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Abstract

Approaches to single image categorization do not easily
generalize to natural time-varying image sequences. In nat-
ural environments, object categories tend to have few fea-
tures that help to distinguish between each other and the
surrounding environment. To better discriminate between
categories and the surrounding environment, we propose a
multi-view categorization approach that exploits the statis-
tics of image sequences rather than single images. The ap-
proach is unbiased towards redundant views – that is, it
does not matter how many times an object appears from the
same viewpoint. At the same time, the approach does not
penalize for missing views, so that we do not have to cap-
ture an object at all viewpoints to successfully categorize
the object.

We first present a data set for studying natural environ-
ment monitoring: an image sequence of birds at a feeder
station. After manual localization, a baseline bag of fea-
tures approach was found to perform significantly worse on
the proposed data set compared to the standard Caltech 101
data set. We find that our approach increases the catego-
rization accuracy from 48% to 58% on average when com-
pared to an equivalent single view categorization method.
Finally, we show how the same metric proposed for the su-
pervised categorization can be used to transform, in an un-
supervised manner, an image sequence into a manageable
set of categories.

1. Introduction
Classic categorization techniques used on single pho-

tographs do not map easily to categorization in surveillance
and monitoring applications. Most significantly, in surveil-
lance and monitoring applications, objects are often cap-
tured in multiple frames, rather than captured only once.
Whereas previous approach would have no way to take ad-
vantage of this additional information, we present a multi-
view approach to categorization that does.

Some characteristics inherent to surveillance and mon-
itoring applications make it difficult to use traditional cat-

egorization approaches that rely on distinctive features and
perform classification over the entire image. One such char-
acteristic is that objects are captured at a fairly low reso-
lution and low frame rate. There is inherent pressure to
increase spatial coverage at the cost of object resolution,
thereby creating a more challenging detection and recogni-
tion task. Similarly, increasing temporal coverage (lifetime)
pushes for lower sampling rates, limiting the use of motion
features. The resulting image sequence will inevitably con-
tain 1) small objects with few features to distinguish them
from one another or from the background, and 2) instances
of the same object located in a completely different area in
consecutive frames.

Another challenge is that the instances captured of the
object are almost never uniformly distributed across all pos-
sible viewpoints. An object cannot then be represented
by the simple concatenation of all its captured instances.
Our main contribution is a multi-view categorization ap-
proach that is unbiased to redundant as well as rare views.
We model a category as a set of color histograms, where
each histogram represents a particular instance of the cate-
gory. To categorize a test object, the object is modeled as a
set of color histograms and the category is assigned to the
most similar match between sets of histograms. Rather than
defining similarity based on average pairwise similarity, we
use a best match approach that counts only the best match
towards the final similarity score.

Ignoring localization, we demonstrate that a multi-view
approach does indeed reduce the ambiguity between catego-
rizes, resulting in more accurate labeling of objects into a set
of learned categories. We further explore how the same ap-
proach can be adapted to propose unknown categories and
object exemplars for these categories from an unlabeled im-
age sequence. One of our contributions is the introduction
of a new data set exhibiting the characteristics described
above. The data set consists of an image sequence of birds
at a feeder station that have been manually annotated and
made publicly available. Each bird instance has been local-
ized, and labeled with an object and category id.

Capturing the species distribution of birds is of partic-
ular importance, because changes in this distribution is an
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Figure 1: Sample images of each category. Different views of the same category can exhibit very different pixel values,
gradients, size and shape.

early indicator of ecosystem changes. This is just one exam-
ple of a wide range of applications that could benefit from
a multi-view categorization method. For example, biolo-
gists are may be interested in which animals visit at water-
holes, what fish visit particular streams, and the frequency
and timing of pollinators. In the urban environment, auto-
mated annotations of the interactions of people, pets, bikes,
and cars can help city planners and citizens alike to improve
their community.

2. Related Work
Object categorization has been a popular area of research

in the recent years, but have focused on single image catego-
rization. The most popular approaches [?, ?, ?, ?, ?, ?, ?, ?,
?] are those that extend a “bag-of-features” approach which
use features such as SIFT [?] and SURF [?], by incorpo-
rating statistics on spatial relationships, shapes, or textures.
The key to these approaches is finding distinctive features

that exhibit less intra-class variance and greater inter-class
variance. These approaches rely on the ability to have fea-
tures on the object occur frequently across the category, and
background features to occur infrequently. This is not true
for surveillance and monitoring applications. In fact, cate-
gories in standard data sets such as Caltech101 [?] exhibit
so little variability that often the averaged image of a cate-
gory is still visibly recognizable as an instance of that cate-
gory [?].

While Caltech256 [?] addresses some of these issues,
objects are still centered and thus allow the algorithm to
bypass localization. With a “bag-of-features” approach, a
clear extension enables localization. A model of the ob-
ject should in general respond to a subimage containing
that object just as easily as the original image. Examples
of such work include Viola-Jones’ face and pedestrian de-
tector [?, ?] where face and pedestrian models are tested
against subimages spanning a range of positions and scales
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to localize the face or pedestrian in the image. More gener-
alized category localization include [?, ?, ?, ?, ?]. Marsza-
lek et al.[?] and Leibe et al. [?] use shape based models
derived from local features. Shotton et al. [?] and He et al.
[?] uses a conditional random field to specify spatial rela-
tionships between features. In contrast, Fulkerson et al. [?]
does not use a shape model and rather classifies at the pixel
level. Because these localization approaches rely on dis-
tinctive category features, they would not generalize well to
natural environments because the objects of interest mimic
their surrounding environments.

Rather, we take advantage of the multiple frames cap-
tured of the scene by performing background subtraction to
localize objects of interest and capturing multiple instances
of the same object. Like [?], we integrate the information
from multiple views to improve our performance. While
their approach focused on a more descriptive feature, we
focus on developing a more descriptive model and classi-
fier.

3. Feeder Station Data Set
Part of the contribution of this paper is the introduction

and distribution of a new annotated data set for environmen-
tal monitoring applications. Images are captured at a rate of
one per second from a camera pointed at a feeder station in a
natural reserve environment. The annotated portion consists
of 3600 color images of 480×704 pixels. Each image is an-
notated with a bounding box enclosing each bird instance,
including flags that indicate whether or not it was interlaced
or occluded to the point where categorization could not be
performed even by human experts. Each bounding box is
also labeled with an object id and a category id. In this
case, object refers to a unique bird and category refers to
a bird species. We detected 7932 instances, organized into
358 objects and 17 different categories, where one category
contains unidentifiable objects. From that, there are 5863
“good” instances that are not occluded or interlaced and 199
objects that have 3 or more “good” instances. Table ?? de-
tails how the objects and instances per object are distributed
for each category.

This data set captures the natural distribution of object
appearance, disappearance, and interactions rather than an
artificially balanced set. While most objects have very few
instances (< 50), there are a few objects that have a large
number of instances (∼ 800). The natural occurrence of
nuisances is also present in this data set. Birds are cut off by
the image frame, occlude one another, and get occluded by
background objects. The background exhibits a high degree
of variance due to lighting changes, even at the time-scale of
a single hour. The background objects are not completely
static either: feeders and leaves swing in the wind. The
motion of the feeders are also affected by birds landing on
the feeder posts.

# of # of objs min ave max
c objs +3 frames frames frames frames
1 73 47 1 7.5 40
2 18 6 1 12.2 53
3 18 10 1 77.3 725
4 47 28 1 31.1 143
5 18 15 1 18.7 60
6 4 3 2 28.23 80
7 7 6 4 6.7 13
8 33 31 2 30.6 118
9 18 8 1 3.7 23

10 3 2 1 25.0 70
11 5 4 2 50.0 104
12 15 12 1 22.3 137
13 12 9 1 21.0 69
14 3 3 10 114.0 171
15 6 5 2 59.5 156
16 10 10 4 61.5 172

Table 1: Data set statistics. For each category, we list the
number of objects in that category, the number of object
with 3 or more “good” instances. We also give the mini-
mum, average, and maximum number of instances for ob-
jects in the category.

Figure ?? show a few sample object instances from the
data set. As one can see from the selected images, there is a
large in-class variation in a category’s appearance, size and
shape. In fact, object instances from different categories can
look more similar to each other than object instances from
different viewpoints such as category 2 and 12.

4. Multi-view categorization
For supervised multi-view categorization, we define

• An instance i is an image patch uniquely defined by
the triplet, (t, c, s) where t refers to the frame in the
image sequence, c ∈ R2, the location in the frame, and
s ∈ R2, the size of the bounding box.

• An object o is a set of instances, {it1 , it+1, ...it2},
where t1 indicates the first frame the object appears
in, and t2 indicates the last frame.

• A category c is an set of objects, {o1, o2, ...on}, where
on is the nth object of the category.

Given a set of categories C and a set of objects O, we
would like to find the most likely category c for each object
o ∈ O. Histograms of various image statistics are a popular
representation of object categories, where the slack in the
distribution absorbs the intra-category variability. Unfortu-
nately, the distribution of gradient directions in an image
is essentially useless in natural habitats, where the objects
of interest have evolved to mimic the surrounding environ-
ment. Instantaneous image statistics are similarly limiting,
for it is difficult even for human experts to spot interesting
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objects in a single image. For this reason, we aggregate
histograms over time, and make use of color in our repre-
sentation, as we detail next.

4.1. Image appearance model
For each category c ∈ C = {1, 2, ..., nc} where nc is

the number of categories we consider, we are given a set
of instances, i = {i1, i2, ...in} that contain an instance of
that category. As in classic bag-of-feature approaches, we
extract a set of features from the instance. A feature is a
statistic, i.e. a deterministic function of the data

f : {I(x), x ∈ Ω} $→ Rm×n (1)

where m is the length of a feature, and n is the number of
features extracted. This typically varies from image to im-
age. These features are then binned into a fixed dimensional
histogram:

hI = {hu|u ∈ U} (2)

hu = n
∑

s∈f(I)

δ(b(s)− u) (3)

where U is the set of bins and b is a function that maps the
feature f into the a bin u in U .

For most of our experiments we use a simple represen-
tation, the set of hue and saturation at each pixel in the
image, and a simple partition of the color space into uni-
formly spaced bins. While most bag-of-features approach
use more complex features, such as SIFT features and dic-
tionary based histograms, we found for our data set that uni-
formly binned color histograms already outperformed the
more standard approaches. We focus on this representation
so that we can compare the relative performance of multi-
view versus single view categorization. Yet, this formula-
tion is not limited to this feature type, and could easily be
generalized to approaches that use SIFT or more sophis-
ticated binning approaches for data sets better suited for
SIFT.

4.2. Comparing appearance models
Each category is represented by a set of histograms,

Hc = {hI1 ,hI2 , ...,hIn}, where each histogram repre-
sents a instance of a category. Typically, a single frame
would be compared against each view to determine its his-
togram. In our approach, we represent a test object, o ∈
O = {1, 2, ...} with a set of histogram from a set of images
Ho = {hI1 ,hI2 , ...,hIn}. We determine which category c
object o belongs to by comparing these sets of histograms.

We use a nearest neighbor approach, but because we are
dealing with histograms, we use the Bhattacharyya coeffi-
cient, d(a,b) =

∑
u

√
aubu, to measure the discrepancy

between histograms a and b. In order to compare sets of

histograms, we introduce the following discrepancy mea-
sure:

D(Hc,Ho) = max( 1
|Ho|

∑
a∈Ho

maxb∈Hc d(a, b),
1

|Hc|
∑

b∈Hc
maxa∈Ho d(a, b)).

(4)
D(Hc,Ho) is 0 when the histograms in Hc have com-
pletely different non-zero elements from Ho. D(Hc,Ho)
is 1 when either Hc ⊂ Ho or Ho ⊂ Hc.

This discrepancy has several useful properties for multi-
view categorization in the context of surveillance and mon-
itoring applications. First, it is not biased towards dominant
views in either the training or the test sets. This is partic-
ularly important because we can not guarantee distributed
views as a multi-camera approach would be able to. Our
gathered instances are dependent entirely on the behavior
of the object of interest.

Therefore, only the best match for any particular instance
is counted towards the final score, so that it only matters
that there is a good match, not how many good matches
there are. Our approach differs from other multi-view cam-
era systems in that multiple views of an object are captured
by the object moving rather than the camera moving around
an object or multiple cameras focused on the object. Be-
cause of this, there are no guarantees or assumptions about
the ranges of views captured. Second, it does not penalize
for missing views. Because we take the final score to be
either the best matches of Ho to Hc or the best matches of
Hc to Ho, instances that show rare views can still result in a
high final score. In this way, we allow for the test object to
both not span the appearance space of the category as well
as not evenly represent it.

4.3. Evaluation
Using the data set described in Section ??, we first ig-

nore the localization problem and evaluate the performance
of object level categorization. We partition each category
by randomly selecting a number of objects for our training
set and using the rest for testing. We consider only objects
that have at least 3 “good” instances. For single view cate-
gorization, we categorize an instance by selecting the label
of the best match from all the training frames according to
the Bhattacharyya similarity measure. For multi-view, we
create an object model of object o from all of its associated
instances. We compare this model to the category models
according to Equation (??), and assign each frame the label
of the best matched category. This experiment was repeated
30 times with randomly selected training and test sets.

As we increase the number of objects used in training
(regardless of the number of frames available for that ob-
ject), we saw an improvement in the accuracy of the remain-
ing objects used for testing (Figure ??). While a cursory
look at the sample images in Figure ?? indicate that SIFT (a
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Figure 2: How performance is affected by the # of frames per object used for comparison against the learned category
model. Left) We find that integrating multi-views consistently improves the performance when compared again a single
view classification, and that as we increase the number of objects in our training set, the performance improvements are
even greater. Center: More importantly, we see significant improvements as the number of training frames are increased,
indicating that the additional frames aid in distinguishing categories. Right: We find that there is a smaller improvement when
test frames are limited, suggesting that capturing the correct frame is also important in the classifiers ability to distinguish
categories.

feature performed on gradients) would find very little useful
statistics, we did comparison against the classic bag of fea-
ture approach described in [?]. The accuracy was 11.23%
on average, significantly worse than the bag of features ap-
proach using color features used here.

Since we are proposing that multi-view classification can
outperform single view classification, we look also at how
the multiple instances are contributing to the classification.
Rather than learning a model from all the frames of the ob-
ject, we take a random subset of instances and report how
accuracy is effected (Figure ??). We evaluated the effect on
accuracy as we increase the number of training instances,
and as we increase both the number of training and testing
frames. Each additional view widen the gap between the
performance of the multi-view versus the single view clas-
sification. This suggests that the multi-view approach helps
disambiguate between ambiguous views from different cat-
egories.

4.3.1 Vector Quantization

Often, redundant views can be captured when an object
stays in the same position over a long period of time. Be-
cause our discrepancy measure takes the best pairwise com-
parison, redundant views are discounted. This suggests that
vector quantization can be used to reduce the number of
pairwise comparisons that need to be performed.

Standard compression techniques assume a euclidean
distance. We test vector quantization via lossy compres-
sion [?], even though our features do not lie on the Eu-
clidean space. One advantage of lossy compression as com-
pared to other vector quantization approaches, such as k-
means, is that it does not require a specified number of clus-
ters. We also try a vector quantization technique using the
Bhattacharyya distance. Clusters are formed where pair-

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% reduction

a
cc

u
ra

cy

Lossy

 

 

multi−view
single view

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% reduction

a
cc

u
ra

cy

Bhattacharyya

 

 

multi−view
single view

Figure 3: For either compresion method, as we reduce the
model size dramatically, performance degrades only a few
percentage points.

wise comparison results in a discrepancy smaller than some
threshold. As we increase the compression of our models,
we suffer little performance loss, as is shown in Figure ??.

5. Unsupervised multi-view categorization
From an image sequence, we would like to simulta-

neously detect objects moving through the sequence and
group the objects into sensible categories. Given a set of
images, I = {I1, I2, ..., IT }, we want to label each pixel lo-
cation in time and space with (b, o, c) where b ∈ B = {0, 1}
where 0 indicates to background and 1 indicates foreground.
A category, c ∈ C = {1, 2, 3, ...} is characterized by its
appearance model. The set of objects, {o1, o2, ...} where
o ∈ O = {1, 2, 3, ...} considered to be in category c are
objects whose appearance model are more similar to that
category c than any other category in C. We are trying to
answer three questions which are not necessarily indepen-
dent.

• For any given pixel location in time and space (x, t), is
this foreground or background?

• What are the set of pixel locations that belong to a sin-
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gle object?
• What objects belong in the same category?

We breakdown each of these tasks in the following section.

5.1. Foreground/Background Labels
We implemented a variant on the background subtrac-

tion algorithm described in [?] so that it may work in batch
mode. This does away with the need to find clean back-
ground images or background update parameters.

For each location x ∈ )2 in the image I , we represent
the appearance by a color probability density function (Hue-
Saturation) of a set of pixels in space and time. The set of
pixels used to represent the pixel location is

Sx0,τ,T = {I(x, t)| ‖x− x0‖ < X, τ ≤ t < τ + T}. (5)

For simplicity, we use a 3 dimensional color histogram as
our background model:

pu,Sx0,τ,T = n
∑

s∈S

δ(b(s)− u) (6)

where u is the histogram bin, u ∈ U ⊂ R3, and n is a
normalizing constant so that

∑
u∈U pu = 1. In our experi-

ments, U = [1 1 1]× [16 3 3].
To classify a pixel as foreground, we create another his-

togram q such that the set of pixels considered are only
those from the image I at time t:

qu,Sx0,t,1 = n
∑

s∈S

δ(b(s)− u) (7)

where n is a normalizing constant so that
∑

u∈U qu = 1.
For a pixel to be considered foreground, we require

that the distributions, p and q be sufficiently different,
d(p,q) < ηd, or it is connected to a region and is differ-
ent enough, d(p,q) < ηs, where ηs < ηd.

We define a region, Rt, as a set of connected pixels from
a single image captured at time t. For each region, the fol-
lowing must be true:

∃ x ∈ Rt, d(px, qx) < ηd

∀ x ∈ Rt, d(px, qx) < ηs

ηd < ηs

(8)

5.2. Object Labels
We considered each regions extracted from the previous

section as object instances, and therefore rather than label-
ing each pixel independently, we provide a single object la-
bel and a single category label for each region. We consider
two regions from consecutive frames to have the same ob-
ject label if their regions overlap in consecutive frames or if
their appearance indicate that they are from the same cate-
gory model.
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Figure 4: Precision-Recall curve for region detection. In-
stances that are not “good” are discarded from the calcula-
tions.

The first case results in a complex object model that
captures the appearances of an object from different view-
points. The appearance of the object o is modeled as the
set of histograms described in detail in Section ??. While
in Section ?? we used all the pixels in a bounding box to
represent the object, we use all the pixels within the region
extracted from the foreground/background labeling proce-
dure.

The second case uses category models (if they exist) to
aid in recognizing objects across frames. For all the regions
that are labeled as an object o, {Rt1 , Rt1+1, ..., Rt2} we de-
fine two functions, Start(o) = t1 and End(o) = t2. For
objects where End(oi) + 1 = Start(oi), we merge object
oj and oi into a single object oi if the category label for
oj and oi are identical. We therefore take advantage of the
multiple views provided by the category models in deter-
mining object labels.

5.3. Category Labels
We use the same metric described in Section ?? to mea-

sure the distance between the two object models. For each
pair of objects, oi and oj , we construct a corresponding Hoi

and Hoj . We define their similarity as

sim(oi, oj) = D(Hoi , Hoj ). (9)

If sim(oi, oj) > ηc, oi and oj are assigned the category
label.

We represent the appearance model of a category as:

Hc =
⋃

o∈Oc

Ho (10)

where Oc is a set of objects labeled as category c.

5.4. Results
For each 600 consecutive frames in the 3600 frame im-

age sequence, we build a background model and perform
background subtraction to estimate the difference between
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Figure 5: Extracting regions from two frames. From left to right: the original frame, a pixel wise comparison against
the background model where white is very different from the background, and the highlighted regions used for object and
category classification. The pink labels beneath the regions indicate the detection threshold ηd needed for the region to be
considered foreground.

a given pixel location (x, t) and the background. Sample
images and the difference image is shown in Figure ??. For
ease in viewing, the difference image is 1−d(a, b) so that a
white indicates a large difference from the background, and
black indicates a small difference from the background. On
the far right, we show the regions selected, and the mini-
mum ηd needed to detect the region. The frame shown in
the top row detects many birds at a fairly high threshold, but
is still missing a bird in the top middle area of the image. It
also mistakes the bark of the tree as a bird, due to unmod-
elled lighting changes. The frame shown in the bottom row
show a few birds that require a fairly low threshold to be
detected.

More quantitative results are shown in the precision-
recall curve in Figure ??. For recall, we say an object is
recalled if a detected region overlaps with a bounding box
from the labeled ground truth data of “good” instances. For
precision, we say a region is detected correctly if it overlaps
with a ground truth label, disregarding instances that are not
“good.”

While the number of instances, objects, and categories
depends on the thresholds chosen, we present a possible set
of categories extracted from this method. When ηd = 0.35
and ηs = 0.15, Figure ?? shows a few sample object in-
stances that are grouped due to their overlapping regions in
consecutive frames. It can be seen from these samples that
it is possible to capture a range of appearances using this
heuristic.

While we start at 9710 instances which form an initial set
of 3300 objects, only 677 objects have 3 or more instances.
We take these 677 objects and group 365 objects into clus-

Figure 7: Normalized frames used to form an multi-view
object model. From top to bottom, these are examples of
category 1, 3, 4, 13.

ters where ηc > .94. We end up with 58 categories with
2+ objects, 16 that contain 99 background objects, and 42
object categories which contain the remaining 265 images.
A few of the categories found are shown in Figure ??. We
end up with 8 out of the 16 categories cleanly segmented
into separate clusters in that only instances from a category
are clustered together. There are 17 clusters that contain
multiple species in a single cluster.

6. Conclusion
We demonstrated that utilizing multiple views naturally

captured from image sequences can result in improved per-
formance for object category classification. Our approach is
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Figure 6: The clusters labeled “3, 4, 9, 13, 15, 16” are a few of the categories that was cleanly segmented from the image
sequence. A “*” category is one where our approach grouped multiple species into a single cluster. The middle image,
where one bird is partially occluded by another bird, is one of the reason for this confusion. A region contains the color
features from two different bird categories resulting in both species being combined into one category. The “bg” category is
an example of one of the clustered background objects.

capable of handling unbalanced object representation, such
that there is little bias for objects that stay in the same po-
sition for long periods of time. We presented the perfor-
mance of this approach in a supervised and unsupervised
setting. We also shared a data set that contains many of the
nuisances that pertain to natural environment monitoring.
In the future, we plan to address some of the nuisances not
currently addressed, such as, but not limited to, occlusions
and accurate segmentation. We will also expand our data
set to include more natural scenes.
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