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Abstract

We propose a fusion framework to integrate multiple
cues for tracking by finding a set of optimal dynamic
weights for different tracking modalities. In the setup of
Bayesian sequential estimation, we give an optimal crite-
rion to find the dynamic weight for each modality: Using a
linear combination of the proposal distributions from mul-
tiple cues to approach the posterior distribution p(xt|yt).
The fusion problem is then formulated as an optimization
problem with a non-convex objective function. We fur-
ther convert the optimization problem to a constrained con-
vex programming problem. The equations for finding the
global optimal solution are given and an approximate an-
alytical solution is derived. The derived approximate an-
alytical solution is justified by comparing to the fusion
weights/mixture weights in [8, 32]. The fusion framework
can find out reliable cues and rely more on them dynam-
ically. We test the proposed fusion framework for human
tracking on a very challenging surveillance video taken at
crowded subway station. We also test the fusion framework
for articulated tracking. The claim that the proposed fusion
framework can integrate weak modalities to improve track-
ing performance is supported by the promising results.

1. Introduction

Object tracking is the first step of many vision applica-

tions such as video surveillance, perceptual user interfaces,

automated video content retrieval, and audio-visual speech

analysis. It has drawn attentions from the researchers in vi-

sion community for at least two decades. In order to achieve

robust tracking, four important questions have to be an-

swered thoroughly: 1) What kind of features or similarity

measures should be used, considering background clutter

and distraction from other objects of similar appearance?

2) What is the searching scheme/optimization approach to

find the most possible object positions? 3) How to tolerate

the appearance variance of the object? By robust feature or

appearance updating? 4) How do we handle the partial/total

occlusion between objects?

The different elegant answers to above questions consti-

tute a large literature in object tracking. For general objects

treated as blob, e.g. face/head, car, human body, bees etc,

various features have been used such as edges/contours[5,

9], texture/appearance subspace [6, 21, 17], steerable

wavelets coefficients [19], gray level/color/gradient distri-

butions [12, 28, 32], salient features [30, 10], segmented

foreground pixels [40, 31], object detection/classification

results [27, 2, 34, 1].

Two characters make a searching scheme/optimization

approach good. First, efficient. Second, the algorithm

should be capable of keeping multiple hypotheses if the am-

biguity is big. However, it seems that these two desirable

characters reject each other. By taking the trade off between

these two characters, researchers in vision community pro-

posed many schemes. To name a few successful and popu-

lar ones, they are: Searching schemes based on gradient de-

scent such as, meanshift [12, 11, 37], incremental gradient

method [24, 3], Newton-style method [16, 14, 1]; Search-

ing schemes based on sampling such as, sequential Monte

Carlo/particle filtering [18, 29, 32] and MCMC [26, 38];

Searching based on EM [39]; Coarse to fine searching [4];

Data association based on Dynamic Programming [23] etc.

An inborn characteristic of the vision based tracking is

that the appearances of the tracking target and the back-

ground are inevitably changing, albeit gradually. Since it is

extremely hard to find, if any, the general invariant features

for robust tracking, quite a few successful methods handle

the appearance variation by template updating or subspace

learning method [6, 21, 19, 33, 10, 7].

For subspace based appearance learning algorithm [6,

21], the view based models, usually learned with Princi-

pal Component Analysis (PCA), can capture the variations

in pose and lighting and can be integrated into incremen-
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tal tracking framework. However, for objects of different

category or even different objects of the same category, the

subspace based appearance learning methods require super-

vised offline training, for which the labeling involves a very

tedious work.

In the enlightening work of Jepson et al. [20], an online

appearance learning algorithm is proposed. The appearance

is modeled as a generative model containing 3 components:

the stable component S, the wandering component W , and

the occlusion component L. The stable component identi-

fying the most reliable structure for motion estimation and

the wandering component representing the variation of the

appearance are two Gaussian distributions. The occlusion

component accounting for data outliers is uniformly dis-

tributed on the possible intensity level. Using the phase

parts of the steerable wavelet coefficients [15] as feature,

this algorithm achieves satisfactory tracking results. But

the occlusion model L is a weak prior model, therefore the

tracker may still lock on the background if the object is fully

occluded. If this is the case, the appearance learning will

take the stable background region to update the appearance

model and the tracker is doomed. Their experiments veri-

fied a common fact for tracker based on appearance updat-

ing: As soon as the tracker lock on some part of the back-

ground, the tracker fails for the rest of the video sequence.

A very large percentage of tracking failures are caused

by partial/total occlusion. If the target is occluded by a dis-

tracting object and the tracker uses the appearance of the

distracting object to update the template, the tracker is in big

trouble. Therefore, the occlusion handling is indispensable

for robust tracker. Wu et al. [36] treat the occlusion prob-

lem as a statistical inference problem on Dynamic Bayesian

Network (DBN). In [20], a uniform distributed appearance

model is introduced to model the occlusion. These proposed

approaches alleviate the occlusion problems to some extent,

but none of existing approaches solve the partial/total oc-

clusion completely. Reader can refer to the failure video of

[20] online.

Given the above difficulties, i.e. ambiguity caused by

clutter background and distracting objects, appearance vari-

ation and occlusion, it seems that none of existing fea-

tures/cues alone can achieve robust tracking. In stead, suc-

cessful systems have to draw from the strengths of multiple

cues/modalities [35, 22].

However, the fusion of the cues from different modali-

ties is a tough problem. What should be the optimal cri-

terion to fuse the cues? How to adaptively weight the cues

across long sequence? These questions need to be answered

in principle. Current algorithm either weight multimodality

cues empirically or equally after inside-modal normaliza-

tion [5]. For instance, the α in [27], which is a weight-

ing factor between dynamic model and detection results, is

either set to be a fixed number or switched between some

numbers according to a predefined rule.

We propose a framework to integrate multiple cues for

tracking based on fusion of dynamic proposal distributions.

In the setup of Bayesian sequential estimation, we propose

to use the dynamic mixture of proposal distributions to sub-

stitute the state prediction probability p(xt|xt−1). The pro-

posal distributions are from different modalities. For exam-

ple, in tracking scenario, background subtraction modal can

propose a distribution of the possible blob locations. Given

the position of the blob in t − 1 frame, the dynamic model

can also predict the distribution of the blob locations in t
frame. Object detector as well produces a distribution of

the possible object locations by densely scan the input im-

age. By dynamically mixing these proposal distributions,

we can fuse the cues from different modalities.

The fusion problem is then formulated as an optimiza-

tion problem with a non-convex objective function. We

convert the optimization problem on the non-convex objec-

tive function to a constrained convex programming prob-

lem. The equations to find the global optimal solution are

derived based on Karush-Kuhn-Tucker theorem [25]. After

carefully study the matrix structure in our specific optimiza-

tion problem, we give the approximate optimal solution of

the equations analytically.

The main contributions of this work are: 1)Formulating

the problem of multimodality fusion for tracking as an op-

timal weighting problem among dynamic proposal distribu-

tions; 2) Converting the optimization of the non-convex ob-

jective function to a convex programming problem and give

the analytical solution; 3) Giving a numerical approxima-

tion of the analytical solution based on sampling method.

2. Bayesian Sequential Estimation with Dy-
namic Proposal Distributions

Let xt denote the state of the object of interest, and

yt = (y1 . . .yt) the observations up to time t. For track-

ing, the distribution of interest is the posterior distribution

p(xt|yt). However, the analytical representation of the pos-

terior distribution is rarely available and it is computation-

ally very expensive to directly sample this posterior distri-

bution. Therefore, Bayesian sequential estimation method

tries to compute this distribution using the following two

step recursion:

prediction:

p(xt|yt−1) =
∫

p(xt|xt−1)p(dxt−1|yt−1) (1)

update:

p(xt|yt) =
L(yt|xt)p(xt|yt−1)∫
L(yt|xt)p(dxt|yt−1)

(2)

The recursion requires a prediction model describing the

state evolution probability p(xt|xt−1), and a model that
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gives the likelihood of any state in the light of the current

observation, L(yt|xt).
Given the state of the object in frame t − 1, we want to

fuse the object state estimations from different cues in frame

t. By model the state evolution probability p(xt|xt−1) as a

dynamic mixture of proposal distributions corresponding to

estimations from different cues, we can achieve fusion of

multi-modal cues:

pt(xt|xt−1) =
M∑
i=1

αi(t)qi(xt|xt−1), (3)

where M is the number of multimodal cues available and∑M
i=1 αi(t) = 1, αi(t) ≥ 0. The final fused estimation of

the state xt is:

E[xt|yt] =
M∑
i=1

αi(t)Ei[xt|yt]

=
M∑
i=1

αi(t)
xtL(yt|xt)pi(xt|yt−1)∫
L(yt|xt)pi(dxt|yt−1)

, (4)

where pi(xt|yt−1) =
∫

qi(xt|xt−1)p(dxt−1|yt−1).
The KEY questions are: How to dynamically weight the

estimations from different cues? What is the optimal crite-

rion?

We want to use a linear combination of the proposal dis-

tributions to approach the posterior distribution p(xt|yt) so

that the prediction model pt(xt|xt−1) should coincide with

p(xt|yt), the normalized likelihood L(yt|xt). In the L2

space, which is a Hilbert space, we can bound the corre-

lation between the likelihood and the prediction model by

Cauchy-Schwartz inequality:

|〈pt, Lt〉| ≤ ‖Lt‖‖pt‖, (5)

where the inner product is defined in L2 space:

〈pt, Lt〉 =
∫

L(yt|xt)p(dxt|xt−1).
Therefore we have:

|〈pt, Lt〉|
‖pt‖

≤ ‖Lt‖. (6)

Noticing that 〈pt, Lt〉 ≥ 0, the problem is to find a set of

αi(t)’s to

minimize − 〈pt, Lt〉
‖pt‖

(7)

subject to:

M∑
i=1

αi(t) = 1

− αi(t) ≤ 0,

i.e. to find αt that

minimize − αT
t bt√

αT
t Gαt

(8)

subject to: 1T αt = 1
− αt ≤ 0,

where αt =
(

α1(t) . . . αM (t)
)T

,

bt =
(
〈q1, Lt〉 . . . 〈qM , Lt〉

)T
, and the Gram

matrix

G = G(q1, q2, . . . , qM ) =

⎛
⎜⎝

〈q1, q1〉 . . . 〈q1, qM 〉
...

. . .
...

〈qM , q1〉 . . . 〈qM , qM 〉

⎞
⎟⎠ .

3. Optimal Fusion of Dynamic Proposal Distri-
butions

Since the objective function f(αt) = − αT
t bt√

αT
t Gαt

is not

a convex function, it is very hard to find the global opti-

mal solution. We try to convert it to a convex programming

problem. Noticing that f(αt) = f(cαt), where c > 0 is a

constant, minimizing (8) is therefore equivalent to

minimize − αT
t bt√

αT
t Gαt

(9)

subject to: − αt ≤ 0,

We only need to normalize αt afterwards.

Since f(αt) = f( αt

‖αt‖ ), we can therefore convert mini-

mizing (9) to a convex programming problem:

minimize − αT
t bt (10)

subject to: αT
t Gαt − 1 ≤ 0;

− αt ≤ 0.

3.1. Optimal Solution Given by Karush-Kuhn-
Tucker Theorem

The objective function in (10) is mini-

mized at the stationary point of the Lagrangian:

−αT
t bt + λ(αT

t Gαt − 1) − ξT αt, where the scalar λ
and M × 1 vector ξ are Lagrange multipliers.

By Karush-Kuhn-Tucker theorem, the optimal solution

of αt that minimize (10) is the solution of following equa-

tions: {
αt = 1

2λG−1(bt + ξ)
ξ � αt = 0

, (11)

where � is the element wise production (E.g.

( a b )T � ( c d )T = ( ac bd )T ). The above
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equations are hard to be solved analytically for arbitrary G
and b. By studying the structure of G and b in our specific

problem, we found a much simpler procedure, which gives

the approximate optimal solution analytically. We first

drop the constraint −αt ≤ 0 and then we show that given

the special structure of the Gram matrix G, the optimal

solution α̃t that minimizes the objective function has to

be nonnegative. By this way, we derive an approximate

analytical solution.

3.2. Approximate Optimal Solution in Analytical
Form

In order to make equations (11) analytically solvable, we

first relax the constraint −αt ≤ 0. The Lagrangian then

becomes: −αT
t bt + λ(αT

t Gαt − 1)
The optimal solution of αt that minimize (10) without

the constraint −αt ≤ 0 is:

α̃t =
1
2λ

G−1bt, (12)

where λ ≥ 0 by generalized Kuhn-Tucker theorem (refer

to page 249 of [25]). We argue that in our specific prob-

lem, where bt =
(
〈q1, Lt〉 . . . 〈qM , Lt〉

)T ≥ 0, and

the Gram matrix G is a highly diagonal dominating matrix,

i.e. Gii = 〈qi, qi〉 	 Gij = 〈qi, qj〉 ≥ 0 for ∀i �= j. There-

fore, G−1 ≈ diag
{

1
〈qi,qi〉

}
.

Then we have the approximate optimal solution:

α̃t ≈ c

⎛
⎜⎜⎝

〈q1,Lt〉
〈q1,q1〉

...
〈qM ,Lt〉
〈qM ,qM 〉

⎞
⎟⎟⎠ , (13)

where c is a normalization constant to ensure∑M
i=1 α̃i(t)=1. The approximate optimal solution al-

ways satisfy the constraint −α̃t ≤ 0. We therefore find

the approximate optimal solution of equations (11) ana-
lytically. With this analytical solution, we can efficiently

implement the fusion algorithm based on finding the

optimal dynamic weights of the proposal distributions.

3.3. Solution Discussion

The structure of the analytical solution in (13) is simple,

elegant and intuitively convincing. The dynamic weight of

each proposal distribution is proportional to its inner prod-

uct with the likelihood function. That means we rely on the

fusion results more on the proposal distributions which are

similar to the likelihood function.

Each weight is also inversely proportional to the square

of the L2 norm of the corresponding proposal distribu-

tion. That means the spiky proposal distributions are down-

weighted. This kind of proposal distribution is a cause

of the die-off particles in condensation/particle filtering

and the traditional remedy based on resampling/clustering

[18, 32] requires both empirical tuning and extra compu-

tation time. By downweighting this kind of distribution,

we can avoid the resampling procedure as long as one of

the proposal distributions from certain cue is not spiky and

gives reasonable hints.

We also want to emphasize that spiky proposal distribu-

tion may give very good object localization but usually not

stable enough. By the optimal weighting of the proposal

distributions from multiple cues as in (13), we can achieve

robust and precise tracking. Please refer to the articulated

tracking experiment in section 5 for details.

Chen and Rui give an empirical “reliability” estimation

in equation (25) of [8], to fuse the tracking results from vi-

sion and audio sensors and obtain impressive results. Inter-

estingly, equation (25) of [8] is equivalent to:

α̂t = c

⎛
⎜⎝

〈q1, Lt〉
...

〈qM , Lt〉

⎞
⎟⎠ , (14)

Chen and Rui notice that the proposal distributions simi-

lar to the likelihood/posterior is more reliable and therefore

should be given more weights in fusion as the conclusion

we draw above through analyzing equation (13). The au-

thors of [32] also realize the fact when they compute the

mixture weights for mixture of particle filtering (equation

(4) of [32]). The results in [8, 32] further confirm that the

theoretically justified solution (13) also gets support from

practical work.

But both of these two works neglect one fact: Spiky pro-
posal distribution suggesting some states with mediocre
likelihood should be downweighted. This fact is taken

into consideration by our fusion framework in equation

(13), i.e. we also weight the proposal distributions accord-

ing to their own L2 norm. Without this downweighting ac-

cording to L2 norm of proposal distributions, the spiky dis-

tributions may become dominating and require resampling

from time to time to avoid die-off of particles.

4. Numerical Implementation with Particle
Approximation

For most of tracking/sequential estimation problem, the

analytical form of the likelihood function L(yt|xt) is un-

known, therefore we cannot directly apply equation (13) to

fuse the estimation from different proposal distribution. We

use the condensation/particle filtering setup to numerically

realize the fusion of multiple cues. Suppose M is the num-

ber of cues/components to be fused. qi(Xt) is the proposal

distribution from ith cue/component. We use Ni particles

to sample qi, and we get the particles: Xi = {x(n,i)
t }Ni

n=1
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and the particle weights Wi = {w(n,i)
t }Ni

n=1. We can then

compute the unnormalized optimal weights by particle ap-

proximation according to equation (13):

α̂i(t) =
∑Ni

n=1 w
(n,i)
t L(yt|x(n,i)

t )

〈qi, qi〉
∑Ni

n=1 w
(n,i)
t

. (15)

Here 〈qi, qi〉 depends on the nature of the proposal distri-

butions and can be pre-computed without examining the

particle weight. For example, in tracking scenario, if

one proposal distribution is foreground segmentation re-

sults, i.e. any location in foreground is equally sampled,

then 〈qi, qi〉 = 1/S, where S is the foreground area.

If the proposal distribution is Gaussian with variance σ2,

〈qi, qi〉 = 1
2σ

√
π

.

The normalized optimal weight is computed by:

α̃i(t) =
α̂i(t)∑M
i=1 α̂i(t)

, (16)

In order to give a good approximation to L(yt|xt) and

qi(Xt), we need to draw enough samples from all qi(Xt)’s.

However, the number of particles we can use is restricted

by the computation power. Therefore, we need to distribute

the particles for sampling each qi according to there reliabil-

ity history, i.e. use more particles to sample the qis, which

have large αi in previous frame. By this way, we give more

precise numerical approximation to more reliable proposal

distributions.

Finally, we can use the weights computed by equation

(16) to give a fused estimation of the object state in frame t
according to equation (4).

5. Experimental Results
5.1. Multiple People Tracking in a VERY Challeng-

ing Scenario

We first tested our fusion framework by tracking hu-

mans in a very challenging subway video sequence shot for

ETISEO 2006 evaluation. Like most of the subway stations

in the world, the scene are very crowded with illumination

changing drastically. The video of lousy quality is taken

by a cheap surveillance camera. In one word, we are push-

ing the fusion framework to work in a general surveillance

setup.

The multiple trackers are initialized automatically by a

state of the art human detector based on HOG feature [13].

The state of the tracked pedestrians is (x, y, s), i.e. the

(x, y) location and the scaling factor. The proposal distri-

butions are from 3 modalities including: motion dynamics,

human detection, and foreground segmentation. Particles

from motion dynamics are drawn from a Gaussian kernel

centered at the position predicted from t−1 frame. Particles

from human detector are sampled from mixture of Gaussian

kernels centered at detection locations. Mixture weights of

the Gaussian kernels are the normalized detection scores

given by HOG detector. Particles from foreground segmen-

tation are drawn uniformly on the foreground.

The likelihood function is the combination of SSD (Sum

of Squared Distance) of template matching after local his-

togram equalization and Bhattacharya coefficient in Lab

space. By this way, we take both texture and color informa-

tion into consideration. Texture information is good at de-

termining scale s and localize object, while color histogram

improves the robustness. From our experience, the Bhat-

tacharya coefficient in Lab space gives much better results

than the ones in HSV or RGB, normalized RGB spaces, es-

pecially when the video quality is below studio level.

Sample frames of tracking results achieved by fusion,

human detection, and foreground segmentation, are shown

in figure 1. Each tracking instance is assigned a unique ID

and drawn in different color. This multiple objects tracking

and identification task is much more difficult than tracking a

single object. Due to false alarms of detection and heavy oc-

clusions, we did a post-processing to remove some tracking

trajectories which either have too short temporal length or

could not be verified by human detector. The fusion weights

for the three modalities are shown in figure 2 for tracking in-

stance with ID 1. The weights for the 3 modality are: α1:
motion dynamics; α2: human detector; α3: foreground
segmentation.

At frame 167, the human detector gives a good localiza-

tion and has strong confidence (confidence score= 2.69. In

our extensive experiments on HOG detector, we have never

seen a false alarm with a confidence score of 2.69.). The

fusion weight computed is α2 = 0.69 for human detector.

At frame 445, the localization from detector for the

tracked human is poor, while the tracked human moves very

smoothly and is predicted very well by our linear motion

model. Therefore the good fusion should rely more on mo-

tion dynamics. The weight given by the proposed method is

α1 = 0.8 for motion dynamics, which strongly support the

reasoning above.

At frame 509, detector gives several false alarms. Fore-

ground segmentation includes large area of background due

to the shadow of the subject. The weight α1 = 0.95 given

by our fusion framework strongly suggests using motion dy-

namics for tracking in this frame.

At frame 739, the segmented foreground contains big

shadow area. The subject is wandering around, which fools

the linear motion model. The detector correctly detects the

subject with good localization in this frame. The weight is

computed as α2 = 0.73, which suggests to rely on detector

more.

At frame 822, the detector missed the subject due to

heavy occlusion by another subject. The foreground also
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(a)

(b)

(c)

Figure 1. Results of multiple human tracking based on fusion the cues from motion dynamic, human detection and foreground
segmentation. (From left to right, the frame numbers are: 167, 445, 460, 509, 647, 739, 822, 1007 (a): the fusion tracking results.

(b): human detection results (c): foreground segmentation results.

contains large area from the other subjects. Therefore the

weight computed as α1 = 0.81 to avoid the distraction from

miss detection and poor foreground segmentation.

Due to the difficulties mentioned above, our tracking re-

sults are far from perfect. But the purpose of the experi-

ment is to demonstrate the power of the fusion framework.

By comparing the results from human detection and fore-

ground segmentation, we can draw the conclusion that the

fusion framework does improve the tracking performance.
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Figure 2. Dynamic fusion weights for tracking instance with ID1.

In summary, the fusion framework dynamically weight

among the 3 modalities to rely on more robust modal as

shown in figure 2.

5.2. Articulated Tracking Experiment

This experiment demonstrates that our fusion framework

can robustly track articulated body in outdoor scenarios. In

this experiment, we construct a 3D human body model with

each body part represented by a truncated cone except the

head. The state of the human body model is a 12 dimen-

sional vector (global position (x, y) and 10 joint angles,

two for each arm and 3 for each leg). The tracking task

is to recover the state vectors from the video sequence. An

object function is defined to compute the observation like-

lihood given the state of the human model. First we project

the human body model with given state to the image plane

and compute the area S of the model projection overlapping

with the foreground (after background subtraction). The

edges of the model projection is fitted into the edge map

of the original image by the algorithm in [18] and the fitting

error E is calculated. The object function takes S and E as

input to summarize both region and edge information and

output the observation likelihood.

We focus on periodic human body movements so that a

general motion model can be learned from a large amount

of video data. The motion model is simply represented by a

sequence of average state and the corresponding variance.

The tracker predicts samples from two proposal distri-

butions. The first one, denoted as T (Temporal Motion

Model), is Gaussian diffusion of the recovered state in pre-

vious frame. The other proposal distribution, denoted as

P (Prior Motion Model), is based on the previous learned

motion model. It samples from all states in the entire prior

motion model with high probability at the current cycle po-

sition. The cycle position of a state is the position where

the state best fit to the prior motion model and the current

cycle position can be roughly computed by correlating the

historical tracking results with the motion model.

The P proposal distribution is complementary to T and

can help the tracker to recover the state of body parts un-

der the hard conditions such as self-occlusion, fast motion

blur or similar textures, which is extremely hart if T is used

alone. However, the tracker may fail to recover the subtle

difference between the current motion and the prior motion

if it relies too much on the P proposal distribution. Many

factors may affect the trade-off between them, for example,

the closeness of the human motion to the model, the quality

of the video quality, and the foreground segmentation. The
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(a)

(b)

Figure 3. Articulated tracking results: compared with the fusion by fixed weight. (a): Results of fusion framework with dynamic

fusion weights (The dynamic fusion weights are shown in figure 4(a) ); (b): Results of empirical fusion with fixed weights α = 0.1.

tracker has automatic initialization module that finds the ini-

tial cycle position by correlating a short sequence of fore-

ground object with a cycle of template motion. The weight

for each proposal distribution is then dynamically updated.

Figure 3 (a) shows some sample frames of the articulated

tracking results output by proposed fusion framework with

dynamic α as the weight for prior motion model P . Figure

3 (b) shows some sample frames output by the empirical

fusion framework with fixed α = 0.1. Figure 4 (a) shows

the dynamic weight α for the prior motion model. Figure 4

(b) shows the joint angles of left shoulder estimated by the

tracker with dynamic fusion weights and the tracker with

fixed fusion weights (α = 0.1). We can clearly see that

the left arm waving pattern with the cycle around 30 frames

from the joint angles estimated by dynamic fusion. We can-

not see this pattern from the curve of the fixed fusion.

From figure 3 we can find that in the last two sample

frames, the tracking for left arm is lost and cannot recover

with the fixed fusion weight α = 0.1, while the dynamic fu-

sion tracker can robustly track the articulation for the whole

sequence. The parameter α in this articulated tracking ex-

periment affects the tracking performance a lot and is very

hard to tune because the good choice of the value varies

a lot for different test sequence. For this walking sequence,

tracker with fixed fusion weights lose track at certain frames

for most of the preset α’s. Our fusion framework automati-

cally find an optimal and dynamic α, which make the artic-

ulated tracking robust.
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Figure 4. Fusion for articulated body tracking. (a) Dynamic fusion

weight α. (b) joint angle of left shoulder.

6. Conclusion

We propose a fusion framework to integrate multiple

cues for tracking by finding a set of optimal dynamic

weights for different tracking modalities. The optimal cri-

terion to find the dynamic weight for each modality is given

and an approximate analytical solution is derived. The de-

rived approximate analytical solution is further justified by

the work of [8, 32]. Future work is to integrate online learn-

ing component to the fusion framework to achieve robust

tracking.
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