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Abstract

Image annotation is a challenging task that allows to
correlate text keywords with an image. In this paper we
address the problem of image annotation using Kernel Mul-
tiple Linear Regression model. Multiple Linear Regression
(MLR) model reconstructs image caption from an image by
performing a linear transformation of an image into some
semantic space, and then recovers the caption by perform-
ing another linear transformation from the semantic space
into the label space. The model is trained so that model
parameters minimize the error of reconstruction directly.
This model is related to Canonical Correlation Analysis
(CCA) which maps both images and caption into the se-
mantic space to minimize the distance of mapping in the
semantic space. Kernel trick is then used for the MLR re-
sulting in Kernel Multiple Linear Regression model. The so-
lution to KMLR is a solution to the generalized eigen-value
problem, related to KCCA (Kernel Canonical Correlation
Analysis). We then extend Kernel Multiple Linear Regres-
sion and Kernel Canonical Correlation analysis models to
multiple kernel setting, to allow various representations of
images and captions. We present results for image anno-
tation using Multiple Kernel Learning CCA and MLR on
Oliva and Torralba [21] scene recognition that show kernel
selection behaviour.

1. Introduction

In image annotation problem, the task of assigning a cap-
tion (keywords that describe the contents of an image) is
significantly more challenging than in a traditional image
classification problem for which standard supervised learn-
ing methods can be applied. This is due to the fact that the
training set in image annotation is a dataset of images with
their associated captions, i.e., words that describe the im-
age content without specifically labeling the individual ob-
jects, events, or other interesting aspects of the image. The

increasing amount of multi-media data presents us with a
challenging task of information retrieval and organization.
With the increasing availability of image data, there arises
the need for image annotation and associating the images
with keywords that correspond to the objects, events, or
scenes present in the images. Examples of such tasks can be
found in organization of electronic medical records and on
social network communities such as Flickr and Facebook.
Image annotation also allows to add semantical meaning to
the image.

The work in image annotation (see discussion in Section
2) relies heavily on the assumption that image features b and
image words w are independent given some hidden variable
z so that p(w, b|z) = p(w|z)p(b|z) (the variable z means
some semantic space in the models described in [10, 4] and
images in the models described in [17, 23, 12]). Such prob-
abilistic model is directly related to Canonical Correlation
Analysis as shown by Bach as Jordan [2]. Canonical Corre-
lation Analysis and it’s kernel variant (Kernel CCA) [14]
has been used in the past for image annotation. KCCA
finds a projection of images and their captions to a semantic
space to maximize the correlation of the projections. Appli-
cation of KCCA in image annotation and the closely related
problem of cross-language retrieval problem i.e., the task
of retrieving text written in a language different from the
language of the user’s query [24], rely on mate-based re-
trieval to obtain their best reported results. In mate-based
retrieval, the query image (or a document in one language)
is used to compute the correlation with all the captions as-
sociated with images in the training set (or documents in
other language) and the caption with the highest correla-
tion is returned in response to the query. Using the learned
KCCA model directly to generate a response to the query
has been shown to yield worse results than those obtained
using mate-based retrieval [24, 15].

Against this background, this paper explores a more di-
rect approach to the image annotation problem. We use the
Kernel Multiple Linear Regression (KMLR), model which
can be viewed as a discriminative counterpart of KCCA.
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KMLR generalizes the Multiple Linear Regression (MLR)
model [6] by incorporating kernel functions. Hence it can
model and learn non-linear relationships between the inputs
and outputs. MLR itself is an extension of linear regres-
sion to a setting with a multivariate output variable (an out-
put variable with two or more dimensions). This model is
similar to a maxtrix factorization model used by Loeff and
Farhadi [18] and it uses `2-loss instead of hinge-loss.

Image representation is a challenging problem. Images
can be represented in a variety of ways: from color his-
tograms and to texture descriptors [5], to graphs over image
segments [13], to bags-of-visual-words using keypoints de-
tectors or concentric circles from grid sampling [11, 7].

We therefore propose a general framework for KCCA
and KMLR to allow for multiple kernel learning. Mul-
tiple Kernel Learning finds optimal linear combination of
the kernels with ` − 1 norm constraints on the weights [3].
We propose a simple iterative algorithm, similar in spirit
to SimpleMKL for SVM [22] and our results demonstrate
that KMLR with Multiple Kernel Learning picks the best
kernel when using bag-of-visual-words kernels built from
keypoints obtained at various keypoint size (r = 4, 8, 12
and 16 pixels) during grid sampling.

We evaluate the CCA, MLR and their kernel extensions
on the Natural Scene data [21] with approximately 2700 im-
ages objects drawn from around 300 possible object classes
using various image representations. We then apply Mut-
liple Kernel learning framework to address the problem of
kernel selection. Evaluation of the models on more image
annotation datasets and comparison with previous work is
currently work in progress.

This paper is organized as follows: we describe the prob-
lem of image annotation and related work in Section 2.
We describe kernel correlation methods, namely KCCA and
KMLR is Section 3. We then introduce the general frame-
work that extends KCCA and KMLR to allow for Multi-
ple Kernel Learning in Section 4. In Section 5 we present
results of the models using kernels constructed from bag-
of-visual words derived from grid-sampling using circular
support of various radii, and show results for kernel selec-
tion using MKL-MLR and MKL-CCA. We conclude with
discussion in Section 6.

2. Related Work
Duygulu et al. [10] suggested an expectation-

maximization model for image annotation. The model is
based on that used for machine translation. The model as-
sumes segmentation of the images and the space of seg-
ments is treated as one “language” and the space of words
is teated as the second “language”. The model assumes that
the segmentation of the image produces regions that corre-
spond to the actual objects, however this is not always the
case for the segmentation algorithms as in some cases the

resulting segments span over multiple objects, or the seg-
ments partition a given object into parts. Barnard et al. [4]
explored a wide range of models, including a Multi-Modal
Latent Dirichlet Allocation model, which attempts to cor-
relate image blobs and words in a semantic space. Jeon et
al. [17] suggested that the model [10] is analogous to a
cross-media relevance model unlike and they showed that
their model had better results on the same dataset. The
model was then extended to allow for continuous features
in [23] and to allow words be sampled from an underlying
Bernoulli model [12]. One common feature over these all
these models is the assumption that keywords w and image
blobs b are independent given some hidden variable z so
that p(w, b|z) = p(w|z)p(b|z) (the variable z means some
semantic space in the models described in [10, 4] and im-
ages in the models described in [17, 23, 12]). Carneiro et
al. [8] introduced a Supervised Multiclass Labelling frame-
work which bypasses the modelling of the hidden variable
z and models p(b|w) directly, and their results showed the
best performance across the previous work. Makadia et al.
[20] suggested a very simple approach to image annotation
in which they used k-NN model to obtain the most similar
images to an unknown image, and to this image they as-
signed a set of keywords from the nearest neighbors. This
approach was shown to outperform all the other approaches
on the datasets considered.

3. Kernel models for data with multiple views

We begin by describing the general idea for modeling
data with multiple views, and then describe CCA and its
discriminative counterpart MLR. We then proceed to de-
scribe their extensions to kernel space, KCCA and KMLR,
respectively.

Let x ∈ Rn and y ∈ Rm be the two views of the same
instance s. For example, s can be some event, x can be
a photograph of s and y can be a textual description of
s. In order to model the relationship between x and y the
goal is to find linear transformation f : Rn → W of x
and h : Rm → W y into some lower-dimensional space
W ⊂ Rk where k < n and k < m. Canonical Correla-
tion Analysis seeks this projection as to minimize the dis-
tance between the projection of x and projection of y inW :
minh,f ||f(x)− h(y)||2.

Multiple Linear Regression, on the other hand attempts
to reconstruct y directly: it first projects x into the lower
dimensional spaceW using linear transformation f : Rn →
W , and then reconstructs the projection into the space Rm

using some linear transformation g : W → Rm to minimize
the error of the reconstruction of y: minf,g ||y − g(f(x))||.
Both methods can be reformulated in the dual form, which
allows the use of the “kernel trick”.

We now proceed to describe the methods in detail.
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3.1. Preliminaries

We begin with establishing notation that we will use in

the rest of the paper. Let D =

 (x1,y1)
...

(xl,yl)

 be a sample of

size l such that xi ∈ Rn and yi ∈ Rm. Let Dx =

 x1

...
xl


and Dy =

 y1

...
yl

 (so that Dx is l × n matrix and Dy is

l ×m matrix). Let Cxx = D>x Dx be the correlation matrix
for x-view of the data, Cyy = D>y Dy be the correlation
for the y-view of the data and Cxy = D>x Dy be the cross-
correlation matrix for x- and y-views.

Let φ be the feature space mapping of x: x =
(x1...xn) → φ(x) = (φ1(x), ...φN (x)) [9] and ϕ
be the feature space mapping of y. Let φ(Dx) =
{φ(x1), ..., φ(xl)} be the feature-space mapping applied to
the x-view of the sample and ϕ(Dy) = {ϕ(y1), ..., ϕ(yl)}
be the feature space mapping for the y-view of the
data. We can now define a kernel function K(xi,xj) =
〈φ(xi), φ(xj)〉 where 〈·, ·〉 is the dot product (similarly
for y). We use Kx = φ(Dx)>φ(Dx) and Ky =
ϕ(Dy)>ϕ(Dy) to denote the kernel matrices (symmetric,
positive, definite) for x and y views.

3.2. Projection in the direction of Maximum Corre-
lation

3.2.1 Canonical Correlation Analysis

The goal of CCA [16] is to find the basis wx for x and
wy for y such that the linear transformation x → 〈wx,x〉
and y → 〈wy,y〉 applied to the dataset D results in the
maximum correlation. The correlation coefficient is defined
as

ρ = max
wx,wy

w>xCxywy√
w>xCxxwxw>yCyywy

subject to:
w>xCxxwx = 1
w>yCyywy = 1

The problem is equivalent to solving a generalized eigen-
value problemAwx = λ2wx whereA = C−1

xx CxyC
−1
yy Cyx

and the solution to wx are the eigen-vectors of A. Then wy

can be solved for by using wy = C−1
yy Cyxwx

λ .

3.2.2 Regularized Kernel Canonical Correlation Anal-
ysis

We briefly summarize the main ideas behind KCCA here.
We refer the reader to [1, 24, 15] for details.

First, the weights wx and wy can be expressed in the
dual form as follows: wx =

∑l
i=1 αixi = α>D>x and

wy =
∑l
i=1 βiyi = β>D>y . Substituting wx and wy

into definition of the objective function ρ , the numerator
becomes α>

(
D>x Dx

) (
D>y Dy

)
β . The product of the data

matrices can be replaced by kernel matricesKx andKy and
so the original CCA problem can be solved by maximizing
ρ = maxα,β

α>KxKyβ√
α>K2

xαβ
>K2

yβ
. Using regularization to force

a non-trivial solution to this problem yields the modified
objective function given by:

ρ = max
α,β

α>KxKyβ√
(α>K2

xα+ κα>Kxα)
(
β>K2

yβ + κβ>Kyβ
)

subject to:
α>K2

xα+ κα>Kxα = 1
β>K2

yβ + κβ>Kyβ = 1

After setting up the Lagrangian, it can be shown that
the solution to the maximization problem for α can
be obtained by solving the general eigen-value problem
(Kx + κI)−1

Ky (Ky + κI)−1
Kxα = λ2α and β can be

solved for using β = (Ky+κI)
−1Kxα

λ . The constraints are
then satisfied by normalization.

The eigen-vectors associated with the top k eigen-values
then form the basis α and β for the KCCA model.

3.3. Projection in the direction of Least Error

We now review a discriminative counterpart to Canoni-
cal Correlation Analysis, and present a principled solution
to minimizing the error of reconstruction of multivariate
output.

3.3.1 Multiple Linear Regression

The goal of Multiple Linear Regression is to find basis wx

and wy and direction d to minimize square error [6] of re-
construction of y for a given x.

ε2 = E


∥∥∥∥∥y −

k∑
i=1

diwyiw>xix

∥∥∥∥∥
2


= E
{∥∥y − dwyw>x x

∥∥2
}

= E
{
y>y

}
− 2dw>yCyxwx + d2w>xCxxwx

By taking a derivative with respect to the direction d and
setting it to 0, ∂ε

2

∂d = 0 yields a closed-form solution to the

direction d, namely d = w>x Cxywy

w>x Cxxwx
. Substituting d back in

the main equation and re-arranging the terms, the objective
function can be reformulated as an alternative maximization
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problem to maximize

ρ = max
wxwy

w>xCxywy√
w>xCxxwxw>y wy

subject to:
w>xCxxwx = 1

w>y wy = 1

It can be shown that the problem is equivalent to the
generalized eigen-value of the form Awx = λ2wx where
A = C−1

xx CxyCyx and wx are the eigen-vectors of A. Then
wy can be solved for using wy = Cyxwx.

3.3.2 Kernel Multiple Linear Regression

The generalization of MLR into KMLR by incorporating
kernel functions is fairly straightforward and follows ideas
similar to those used in the generalization of CCA into
KCCA: We apply a similar linear transformation of the
weights, and the the kernel trick, to obtain d = αTKxKyβ

αTK2
xα

.
The objective function can be re-written in the dual form as
ρ = αTKxKyβ√

αTK2
xαβ

TKyβ
. Using regularization, we obtain the

modified objective function given by:

ρ = max
α,β

αTKxKyβ

subject to:
αTK2

xα+ καTKxα = 1
βTKyβ + κβTKyβ = 1

By setting up the Lagrangian

L(λ, α, β) = αTKxKyβ −
λ

2
(
αTK2

xα+ καTKxα
)

− λ

2
(
βTKyβ + κβTKyβ

)
and setting ∂L

∂α = 0 and ∂L
∂β = 0 it is straightforward to show

that β = Kxα
λ and that 1

(1+κ) (Kx + κI)−1
KyKxα = λ2α

which yields the corresponding generalized eigen-value
problem. The eigen-vectors associated with the top k eigen-
values are then used to compute the basis α, β and the di-
rection b.

3.4. Keyword reconstruction

Given the weights from CCA, MLR, and their kernel ex-
tensions KCCA and KMLR, we can use two approaches to
produce the annotation to be output for a given input. The
first approach provides the direct reconstruction of the key-
words by using the weights obtained from CCA and MLR
to rank the keywords to be included in the annotation for a
given input image. The second, the so-called mate-based re-
construction [24], uses the model to generate, for the given
input image, a ranking of the captions in the training set and
then assigns the highest scoring caption to the input image..
The two annotation strategies are described below.

3.4.1 Direct reconstruction

In the case of CCA, let q be the column vector representa-
tion of an image for which we want to retrieve the keywords.
Let wx = {wx1, ...,wxk} and wy = {wy1, ...,wyk} be
the matrices obtained by stacking the eigen-vectors (as
columns) corresponding to the the top k eigen-values ob-
tained by solving the generalized eigen-value problem for
CCA. We use the value of correlation to assign a score to
each keyword: s = wyw>x q, and use the keywords associ-
ated with the highest t scores from vector s to produce the
annotation.

Similarly, in the case of MLR the solution is given by
wx, wy and d = [d1...dk] . We use the reconstruction score
s =

∑k
i=1 diwyiw>xiq and select the keywords associated

with the highest t scores to include in the annotation.
The assignment of the scores in the case of KCCA and

KMLR are similar. Let α = {α1...αk} and β = {β1...βk}
be the solutions to KCCA. . Let KT (q) be the column vec-
tor of kernel similarity functions between q and the train-
ing images. We first compute the weights for the key-
words wy = α>D>y where Dy is the training matrix of
the y view. . The score for KCCA is then computed us-
ing s = wyβ

>KT (q). The score for KMLR is com-
puted similarly using the solution of KMLR as follows:
s =

∑k
i=1 diwiyβ

>
i KT (q).

3.4.2 Mate-based reconstruction

In mate-based reconstruction given a query image, each
caption from the training test is assigned a score, and the
highest scoring caption is provided as the output. Let s
be the score of a query computed as in the case of direct
reconstruction describe above (for CCA, KCCA, MLR or
KMLR). Then the captions associated with the images in
the training set are ranked using r = s>D>y where Dy is
the training matrix of the y-view.

4. Multiple Kernel Learning framework for
KCCA and KMLR

Given K1...Km kernels, the goal of Multiple Kernel
Learning is to find the optimal combination of the kernels.
Consider a convex combination K =

∑k
i=1 ηiKi such that∑k

i=1 ηi = 1, ηi ≥ 0,∀i [3]. The `1 norm on the multi-
pliers may drive some ηs to 0 and therefore kernel selection
is also performed. We consider the Multiple Kernel Learn-
ing set-up similar to that in SimpleMKL for SVM [22] to
avoid the need of reformulating the maximization problems
for KCCA and KMLR and take advantage of the available
solutions.
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4.1. Generalized optimization problem

maximize: trace(α
′
KxKyβ)

subject to: α
′
(Kx + κI)Kxα = 1

KCCA:
{
β
′
(Ky + κI)Kyβ = 1

KMLR:
{

(1 + κ)β
′
Kyβ = 1

Kx =
∑Mx

i=1 η
x
i Kxi

∑Mx

i=1 η
x
i = 1

Ky =
∑My

i=1 η
y
iKyi

∑My

i=1 η
y
i = 1

ηxi , η
y
i ≥ 0

As in SimpleMKL [22], we consider alternative opti-
mization problem:

maxηx,ηyJ(ηx, ηy)

subject to: ηxi , η
y
i ≥ 0,

Mx∑
i=1

ηxi = 1,
My∑
i=1

ηyi = 1

J(ηx, ηy) =



maxα,β α
′
KxKyβ

s. t. α
′
(Kx + κI)Kxα = 1

KMLR: β
′
(Ky + κI)Kyβ = 1

KCCA : (1 + κ)β
′
Kyβ = 1

Kx =
∑Mx

i=1 η
x
i Kxi

Ky =
∑My

i=1 η
y
iKyi

Let J∗(η) be the objective function where where α∗ and
β∗ are the optimal solutions (K eigenvectors for the highest
eigenvalues) to J(ηx, ηy). We then can apply an iterative
maximization procedure to solve for ηs: 1) given ηs find
solutions α∗ and β∗ that maximize J∗(η) and 2) given α∗

and β∗ find solutions η∗that maximize J(η). For the first
step, we use the same eigen-value solution as described in
Section 3. For the second step, we used reduced gradient
algorithm in order to satisfy the `1 constraints on ηs.

4.2. Reduced gradient algorithm

Following SimpleMKL, we propose to use reduced gra-
dient algorithm. Let ηxm be the non-zero entry of ηx

[∇redJ ]xm = ∂J
∂ηxm
− ∂J

∂ηxµ
,∀m 6= µ

[∇redJ ]xµ =
∑
m6=µ

[
∂J
∂ηxm
− ∂J

∂ηxµ

]
where µ as the index of the largest component of ηx (similar
construction is done for ηy).

Then the direction for the x component of the gradient
direction is

Dx =


0 ηm = 0, ∂J

∂ηxm
− ∂J

∂ηxµ
< 0

∂J
∂ηxm
− ∂J

∂ηxµ
ηm > 0,m 6= µ∑

m 6=µ

[
∂J
∂ηxµ
− ∂J

∂ηxm

]
m = µ

and similarly for the y component for the direction.
We use a similar algorithm as in SimpleMKL modified

to take into account several `1 constraints.

Algorithm 1 Generalized MKL for KCCA/KMLR
Initialize ηxi = 1

mx
and ηyi = 1

my

Set η = [ηx, ηy]
while Convergence criteria not met do

Compute α∗and β∗ for J(ηx, ηy) using Kx(ηy) and
Ky(ηy)
set µx = arg maxm ηxm , µy = arg maxm ηym
Compute ∂J

∂η and the ascent direction D = [Dx, Dy]
J† =∞, η† = η, D† = D
while J† > J(η) do
η = η†, D = D†

Set νx = arg min{m|Dxm<0}− ηxm
Dxm

Set νy = arg min{m|Dym<0}−
ηym
Dym

Set ν = arg minνx,νy −
η
D , γmax = − dν

Dν
,

η† = η + γD
D†µx = Dµx −Dνx , D†νx = 0
D†µy = Dµy −Dνy , D†νy = 0
compute J† using Kx(ηy†) and Ky(ηy†)

end while
Line search along D for γ ∈ [0, γmax]
η† = η + γD

end while

The following conditions are used as stopping criteria:
the number of iterations, change in the value of J , or change
in value of η.

4.2.1 Gradient

The computation of the derivatives is fairly straight-forward
and the derivatives for KCCA and KMLR are identical:

∂J(d)
∂ηxi

=
K∑
i=1

α∗
′

i KxiKyβ
∗
i

∂J(d)
∂ηyi

=
K∑
i=1

α∗
′

i KxKyiβ
∗
i

where J and α∗, β∗ is the objective function for KCCA
or KMLR with its respective solutions.

5. Experiments

We now describe datasets, experimental set-up and re-
sults.
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5.1. Data

We use natural scene data [21] derived from LabelMe.
It consists of approximately 2700 images in 8 natural scene
categories. In addition to the categories, each image is an-
notated with a number of objects with the total number of
possible object classes is 305. On average, each caption
consists of 15 keywords. For each image we use the set of
object keywords (that the images are annotated with) as the
caption. Following similar evaluation procedures as in pre-
vious work that used this dataset [21, 7], we randomly split
the data into the training and testing sets using 100 images
in each category for training, and the rest for testing.

Given the training and the test sets, the images are pro-
cessed as follows. We rescale each image to size of 256
pixels and extract 128-dimensional SIFT features [19] with
circular support of radius r = 4, 8, 12 and 16 pixels from
a grid evenly spaced 10 pixels apart [11] from the train-
ing data and use k-means to construct a codebook of size
500. We then use the histogram of the codewords to repre-
sent each image (bag-of-visual-words representation). This
gives us 4 kernels for each of the keypoint radius.

5.2. Performance Measure

To access the performance of the different predictive
models, following Hardoon et al [14], we use precision, re-
call, and f-score. Let C be a set of predicted keywords (can-
didate), and let R be a set of actual keywords (reference).
Precision is defined as the probability of correctly predicted
words in the candidate caption: Precision(R|C) = |R∩C|

|C| .
Recall is defined as the probability of correctly predicted
words given the reference Recall(C|R) = |R∩C|

|R| . We
define f-score as the harmonic mean of precision and re-
call: F − score = 2 Precision·Recall

Precision+Recall Since it is possible to
achieve perfect recall (by assigning all possible keywords
to the image), we use all three measures to assess the per-
formance. For each test image we compute the average of
precision, recall, and the f-measure of reconstructed key-
words, and report the average over all the images.

5.3. Results

Annotation based on the choice of kernel We first use
CCA, KCCA, MLR and KMLR on data represented using
each of the four kernels. We use K = 10 eigen-vectors
for all 4 algorithms, and regularization parameter κ = 100
for KMLR and KCCA. For direct reconstruction we use top
ranked keywords to reconstruct the caption. The results are
shown in Figure 1. Since KMLR is trained to minimize the
error, it has the highest performance according to all mea-
sures in direct reconstruction, and mate-based reconstruc-
tion.

We also observe slight variation in the performance
based on the choice of kernels: in case of MLR and KMLR
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Figure 1.

the kernel derived from support of radius r = 16 has
the highest precision/recall/f-score measure for KMLR. For
KCCA, using mate-based reconstruction, the best perfor-
mance is achieved using kernels r = 4 and r = 16, and for
reconstruction the best performance is achieved with using
kernel r = 8.

Multiple Kernel Learning We then use MKL learning
framework for KMLR and KCCA and solve the optimiza-
tion problem. For both KCCA and KMLR, ds for kernels
derived from keypoints of r = 4, 8, 12 were learned to be
zero except for kernel for keypoints of radius r = 16, which
was set to 1, which means that kernel r = 16 was selected as
the optimal. For KMLR, this is not surprising since the best
performance was achieved for this choice of kernel. It first
seems surprising for KCCA, however as we have noticed
earlier, it is one of the best kernels for mate-based recon-
struction and KCCA is not optimized for direct reconstruc-
tion.

6. Conclusion and discussion
Much remains to be done in image annotation, and multi-

ple kernel learning for KCCA and KMLR. We discuss some
ongoing work, future work, and open problems in image an-
notation.

We are currently conducting more experiments with
other datasets and benchmarks in image annotation and sev-
eral datasets in cross-language retrieval.

We presented mutliple kernel framework for KCCA and
KMLR to account for kernels in both views of the data,
however in our evaluation we used linear kernels. We are
currently also extending the work to allow for graph ker-
nels for images to allow for neighborhood dependencies be-
tween the image features, and n-gram kernels for the labels,
to account for dependency between the words.

We only used several kernels (based on the idea of con-
centric circles) using grid-sampled keypoints over different
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size of keypoint support. We are also working on evaluation
of the models using a variety of kernels, including color his-
tograms, textures, graph kernels to find out whether incor-
porating all this information in a single model is beneficial.

We presented a general framework to find the best ker-
nel combination in the x− space (image input space) and
y−space (keyword output space), however our experiments
are limited to consider the combination in the input space
only. It will be of interest to consider various output space
kernels as well.

In order to perform reconstruction we used keyword
ranking obtained by (K)CCA or (K)MLR, and used the top
k scoring keywords. One way of allowing different num-
ber of keywords to be assigned to the test image is to use a
threshold on the keyword scores. However, the questions of
finding a flexible model to assign an optimal number of key-
words and determining the optimal threshold remain open.
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