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Abstract

We present a gradient-based motion capture system that
robustly tracks a human hand, based on abstracted visual
information — silhouettes. Despite the ambiguity in the vi-
sual data and despite the vulnerability of gradient-based
methods in the face of such ambiguity, we minimise prob-
lems related to misfit by using a model of the hand’s phys-
iology, which is entirely non-visual, subject-invariant, and
assumed to be known a priori. By modelling seven distinct
aspects of the hand’s physiology we derive prior densities
which are incorporated into the tracking system within a
Bayesian framework. We demonstrate how the posterior is
formed, and how our formulation leads to the extraction of
the maximum a posteriori estimate using a gradient-based
search. Our results demonstrate an enormous improvement
in tracking precision and reliability, while also achieving
near real-time performance.

1. Introduction

Markerless motion capture has traditionally been ap-
proached as a data-fitting optimisation problem: given a
choice of visual information, motion capture systems are
usually asked to obtain the one state of the articulated body
that best conforms to the data, leading to a search for the
maximum likelihood (ML) estimate for the subject’s state.
However, the visual data often constitute an ambiguous
source of information, and several different states often pro-
vide a good fit. Hence, the associated likelihood is multi-
modal, and the state suggested by the data often represents
a pose impossible for the subject to ever attain.
Several authors have concentrated on the formulation

of better-conditioned likelihood functions, via considera-
tion of higher-level 3D data whose degree of ambiguity
is substantially reduced. Indeed, some of the most im-
pressive tracking results that the markerless community has
seen were achieved by systems running on correlation data
[4, 11, 18], voxel data [3, 8, 9], and depth maps obtained

with a structured light sensor [1]. Unfortunately dedicated
hardware is needed for the acquisition of such data, mean-
ing that tracking may be expensive, difficult to set up, and
that it remains, for the case of those systems relying on use
of a structured light sensor, to some extent intrusive.
Instead, by introducing insight on the process that gener-

ates the data, Bayesian inference provides an alternative ap-
proach to tackling the likelihood’s problematic multimodal-
ity while avoiding the use of expensive sensors. The idea of
using non-visual information for circumventing the ambi-
guity in the visual data is also supported by recent findings
in neuroscience: it has been noted [2, 17] that the middle
temporal cortex believed to be responsible for higher-level
visual processing in the brain receives a large proportion of
its inputs from other non-visual cortices, implying that vi-
sion should be regarded as an inference problem, not as one
of data fitting. Process models have been used substantially
lately in the literature in order to better refine the estimate
for the state. In the context of motion capture, Bayesian
inference takes the role of consideration of the subject’s
physiology, but systems that significantly benefit from such
formulation are invariably sampling-based [14, 15, 16]. In-
stead, gradient-based systems tend to use process models
that are too general as they only consider the subject’s in-
ertia [1, 9], while the more recently introduced regression-
based systems use models that are too specific as they di-
rectly consider the subject’s motion through training [6, 10].
In this paper we take the position that the degree of gen-

erality of the process model is not a subjective one, and is
instead dictated by the subject’s physiology. We acknowl-
edge the lack of gradient-based systems that also model this
physiology, and argue that design of such systems will im-
prove robustness against divergence, while avoiding the use
of dedicated hardware and the high computational costs of
sampling-based methods.

2. Background

Let xk ∈ R
S andZk ∈ R

P be, respectively, the subject’s
hidden state and silhouette observation at time k, where
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P = O(104) is the number of pixels in the data and S = 26.
Furthermore, letH(xk) be a model of the silhouette obser-
vation as described e.g. in [7]. Then, the likelihood is usu-
ally assumed to be a Gaussian in observation-space, i.e.,

p(Zk|xk) = N
(
H(xk)|Zk, σ2

I
)

(1)

where we assume σ = 1. The multimodality of the likeli-
hood in state-space is induced by the strong non-linearity of
the mappingH. Given an appropriate initialisation, an iter-
ative gradient-based search for the ML state is given by the
Gauss-Newton method for non-linear least squares (LS):
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where x̂
i
k is the estimate for the current state at the ith iter-

ation, and JH ≡ [∇xk
H]T is the Jacobian of H. Instead,

a Bayesian framework replaces the likelihood with the pos-
terior as the basis for inference, whose convexity is much
stronger. This is given by Bayes’ theorem as

p(xk|Z1:k) ∝ p(Zk|xk) p(xk|Z1:k−1) (3)

where p(xk|Z1:k−1) is the prior derived by a consideration
of the state-generating process. We assume an improper
prior imposed by the physiology of the subject’s articulated
body:

p(xk|Z1:k−1) =

{
1 if xk ∈ V

0 otherwise (4)

where V ⊂ R
S is the region of validity for the state, such

that the subject’s physiology is respected.
Despite its obvious non-Gaussianity in state-space, in

Section 3 we show how this improper prior can be formu-
lated as a Gaussian in physiology-space, a space described
through the non-linear mapping η(xk). Using this defini-
tion of the physiological prior, we also formulate the poste-
rior as a Gaussian in a space defined through the mapping
H(xk). Hence, the Gauss-Newton method for non-linear
LS may be used to converge to the maximum a posteri-
ori (MAP) estimate, meaning that tracking becomes more
reliable, while maintaining the advantages of a gradient-
based search. Section 4 investigates the hand’s physiology
in greater detail, and in Section 5 we demonstrate the supe-
riority of this formulation via a comparative analysis of our
physiological modelling versus a purely data-fitting system.
A brief discussion and conclusions follow in Section 6.

3. Bayesian Framework
Beyond the state’s dynamics due to the subject’s iner-

tia, the state is also subject to limitations arising from the
non-convex shape of the articulated body, and from differ-
ent kinds of functional limitations due to the evolutionary

design of the hand as a prehensile tool. Clearly, the nature
of the physiological aspects that need to be modelled varies
greatly. The prior addresses the diversity of these physio-
logical limitations by computing

p(xk|Z1:k−1) =

Φ∏
ϕ=1

πϕ(xk) (5)

where Φ = 7 represents the total number of physiological
aspects ϕ addressed here, and πϕ is the prior specific to one
such type of physiology. In general there is a total of Kϕ

constraints κ associated with each physiological aspect ϕ,
and each constraint regarding any part of the subject’s phys-
iology can be unambiguously represented as {ϕ, κ}. The
physiology-specific priors can be further decomposed as

πϕ(xk) =

Kϕ∏
κ=1

π{ϕ,κ}(xk) (6)

where the constraint-specific priors π{ϕ,κ} are now the
building blocks of our physiological prior. Each constraint
in general refers either to an individual bone b, or to an in-
dividual pair of bones {b1, b2} from the subject’s skeleton;
the bone(s) relevant to all the constraints of physiological
aspect ϕ are stored inBϕ ∈ N

Kϕ (orBϕ ∈ N
Kϕ×2 accord-

ingly).
For every constraint {ϕ, κ} addressed, we use the state in

order to establish a measure of validity λ{ϕ,κ}(xk). For the
purposes of assessing whether a given state xk adheres to
an individual constraint, it is also necessary to define upper
and lower bounds λmax{ϕ,κ} and λmin{ϕ,κ} respectively, within
which the measure of validity has to fall. Thus, a state
xk is only deemed valid if compatible with every constraint
{ϕ, κ} concerning the subject’s physiology. In other words,
{{

λmin{ϕ,κ} ≤ λ{ϕ,κ}(xk) ≤ λmax{ϕ,κ}

}Kϕ

κ=1

}Φ

ϕ=1

⇐⇒ xk ∈ V

(7)
The constraint-specific priors are defined in a way that re-
wards valid states xk ∈ V as follows:

π{ϕ,κ}(xk) =

⎧⎪⎨
⎪⎩

a1 if λ{ϕ,κ} < λmin{ϕ,κ}

1 if λmin{ϕ,κ} ≤ λ{ϕ,κ} ≤ λmax{ϕ,κ}

a2 if λ{ϕ,κ} > λmax{ϕ,κ}

(8)
where

a1 = exp

{
− 1

2α2

{ϕ,κ}

(
λ{ϕ,κ}(xk)− λmin{ϕ,κ}

)2
}

(9)

a2 = exp

{
− 1

2α2

{ϕ,κ}

(
λ{ϕ,κ}(xk)− λmax{ϕ,κ}

)2
}

(10)

and a plot for this equation is shown in Figure 1. It is easy to
see that the binary definition of the prior in (4) would imply
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λ{ϕ,κ}(xk)λ
min
{ϕ,κ} λ

max
{ϕ,κ}

π{ϕ,κ}(xk)

1
decreasing α

2
{ϕ,κ}

Figure 1. Prior specific to physiological aspect ϕ and constraint κ,
as defined in equation (8).

a binary definition for the constraint-specific priors π{ϕ,κ},
which is not exactly the case in equation (8) as Figure 1 il-
lustrates. However, by adjusting the variance α2

{ϕ,κ} to a
small value, we can force the above definition to become
binary, this way yielding an overall prior that closely ap-
proximates (4). The benefit of using (8) rather than a binary
definition for π{ϕ,κ} is twofold. Firstly, it ensures that a
gradient-based approach for the extraction of the MAP es-
timate may be established. Secondly, the variance α2

{ϕ,κ}

now controls the level to which the constraint-specific prior
is allowed to influence any potentially erroneous sugges-
tion coming from the likelihood, i.e. it indicates the im-
portance of meeting the requirements of constraint {ϕ, κ}
over the measurement model’s compatibility with the visual
data. Hence, a big variance α2

{ϕ,κ} indicates that the limi-
tation imposed by constraint {ϕ, κ} is a soft one, and can
therefore be compromised to some extent for the sake of
good compliance with the observations Zk. Conversely, a
small α2

{ϕ,κ} indicates that the constraint’s limitations must
be met regardless of whether the resulting state xk is com-
patible with the observations or not. In general, the severity
of each constraint depends on the aspect of physiology ex-
amined. It is useful, however, to first rewrite (8) as

π{ϕ,κ}(xk) = exp

{
−

1

2

(
η{ϕ,κ}(xk)− ζ{ϕ,κ}

)2
}
(11)

where the new measure of validity η{ϕ,κ} is now given by

η{ϕ,κ}(xk) =

⎧⎪⎪⎨
⎪⎪⎩

λ{ϕ,κ}(xk)

α{ϕ,κ}
if λ{ϕ,κ} < λmin{ϕ,κ}

0 if λmin{ϕ,κ} ≤ λ{ϕ,κ} ≤ λmax{ϕ,κ}
λ{ϕ,κ}(xk)

α{ϕ,κ}
if λ{ϕ,κ} > λmax{ϕ,κ}

(12)
and the new bounds ζ{ϕ,κ} are now

ζ{ϕ,κ} =

⎧⎪⎪⎨
⎪⎪⎩

λmin{ϕ,κ}

α{ϕ,κ}
if λ{ϕ,κ} < λmin{ϕ,κ}

0 if λmin{ϕ,κ} ≤ λ{ϕ,κ} ≤ λmax{ϕ,κ}
λmax{ϕ,κ}

α{ϕ,κ}
if λ{ϕ,κ} > λmax{ϕ,κ}

(13)
Hence, the constraint-specific prior, although non-

Gaussian in state-space, may be expressed as a Gaussian
in the space defined by η{ϕ,κ}(x). Using (11) we can build
up a similar representation for the physiology-specific pri-
ors πϕ and, in turn, for the overall prior. From equation (6)

we have

πϕ(xk) =

Kϕ∏
κ=1

π{ϕ,κ}(xk)

= exp
{
−

1

2

(
ηϕ(xk)− ζϕ

)T(
ηϕ(xk)− ζϕ

)}
(14)

where the type-specific physiology model and bounds, ηϕ

and ζϕ respectively, are given by

ηϕ(xk) =
[
η{ϕ,1}(xk) . . . η{ϕ,κ}(xk) . . . η{ϕ,Kϕ}(xk)

]T

(15)

ζϕ =
[

ζ{ϕ,1} . . . ζ{ϕ,κ} . . . ζ{ϕ,Kϕ}

]T

(16)

In a similar fashion, the type-specific priors are combined
in order to give the overall prior as per (5):

p(xk|Z1:k−1) =

Φ∏
ϕ=1

πϕ(xk)

= exp

{
−

1

2

(
η(xk)− ζ

)T(
η(xk)− ζ

)}
(17)

where the physiology model η and bounds ζ now cover the
complete physiology of the body and are given by

η(xk) =
[
ηT

1 (xk) . . . ηT
Φ(xk)

]T

ζ =
[
ζT

1 . . . ζT
Φ

]T

(18)
Finally using (1), (17) and (3), the posterior becomes

p(xk|Z1:k) ∝ p(Zk|xk) p(xk|Z1:k−1)

∝ exp

{
−

1

2

(
H(xk)−Zk

)T(
H(xk)−Zk

)}
(19)

where H and Z are obtained by augmenting the measure-
ment model and observations with the physiology model
and bounds respectively, as follows:

H(xk) =
[
H

T(xk) ηT(xk)
]T

Zk =
[
Z

T
k ζT

]T

(20)
Thus, by considering the bounds ζ violated by the state as
observations, and by augmenting the dimensionality of the
measurement model to allow for the subject’s physiology, it
is possible to define the posterior as a Gaussian in the space
defined by H(xk). A similar formulation to the one pre-
sented here was previously used in [12] although not in the
context of the physiological characteristics of the subject.
Given an appropriate initialisation, the MAP estimate can
now be located in much the same way as per the search car-
ried out for the ML estimate, i.e. via a few iterations of the
Gauss-Newton method for non-linear LS:
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Figure 2. The highlighted bones and linked pairs of bones indicate those subject to the physiological limitations relevant to (from left to
right): inertia, flexion, abduction, intradigital correlation, transdigital correlation, and friction.

where

JH(xk) =
[
J

T
H

(xk) J
T
η
(xk)

]T
(22)

and Jη ≡ [∇xk
η]

T is the Jacobian of the physiology model
η consisting of the individual Jacobians Jηϕ

of all the
physiology-specific measures of validity ηϕ:

Jη(xk) =
[
J

T
η

1
(xk) . . . J

T
ηϕ

(xk) . . . J
T
ηΦ

(xk)
]T

(23)

4. Physiological Modelling
In this section we address Φ = 7 aspects of the human

hand’s physiology. Some of these are more easily under-
stood than others, and the interested reader should refer to
[5] or [13] for an in-depth description of the physiological
aspects addressed in this paper. For each different aspect ϕ
we consider the Kϕ constraints relevant, and indicate the
group of bones Bϕ subject to this type of physiological
limitation. We specify an appropriate measure of validity
λ{ϕ,κ}, give the bounds λmax{ϕ,κ} and λmin{ϕ,κ} within which
this has to lie, and choose the standard deviation α{ϕ,κ}.

4.1. Inertia
The first and perhaps the most obvious aspect of the sub-

ject’s physiology as a massive body yields a consideration
of its inertia, leading to the imposition of continuity con-
straints on the dynamics of the articulated structure, which
are modelled here through the inertia prior, ϕ = 1.
Considering the subject’s skeleton as a first-order kine-

matic structure, the measure of validity for the inertia prior
becomes the velocity of all moving parts of the skeleton
at time k, which needs to be matched to that at time k − 1.
There is an overall spatial velocity ẋs for the skeleton’s root,
and one angular velocity ωb for each moving bone. Conti-
nuity of the former is enforced by the additional constraint
{ϕ = 1, κ = 0}, for which

λ{1,0}(xk) = ẋs(xk) λmax{1,0} = λmin{1,0} = ẋs(xk−1)
(24)

while continuity of the latter is enforced by defining

λ{1,κ}(xk) = ωb(xk) λmax{1,κ} = λmin{1,κ} = ωb(xk−1)
(25)

where b = (B1)κ andB1 ∈ N
K1 stores all the of the hand’s

phalanges, the thumb’s metacarpal and the wrist (see Figure
2). Since the inertia of the subject’s skeleton only gives a
general indication about the current state, the inertia con-
straints were relaxed by setting an appropriately large value
for the associated standard deviation. For this reason we
have set α{1,κ} = 20o per frame, and α{1,0} = 5cm per
frame.

4.2. Flexion
The human hand’s evolutionary design has imposed a

prehensile nature to it which favours functional asymme-
try: the hand may well access and manipulate objects sit-
uated on its ventral side, but is physically incapable of any
other manipulation. As a consequence there are limits to the
amount of flexion and extension that the hand’s fingers can
undergo. The role of the flexion prior, ϕ = 2, is to penalise
any values of the current state that would otherwise allow
the hand’s fingers to hyperextend, or to hyperflex.
The flexion prior’s measure of validity and its upper and

lower bounds refer to the angle of flexion θ of each of the
bones listed in B2. In other words, for every flexion con-
straint {2, κ} we have,

λ{2,κ}(xk) = θb(xk) λmax{2,κ} = θmaxb λmin{2,κ} = θminb

(26)
where b = (B2)κ , and B2 ∈ N

K2 stores all of the hand’s
phalanges and the thumb’s metacarpal (see Figure 2). For
most of these bones the upper bounds are defined as θmaxb =
90o, this way allowing enough flexion for the formation of
the fist, but not more. Similarly, the majority of the lower
bounds are defined as θminb = −10o, meaning that a limited
degree of hyperextension is allowed. Finally, we set the
standard deviation for each flexion constraint to α{2,κ} =
5o.

4.3. Abduction
Beyond the limitations in terms of flexion and extension,

the hand’s prehensile physiology is also responsible for a
limitation in the amount of abduction and adduction (i.e.
sideways rotation) that the fingers might undergo. These
limitations are modelled by the abduction prior, ϕ = 3.
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The abduction prior is only relevant to the four fingers’
proximal phalanges and to the thumb’s metacarpal; these
bones are stored in B3 ∈ N

K3 and are shown in Figure 2.
The amount of abduction exercised by each b ∈ B3 is in-

dicated by the abduction angles φ. We also define the upper
and lower bounds of the abduction angles to be such that
the amount of tolerable abduction is equal to the amount of
tolerable adduction that the bones can exercise:

λ{3,κ}(xk) = φb(xk) λmax{3,κ} = φmaxb λmin{3,κ} = −φmaxb

(27)
for every bone b = (B3)κ . The abduction bound φmaxb is
flexion-dependent and is given in degrees as

φmaxb (θb) =
φmaxminb − φmaxmaxb

θmaxb − θminb

(
θb − θminb

)
+ φmaxmaxb

(28)
where φmaxmaxb = φmaxb (θminb ) and φmaxminb = φmaxb (θmaxb )
denote the maximum and minimum values respectively, of
the abduction bound φmaxb . With the flexion bounds θmaxb

and θminb defined in Section 4.2, we set φmaxmaxb = 40o and
φmaxminb = 0o for every proximal phalanx b. This has the
effect of completely restricting a finger from any abduction
if that finger has experienced its maximum allowed level
of flexion, while preserving a generous degree of abductive
ability for a hyperextended finger. Since the thumb’s ab-
duction bound demonstrates no dependence on the extent
of flexion, the associated abduction constraint {3, 5} is par-
tially relaxed by placing φmaxmaxb=23 = φmaxminb=23 = 50o. Finally,
the abduction standard deviation is set to α{3,κ} = 5o.

4.4. Intradigital Correlation
Muscles responsible for phalangeal flexion in a particu-

lar finger form tendinous synapses with more than one of
that finger’s phalanges, meaning that the relation between
muscle contraction and phalangeal flexion is not a one-to-
one mapping. Even more significant is the intricate inter-
connection formed between the tendons of the flexor digi-
torum profundus and the flexor digitorum superficialismus-
cles, which are the prime movers for the flexion of the distal
and intermediate phalanges respectively. The intradigital
correlation prior, ϕ = 4, is responsible for modelling such
interdependencies.
TheK4 = 5 bones affected by the intradigital correlation

constraints are the distal phalanges of the four fingers and
the proximal phalanx of the thumb. These are illustrated
in Figure 2 and are listed in B4 ∈ N

K4 . The measure of
validity is once again the amount of flexion that these bones
undergo according to the current state, but in this case the
upper and lower bounds are fixed to a target value specified
by the flexion of the corresponding parent-bone. In other
words, for every bone b = (B4)κ ,

λ{4,κ}(xk) = θb(xk) λmax{4,κ} = λmin{4,κ} = μb θγ(b)

(29)

where γ(b) is the parent of bone b and typically μb = 2
3 .

The intradigital correlation standard deviation is set to
α{4,κ} = 5o for all constraints {4, κ} with the sole excep-
tion of the weaker correlation in the flexion of the thumb’s
proximal phalanx, for which we set α{4,5} = 30o.

4.5. Transdigital Correlation
Further to the intradigital correlation in flexion discussed

above, the palmar ligament of the hand shared by the four
fingers causes part of the flexion of a proximal phalanx to be
transmitted across neighbouring fingers. In addition, the ex-
tensor digitorum muscle, which is active during digital ex-
tension (as the prime mover) and during flexion (as the an-
tagonist) forms tendinous synapses with more than one fin-
ger. These produce correlation in the flexion between pha-
langes across neighbouring fingers, which we model here
with the transdigital correlation prior, ϕ = 5.
There are K5 = 7 transdigital correlation constraints in

our model and each constraint {5, κ} is associated with a
unique pair of phalanges {b1, b2}, which is stored in B5 ∈
N

K5×2 (see Figure 2). We define the measure of validity
λ{5,κ} as the relative amount of flexion Δθ{b1,b2} > 0 that
separates the two bones. Hence, for every pair of bones
b1 = (B5)κ,1 and b2 = (B5)κ,2 ,

λ{5,κ}(xk) = Δθ{b1,b2}(xk) λmax{5,κ} = Δθmax{b1,b2}

(30)
where Δθmax{b1,b2}

is known a priori and represents the up-
per bound on the relative flexion between bones b1 and b2.
Note that the value ofΔθmax{b1,b2}

may depend on which of b1

and b2 is causing its counterpart to flex. Due to the bigger
variation in transdigital correlation across subjects, it was
decided to partially relax these constraints by allowing for
a bigger standard deviation α{5,κ} = 10o.

4.6. Rigidity
The role of the hand as the most dexterous part of the

human body suggests that a considerable degree of interac-
tion between fingers should be expected to take part in any
of the subject’s gestures, despite the significant reduction
in their mobility due to the physiological constraints that
have already been visited. It is during such interactions that
the silhouettes of different fingers in the visual data merge,
causing the information content in the observations to de-
teriorate. Under such circumstances the tracking system is
more vulnerable to a misfit, meaning that the ML state is
now closely surrounded by local maxima in the likelihood.
Because the earliest stages of a misfit often involve the mu-
tual intersection of neighbouring fingers of the skeleton, the
main motivation in formulating the rigidity prior, ϕ = 6, is
to increase robustness against such misfits.
Before modelling the hand’s rigidity it is worth noting

that many of the bones are guaranteed not to intersect each

23



Figure 3. Three-camera experiment on a sequence with a significant degree of self-occlusion. Here we show the data as recorded by one
of the cameras (1st row) and a reconstruction of the hand’s pose, before application of the physiological prior (lighter background) and
after (darker background), from a view that matches that of the data (2nd and 3

rd rows) and from an arbitrarily chosen view (4th and 5
th

rows). The extracted MAP motion (darker background) is more robust against problems related to intersection of the fingers (3rd snapshot),
phalangeal hyperextension (2nd and 4

th snapshots), and intradigital correlation (6th snapshot).

other thanks to the activity of other priors that have been
visited already — e.g. the flexion prior guarantees no inter-
section between phalanges of the same finger, and also pre-
vents intersection of the carpals and metacarpals. Hence,
the total number of unique pairs of bones that need to be
addressed for the formation of the rigidity prior reduces to
K6 = 42; all these pairs are listed inB6 ∈ N

K6×2.
In order to assess whether bones b1 and b2 have inter-

sected each other, we define the corresponding measure of
validity λ{6,κ} to be associated with the shortest interpha-
langeal distance δ{b1,b2}. In fact, it is easiest to work with
the squared shortest interphalangeal distance, because this
makes calculations easier. In any case, the lowest bound for
this distance relates to the radii ρbi

of these bones, which
are assumed to be known a priori. Hence, for every pair of
bones b1 = (B6)κ,1 and b2 = (B6)κ,2 ,

λ{6,κ}(xk) = δ2
{b1,b2}

(xk) λmin{6,κ} = (ρb1 + ρb2)
2 (31)

The standard deviation for each rigidity constraint is fi-
nally set to correspond to half of the minimum interpha-
langeal distance permissible i.e. α{6,κ} =

[
1
2 (ρb1 + ρb2)

]2.

4.7. Friction

Further to the implications of transdigital interaction
with regards to the rigidity of the fingers, the nature of the
skin as a rough surface produces frictional forces which
tend to reduce the amount of transdigital slip. In other
words, the skin causes motion to be transmitted from one
finger to another as the fingers come to contact during ges-
tures, and particularly during the formation of the fist. The
friction prior, ϕ = 7, accounts for the skin’s ‘sticky’ nature.
In order to form the friction prior we only take into

consideration the four fingers’ distal and intermediate pha-
langes, which would otherwise undertake most of the trans-
digital slip for the majority of the gestures anticipated. The
K7 = 6 pairs of bones subject to the friction constraints are
shown in Figure 2 and are listed inB7 ∈ N

K7×2.
Since the purpose of the friction prior is to limit the

amount of transdigital slip, we associate the measure of va-
lidity with the (squared) shortest interphalangeal distance,
which, in the case of two fingers coming to contact, needs
to be maintained roughly fixed. We define the measure
of validity relevant to the friction between two phalanges
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Figure 4. Three-camera MAP tracking on a sequence with an extended degree of self-occlusion. Despite the ambiguity in the silhouettes,
the extracted motion maintains a high level of precision. Our tracking system can follow small and subtle changes in the subject’s state,
even when the degree of self-occlusion is at its highest (e.g. the partial movement of the fully flexed fingers in the 5

th and 6
th snapshots).

b1 = (B7)κ,1 and b2 = (B7)κ,2 as

λ{7,κ}(xk) =

{
δ2
{b1,b2}

(xk) if a3 ≤ δ{b1,b2} ≤ a4

0 otherwise
(32)

where a3 = 0.9(ρb1 +ρb2) and a4 = 1.1(ρb1 +ρb2). Hence,
if the two phalanges are not in contact, δ{b1,b2} > a4 and the
friction prior is inactive. The friction prior is also inactive
when δ{b1,b2} < a3, leaving violations due to phalangeal
intersection to be handled by the rigidity prior. In a similar
fashion, the target value for λ{7,κ} is defined as

λmax{7,κ} = λmin{7,κ} =

{
a2
3 if a3 ≤ δ{b1,b2} ≤ a4

0 otherwise
(33)

and we set the standard deviation for friction to half of the
target value specified above, i.e. α{7,κ} =

(
1
2a3

)
2.

5. Results
Beyond the computations relevant to the models of Sec-

tions 4.1 to 4.7 we used equations (12) to (20) to form H

and Z . We then performed 5 iterations of equation (21) to
converge to the MAP estimate for the state at any time k

in a sequence. The initial state x̂
0
1 for the first frame was

taken to be the hand’s position of extension, meaning that
only the 6 state parameters responsible for global position
and orientation were manually initialised.
Figure 3 makes a comparison of the results taken from

an experiment based on real data captured with 3 synchro-
nised, calibrated cameras running at 25Hzwith pixel resolu-
tion 120×160 each. Due to the activity of the physiological
prior, the extracted motion is natural and convincing, since
the subject’s physiology is respected — something which
is not true for the results taken from the purely data-fitting
system. Problems encountered during ML tracking relevant
to phalangeal hyperextension, phalangeal intersection, and
transdigital correlation are now solved without compromis-
ing the system’s generality in tracking unanticipated ges-
tures.

Figures 4 and 5 show two further three-camera exper-
iments involving more challenging gestures that the data-
fitting scenario failed to track robustly. Despite the ex-
tended degree of self-occlusion (which reaches its maxi-
mum with the formation of the fully clenched fist) and de-
spite the ambiguous nature of the silhouette data, it is clear
that use of the improper physiological prior provides ade-
quate assistance to the gradient-based system for extracting
a motion that is natural, precise and in agreement with the
visual data. All the experiments outlined here as well as
many additional ones can be found on the paper’s website,
http://www-sigproc.eng.cam.ac.uk/~pk228.
Calculation of the physiological model, bounds and Ja-

cobian was implemented entirely in Matlab and took around
0.05s, subject to the number of physiological constraints vi-
olated. Along with the calculations relevant to the measure-
ment model, processing of 5 iterations of the Gauss-Newton
algorithm took less than 0.5s for each 3-camera frameset on
a 1.8GHz, 2GBRAM Intel Centrino Duo processor running
onWindowsVista. From an extensive evaluation of our sys-
tem using data acquired with three cameras, it was found
that gestures of various styles and degrees of complication
were followed well, assuming a reasonable state initialisa-
tion (involving only 6 parameters), and well-segmented sil-
houette observations.

6. Conclusions

We have presented a gradient-based system for extract-
ing the MAP state trajectory of the human hand (using 26
degrees of freedom), based on low-level and very often am-
biguous visual information. At the core of our system’s ro-
bustness lies an in-depth examination of seven aspects of
the hand’s physiology, some of which have never been ad-
dressed in the vision literature before. We have shown how
the information arising from the physiology is combined
with the measurements, leading to a system that can track
any kind of unanticipated motion in near real-time, even in
the presence of severe self-occlusion.
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Figure 5. Three-camera MAP tracking on a sequence with a severe degree of self-occlusion. The ambiguity of the data reaches its maximum
as the hand closes to a fist. Use of the physiological prior makes tracking possible and the extracted motion is natural and precise.

An important part of our contribution is that our physiol-
ogy model may be used alongside anymeasurement model,
whatever the choice of features used for tracking. Further-
more, physiological limitations affect the kinematic capa-
bility of every articulated body encountered in nature. Al-
though Sections 4.1 to 4.7 are specific to the physiology of
the human hand, the method with which the physiology-
specific constraints are incorporated into the data-fitting
tracking system is a generic one, and may thus be used re-
gardless of the subject’s underlying physiology.
The system presented in this paper can be extended to

take into consideration further aspects of the hand’s physi-
ology such as the transdigital correlation in abduction, the
opposition of the thumb to the rest of the fingers e.g. via the
conditional relaxation of the intradigital correlation prior,
or perhaps an angular extension to the friction model. Fi-
nally, we also aim to reduce the system’s processing time
for future real-time tracking.
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