localization error of 5.35 pixels when the mean face dimen-
sions are 280×370 pixels. On the contrary using the global
detector only, the corresponding error is 7.85 pixels.
Next, we evaluate the performance of the facial action

unit detector and the facial expression classifier using the
recorded image sequences. The first 10 frames of each se-
quence are used to extract the reference measurement vec-
tor. In each of the remaining frames, first we localize the
positions of the 81 facial landmarks, next we extract a fa-
cial measurement vector and finally we a) classify the user’s
facial expression or b) detect a set of action units based on
the rule-based approach presented in Section 4. Using this
procedure we assign to each frame a single facial expres-
sion tag and one or more action unit tags. These tags are
subsequently compared against the ground truth.
The action unit detector was tested in 52×10=520 test

sequences, i.e. 52 sequences per action unit (one per sub-
ject). The evaluation results are illustrated in Fig. 5. The
mean detection rate is 82.5%. The lowest detection rate,
59%, is observed for AU27 (mouth stretched). The latter
can be explained by the fact that when the mouth is widely
open, pixels in the mouth area have undetermined depth val-
ues thus leading to erroneous estimates of lip boundaries. A
relative low detection rate is also observed for AU15 (lip
corners pressed down). This is mainly due to the fact that
most subjects displayed the specific action unit very sub-
tly, thus no significant changes could be detected in the lip
boundary shape and convexity.
Finally, we evaluate the proposed facial expression

recognition technique. As already explained, our system
is able to recognize facial expressions related to happiness,
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Figure 5. Facial action unit detection rates.

True/Classified Neutral Disgust Happy Sad Surprise
Neutral 94.92 1.15 2.02 1.35 0.56
Disgust 5.99 81.47 6.38 6.03 0.13
Happy 5.86 1.66 90.43 0.29 1.76
Sad 23.79 2.47 0.38 73.36 0.00
Surprise 2.66 0.78 9.69 0.00 86.87

Table 3. Facial expression recognition rates (%).

sadness, surprise and disgust. Facial expressions of anger
and fear can also be detected though less reliably. For
the evaluation of the facial expression classifier, we used
52×5=260 test sequences, i.e. 5 sequences per subject (4
expressions + neutral). The evaluation results are presented
as a confusion matrix in Table 3. The element (i, j) of this
table represents the percentage of sequence frames depict-
ing expression i, which were assigned emotion label j. The
average expression recognition rate is 84%. The highest
misclassification error is reported for sad, which 1 out of 4
times is classified as neutral. This can be attributed to the
fact that most subjects expressed sadness in a very subtle
way, only by slightly pressing lip corners down.
To evaluate the benefits obtained from the use of 3D fa-

cial data, we compare the proposed facial expression recog-
nition system against a system based exclusively on 2D
images. The latter is comprised from a 2D facial feature
tracker based on 2D ASMs (a model for the whole face, one
for the eyebrows and one for the mouth exactly as in the
case of the proposed 3D face tracker) and a facial expres-
sion classifier based on Gabor filters and Linear Discrim-
inant Analysis. Given a sequence frame (2D image), first
we localize the position of the 81 facial landmarks using
the global 2D ASM and the local feature detectors. In each
landmark position we compute a local brightness measure-
ment vector by applying a set of Gabor filters and we create
a concatenated feature vector for the whole face. The fea-
ture vector is then projected in an LDA subspace giving rise
to a discriminant feature vector, which is finally classified
in one of the five emotion classes by means of the K-nearest
neighbors technique. This technique was tested in the same
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2D+3D 2D
Neutral 94.92 83.60
Disgust 81.47 70.72
Happy 90.43 81.21
Sad 73.36 61.85
Surprise 86.87 79.75

Table 4. Facial expression recognition rates (%) obtained for the
proposed 2D+3D method and the 2D appearance-based classifier.

260 sequences used for the evaluation of the proposed face
tracker. Table 4 compares its performance against that of
the 3D system. It is clear that use of 3D face geometry in-
formation significantly aids facial expression recognition.
Experiments were performed on an Intel Core Duo 2.0

GHz PC with 4GB RAM. The total time for processing a
single frame is between 0.1 and 0.3 seconds: 50ms for face
detection, 0.15-0.25s for facial feature extraction and 10ms
for facial expression recognition.

6. Conclusions
A fully automated system for facial expression recogni-

tion in sequences of 2D and 3D images was presented in this
paper. The proposed system is based on a novel real-time
model-based face tracker and a set of special local feature
detectors, which effectively combine 3D face geometry and
2D appearance data. The use of 3D information facilitates
detection of surface deformations even in case of subtle fa-
cial muscle movements. Facial action is represented by a set
geometric, appearance-based and surface-based measure-
ments, which are effectively classified to emotional related
expressions using a rule-based approach. The proposed
techniques were evaluated in large database with more than
50 subjects and 1000 sequences demonstrating an average
accuracy of 84% and robustness under pose variations.
Future work will exploit the dynamics of facial measure-

ments towards automatic decoding of all action units and
their combinations.
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