

Abstract

In this paper, we explore ways to combine boundary
information and region segmentation to estimate regions
corresponding to foreground objects. Boundary
information is used to generate an object likelihood image
which encodes the likelihood that each pixel belongs to a
foreground object. This is done by combining evidence
gathered from a large number of boundary fragments on
training images by exploiting the relation between local
boundary shape and relative location of the corresponding
object region in the image. A region segmentation is used to
generate a likely segmentation that is consistent with the
boundary fragments out of a set of multiple segmentations.
A mutual information criterion is used for selecting a
segmentation from a set of multiple segmentations. Object
likelihood and region segmentation are combined to yield
the final proposed object region(s).

1. Introduction
Bottom-up segmentation of regions corresponding to

individual objects in images without top-down information
is a difficult task because the only available information is
in the form of low level cues such as pixel intensity, color
and edges. Some of the previous bottom-up approaches rely
on segmentation based on the homogeneity of the regions
[1][2][3][4]. After the segmentation process, detection
methods estimate regions corresponding to objects by
ranking the regions based on features such as depth [5], or
compactness [6].

Figure/ground segmentation [7] approaches determine to
which regions perceived occlusion boundaries belong. In
the computer vision domain, computational approaches to
figure/ground segmentation have been proposed using
convexity [8], familiar configuration [9], and T-junction
[9][10][5] to extract the important regions or to determine
to which regions estimated boundaries are attached.

Recently, some object detection methods that exploit the
shape of the occlusion boundaries have been proposed
[11][12][13][14]. The traditional template based methods
[15][16] use only the internal texture of the target objects
and do not use the contour information explicitly, even

though contour information is a natural cue for object
detection. The boundary based methods show the usefulness
of the occlusion boundaries to detect the objects while
remaining robust to texture changes.

In this paper, we explore ways to use partial contour
information, in the form of boundary fragments estimated
from the image to segment out regions corresponding to
objects in the scene. At the beginning of the whole process,
we detect the occlusion boundary candidates by using the
approach described in [17]. Second, we use the
segmentation algorithm of [18], yielding multiple candidate
segmentations that are consistent with the occlusion
boundary candidates. After obtaining the multiple
segmentations, we select the optimal segmentation among
all the segmentations based on a normalized mutual
information criterion. We estimate also the object regions in
the image by first generating a region hypothesis for each
candidate boundary fragment based on its shape. Then all of
the hypotheses are combined into a single object region
likelihood map which encodes the likelihood that each pixel
belongs to an object region. Finally, we integrate the results
of the segmentation and the figure region estimation to
obtain the object regions in the images. We use the image
database of [19] for most of the experiments.

2. Segmentation from candidate occluding
contours

The first component of the algorithm is to generate image
segmentations that are consistent with candidate contour
fragments corresponding to occluding boundaries. To
generate the initial contours, we use the occlusion boundary
detector proposed in [17]. The boundary detector starts with
an over-segmentation of the input image by applying
watershed segmentation to the output of the Pb contour
detector [20]. We call the over-segmented regions
“segments” and we call “fragments” the boundary between
two segments. The detector applies a classifier to the
fragments to distinguish between occlusion boundary
fragments and non-occlusion boundary fragments. The
classifier is trained using Adaboost based on features such
as edges, colors and morphological features. Once the

Estimating Object Region from Local Contour Configuration

Tetsuaki Suzuki

NEC Corporation
Kawasaki, Kanagawa, Japan

t-suzuki@du.jp.nec.com

Martial Hebert
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
hebert@cs.cmu.edu

69978-1-4244-3993-5/09/$25.00 ©2009 IEEE

classifier is applied, the detector groups the fragments into
consistent extended boundaries with global inference.

We modified the algorithm of [17] in several ways. We
use additional features such as the chi-square distance
between the texton histograms of the two regions abutting to
each fragment for unary features, and the chi-square
distance between the texton histograms of the figure
segment and ground segment and the chi-square distance
between the texton histograms of two figure regions for the
pairwise features. We also use the global Pb detector
proposed in [21] instead of the original Pb detector since
global Pb detects better boundary candidates.

Table 1 shows the F-values [20] of global Pb and the
improved occlusion boundary detector. The F-values of
modified detector are 0.71.

Table 1 Evaluation of boundary detector.
 Global Pb[21] Independent

Labeling
After Global
Inference

F-value 0.70 0.71 0.71
We use the contours to generate multiple segmentations

by using Stein’s segmentation method described in [18],
which we briefly summarize now. This segmentation
method is based on Normalized Cuts [3] but differs in the
way the weights used in building the affinity matrix. Stein’s
method uses the fact that one of the segment connected to a
boundary fragment must be in the background, while the
other one must be in the foreground. For each fragment,
these two regions are used as seeds to a matting process [22],
which assigns to each pixel a α-value vector. The  value
at a pixel characterizes the likelihood that the pixel is a
foreground pixel. The weight associated with each of the
graph edges is the correlation of the α-value vectors of the
two nodes to which the edge is connected. From these
weights, an affinity matrix is built and used in Normalized
Cuts, which yields a segmentation of the image.

This object segmentation method requires the target
number of regions to be specified in advance. In this paper,
we use a method based on normalized mutual information
[23] to find the “best” segmentation among the multiple
segmentations obtained with different values of the number
of regions. Normalized mutual information relies on the
assumption that a good segmentation should share as much
information as possible with all of the remaining
segmentations. In this approach, normalized mutual
information becomes the metric used to evaluate how well
the image is segmented. More precisely, if Sa and Sb are two
segmentation candidates, the normalized mutual
information (NMI) between two segments is computed as:

 



 

 




a b

a b

S

h

S

l

l
l

h
h

S

h

S

l lh

lh
lh

ba
NMI

n
R

R
n

R
R

RR
Rn

R
SS

1 1

1 1

,
,

)(

loglog

log
),( , (1)

where |Rh| and |Rl| are the areas of region h and l,
respectively, |Rh,l| is the area in common between regions h
and l, n is the number of pixels in the image, and |Sa| and |Sb|
are the numbers of segments in segmentations Sa and Sb,
respectively. Since a “good” segmentation shares more
regions with the other segmentations, the segmentation So
whose averaged normalized mutual information (ANMI) is
the highest of all segmentations is selected as the final
segmentation. The averaged mutual information is:

),,ˆ(1),ˆ(
1

)()(
q

N

q

NMIANMI SS
N

S 


  (2)

where  = { S1,.., SN} is the set of N input segmentations. An
example of segmentation selected by using this criterion is
shown in Fig. 1. In our experiments, the multiple
segmentations are obtained by varying the number of
regions between 2 and 20.

Fig. 1 The segmentation selected by the normalized

mutual information criterion.

3. Object region likelihood estimation from
boundary fragments

The next step is to generate an object likelihood image,
which encodes the likelihood of object/background
membership at each pixel, from the fragments. To do this,
we exploit the fact that the shape of a contour fragment and
the location of the corresponding object region are
correlated. For instance, the contours of human heads are
usually convex and the head object is located in the inside of
the convex contours as shown in Fig. 2. If there are other
relations between the shapes of contours and the location of
the corresponding object regions, these relations can be
strong cues to decide which segments are the object regions
in images.

To estimate the object regions from the fragments found
in the input images, we use an exemplar-based codebook
which encodes the relations between the fragments and the
corresponding object regions in the training images. In this
section, we first explain how the codebook is generated.
Then, we describe how the object region is estimated using
the codebook. We use the figure/ground labeling data [9] to
learn and evaluate the estimation of the object likelihood
image.

Final
segmentation

Multiple segmentations

70

Fig. 2 Relation between boundary and object region.

3.1. Fragment codebook
The exemplar based codebook is built by collecting

boundary fragments and their corresponding object regions
from the training data. The boundary fragments are
collected from the training images through the following
procedure:
1. Over-segment the training data and obtain the

fragments (Fig. 3 (b)).
2. Assign figure/ground labels in the ground truth data

(Fig. 3 (c)) to the fragments by bipartite matching [9]
(Fig. 3 (d)).

3. Discard the fragments which do not have enough
consistent figure/ground labels connected to them (Fig.
3 (e)).

4. Normalize the center positions of all the fragments and
their corresponding object regions.

5. Collect the pairs of the fragments and their
corresponding object regions (Fig. 3 (f)).

We divide the large set of fragments into a smaller set of
clusters. This is necessary because of the large number of
pairs (fragments, regions) which prevents their direct use,
e.g., in a nearest-neighbor approach.

To cluster the fragments, we first construct a fully
connected graph in which the nodes correspond to the
fragments and the edges are weighted by te-d(fi,fj), where te
is the threshold and d(fi,fj) is the distance between the two
corresponding fragments to the nodes connecting the target
edges. The distance between two fragments is computed by
using the chamfer distance [25]. The distance between two
fragments, fi and fj is:

,||||min1||||min1),(22 








j
i

i
j f f

jf f
i

ji NN
ffd

t et e
etet (3)

where Ni and Nj are the numbers of pixels of fi and fj,
respectively.

To estimate the fragment clusters, we use the clique
partitioning algorithm of [24]. This clique partitioning
algorithm divides the graph into several disjointed

sub-graphs so as to maximize the total weights of the
remaining graph edges. The detailed algorithm is:
1. Construct the initial clique set C so that each clique c

in C contains one node of the graph.
2. For each clique c in C, compute the best clique a(c)

with which to merge and the corresponding score b(c):
),,(maxarg)(tcmca Ct),,(max)(tcmcb Ct (4)

where m(c,t) is the sum of the weights of all the edges
between c and t:

 


21 ,
),(

cjci ijwtcm . (5)
3. Merge cliques ci, cj if and only if a(ci)=cj and a(cj) = ci

and b(ci) = b(cj) > 0.
At step 2, the algorithm selects the pairs of cliques to merge
next and based on the merging score of Eq. (4). At step 3,
the algorithm merges two cliques if each one represents the
best merging option for the other and if merging them
increases the total score. Steps 2 and 3 are iterated until no
clique can be merged.

Clique partitioning produces a set of sub-graphs whose
total edge weight is maximized. The set of fragments
corresponding to the nodes in each sub-graph is grouped
into a fragment cluster and the distances between the
fragments in the fragment cluster are minimized because the
edge weights increase as the distances between two
corresponding fragments decrease and are maximized by
the clique partitioning. The initial fragment set F is divided
into m subsets, F1,..,Fm by applying clique partitioning to
the graph. The fragment whose total distance to all the other
fragments in the same cluster is the shortest is selected as the
prototype fragment for that cluster. The prototype fragment
is the one used for computing the distance between a new
input fragment and a cluster. In our experiments, we set the
threshold te to 2.0.

3.2. Estimating the object likelihood map from a
single fragment

We use the codebook described in the previous section to
estimate which image pixels are likely to belong to the
object region attached to each fragment. We start by
associating to each fragment f from a training image a binary
mask pf, such that pf(x) is 1 if the pixel at position x in the
image belongs to an object, 0 if it belongs to the background.
To ensure invariance to translation of the object in the
image plane, the position x is relative to the fragment. More
precisely, x is the vector of pixel coordinates obtained by
using the center of the fragment f as the origin of the
coordinate system. We denote by fj

o the prototype fragment
associated with cluster j. For each cluster j, we estimate an
object likelihood image such that if x is the position of a
pixel relative to the prototype fragment fj

o, the
corresponding likelihood value is:

Boundary

 object

71

Fig. 3 The procedure for estimating the fragment labels

(see text).

,)(1)(



jl

l
Ff

f
cj

j xp
N

xp (6)

where Ncj is the number of fragments belonging to cluster j.
Informally, pj(x) measures the likelihood that a pixel at
relative position x belongs to an object instead of the
background, given a fragment from cluster j. Fig. 4 shows
six examples of the prototype fragments and the object
likelihood images of the corresponding clusters. In Fig. 4,
the first and the third rows show the prototype fragment in
black and all the fragments in the cluster in gray. The white
diamonds are the center positions of the fragments. The
second and the bottom rows show the object likelihood
images. As the object likelihood increases, the pixel
intensity becomes darker. The white diamonds are the
center position of the corresponding fragments. The object
likelihoods of pixels under the horizontal lines (cluster 1)
are higher than those above it. This bias arises because the
horizontal lines in the training data tend to be the part of the
horizon lines and the figure regions of the horizon lines are
assigned to the regions under the horizon lines, that is, the
ground regions. The object likelihoods for the vertical lines
(cluster 2) are unbiased because the object regions could be

Fig. 4 Examples of obtained fragment clusters (see text).

on either side of the vertical lines. The other examples show
the results of the convex fragments (cluster 3-6). The
likelihoods of pixels inside the convex fragments are higher
than those of the pixels on the outside. These results are
consistent with our initial observations in Section 3.

Given an input image, we estimate a similar likelihood
distribution for every fragment f from the input image. The
likelihood image for a single fragment f is estimated by
summing the likelihood images from all of the clusters in the
codebook, with higher weights given to clusters closer to f.
More precisely, if f is a fragment from the input image, the
likelihood map relative to f at pixel i is:

,)(),(1),(
j

ij
o
j xpffw

Z
fiL (7)

where Z is the normalization factor: Z = j w(f,fj
o). As a

slight abuse of notations, we denote by xi the relative
position of the pixel with respect to a fragment, even though
we do not indicate explicitly which fragment since it is
implicit in the form of the equation. The weight w is
designed to favor clusters close to the input fragment f and it
is computed as:

)),(exp(),(o
jcj

o
j ffdkNffw  , (8)

where k is set to 4 in the experiments below and d(.,.) is the
distance defined in Eq. (3).

(a) Training data (b) Over-segmentation

White: figure side Black: ground side
 Blue: fragments without enough figure/ground labels

(c) Ground truth (d) Labeled fragments

(e) Labeled fragments
for training data

(f) Examples of fragments
(black) and their object

regions (gray) White: figure side
Black: ground side

Fragments 1 Fragments 3

Fragments 4

Object region 4
Cluster 4

Fragments 5

Object region 5
Cluster 5

Fragments 6

Object region 6
Cluster 6

Fragments 2

Object region 1
Cluster 1

Object region 3
Cluster 3

Object region 2
Cluster 2

72

Fig. 5 Object likelihood for a single fragment (see text).

Fig. 6 Object likelihood for a single fragment with

natural image (see text).
Fig. 5 shows examples of object likelihood maps. With

the input image (Fig. 5 (a)) and the potential occlusion
boundaries estimated by the algorithm of Section 2 (Fig. 5
(b, red lines)), the object likelihood for every potential
occlusion boundaries is estimated. Fig. 5 (c) shows the
object likelihood for a horizontal fragment, a slanted

fragment and a convex fragment from left to right. In Fig. 5
(c), the object likelihood increases as the pixel color
becomes darker. The red lines in Fig. 5 (c) are the target
fragments with which the object likelihood is estimated. In
the horizontal fragment and the slanted fragment case, the
likelihoods of pixels under the fragments are higher than
those above them. In the convex fragment case, the
likelihoods of pixels inside the convex fragment are higher
than those of the pixels on the outside. These biases are
obtained with the fragment and their regions in the
codebook automatically.
 Fig. 6 shows examples of object likelihood estimated
from a natural image. The object likelihoods of the pixels
belonging to the true objects (bear) are higher than those of
the other regions when estimated with the slanted fragments
in the top two rows. Though the object likelihoods
estimated with the convex fragment in the third row images
is composed of a few object region exemplars, the object
likelihoods of the pixels inside the convex fragments are
higher than those of the pixels on the outside. With the small
horizontal fragments in the bottom row images, the object
likelihoods of the water region become higher than those of
the bear regions. However, the object likelihoods of the
pixels above the target fragment are also high and they are
still useful for the estimating the object likelihood map for
the whole image describes in the following section.

3.3. Estimating the object likelihood map from the
whole image

After obtaining the set of candidate occlusion boundary
fragments f1,..,fn, we estimate the likelihood of pixel i to be
on an object in the image by combining the contributions of
all the fragments to pixel i:

).()(j
j

ji fcxpp  (9)

The same abuse of notation is used as before for x. If C(fj) is
the value of the output of the boundary detection algorithm
of Section 2, c(fj) is the confidence normalized over the
entire image:

).(
)(

1)(j

Ff i
j fC

fC
fc

i
 



(10)

 Fig. 7 shows the result of the object region estimation on
a toy image. Fig. 7 (a) shows the input image, (b) shows the
occlusion boundary fragments (red lines), (c) is the
estimated result and (d) is the averaged likelihood of the
segments. Brighter regions or segments correspond to
higher likelihood values in (c) and (d). As seen in Fig. 7 (d),
the pixels on the objects have higher likelihood than the
background.

In all of the examples shown in this section, we used 100
training images from the data set of [9] from which the
algorithm of Section 2 generated 9852 fragments which are
summarized in 142 clusters.

Target fragment
 (red lines)

Estimated object
likelihood

(a) Input image (b) Occlusion
boundaries (red lines)

(c) Object likelihood

73

Fig. 7 Likelihood estimation for the whole image.

Fig. 8 Labeling boundary fragments.

3.4. Estimation results
To evaluate the performance of the object region

estimation, the fragments in the images are assigned the
figure/ground labels through the following algorithm:
1. Estimate the object regions for the whole image (Fig. 8

(b)).
2. Average the likelihood in each segment (Fig. 8 (c)).
3. Assign figure/ground labels to each occlusion

fragment by comparing the averaged figure probability
(Fig. 8 (c)) of the two segments connected to the
fragment (Fig. 8 (d)).

After the figure/ground labels are obtained, the evaluation is
performed by following the same protocol as in [9] and the

result is compared with the local shapeme and global CRF
based on the Pb boundaries described in [9]. The precision
rate of the figure/ground estimation, 65.1%, is comparable
to the precision rate of Ren’s method [9] based on local
shapemes. It is lower by 4% than Ren’s global CRF because
we do not use an additional step of global smoothing. This is
a natural extension for future work. This result shows that
this approach is competitive with the most related approach
with the key difference that it produces additional
information in the form of the object likelihood maps. In the
next section, we combine the likelihood maps with the
segmentation of Section 3 to generate the final object
segmentation.

4. Combining segmentation and object region
estimation

The last step is to combine the segmentation selected by
the algorithm of Section 3 with the likelihood map
generated by the algorithm of Section 4. The proposed
method obtains the object regions by integrating the optimal
segmentation chosen by normalized mutual information and
the estimated object likelihood images. The integration is
performed as follows:
1. Generate the boundary fragments of the segmentation

(Fig. 9 (b)) chosen by normalized mutual information
(Fig. 9 (c)).

2. Obtain the average object likelihood (AOL) from the
object likelihood image estimated in Section 4 (Fig. 9
(d)) in two thin regions around each fragment (Fig.
9(e)).

3. Assign figure/ground labels to the fragments (Fig.
9(f)) by calculating the confidence values cf :

)()(AOLRightAOLLeftc f  . (11)
Each fragment is oriented and the left and right sides
are defined according to the fragment direction.

4. Threshold the absolute confidence values (Fig. 9(g)).
5. Derive the figure confidence map (Fig. 9(h)) by

assigning to each segment a figure confidence cs :
),(#)((#1 labelsgroundlabelsfigure

N
c

p
s 

(12)

where Np is the number of pixels on the all fragments
surrounding the segment.

6. Decide the threshold which divides the figure
confidence map into the figure region and the
background region by separating the two regions so
that their combined variance is minimal.

7. The final result is obtained by thresholding the figure
confidence map with the threshold obtained at the
previous step (Fig. 9(i)).

Fig. 10 shows other examples on natural images. Even
though each object region includes some background, this
method detects the approximate object regions. Table 2
summarizes the quantitative evaluation of the system on the

(a) Input image (b) Estimated object region

(c) Averaged
object likelihood

(d) Figure/ground labels

Occlusion boundary
fragments

Figure : right

Figure : left

(a) Input image (b) Fragments

(c) Estimated object
region

(d) Averaged object
likelihood

74

data of [9]. We used the same procedure as Ren's [9] to
derive the precision rate. The generation of the likelihood
image from boundary fragments yields similar performance
as the local approach of [9] based on shapemes and Pb
boundaries. However, it enables us to combine the evidence
from the boundary fragments with region segmentation to
yields higher performance than the global version of [9] in
which the local evidence is combined into a global
interpretation by using a CRF based on Pb boundaries. The
performance is evaluated on 100 test images, using 100
images for training. As in Section 4, we used 142 clusters to
represent the fragments from the 100 training images.

Fig. 11 shows some failure examples. The shadow
regions are detected in the first row image. The proposed
method cannot distinguish the shape of the physical
boundaries and the shape of the shadow boundaries because
the shadow shape reflects the physical boundaries. This
method also finds the trees in the second image because
there are some similar boundaries between the sky and the
trees in the training data and the tree regions are more
figural than the sky. The polar bears in the third row image
are not detected. The boundaries of the right polar bear’s
neck are assigned the wrong labels because the downside
boundaries of the neck are almost horizontal and this
method estimates that the figure regions for these
boundaries are under them.

Table 2 Precision of figure/ground labeling
Object
region from
boundary
fragments
(Section 4)

Combination
boundary
fragments and
region
segmentation
(Section 5)

Local
shapeme
[9]

Global
CRF [9]

Human
labeled
ground
truth

65.1% 78.0% 64.9% 68.9% 88%

5. Conclusion
This paper describes a general approach to estimating

object regions from local contour configurations. The shape
of the object contours implies the positions of the objects.
We extract the relations between the contour shape and the
object position and estimate the figure region in the image
with the relations. We also automatically choose the optimal
segmentation among the multiple segmentations with
normalized mutual information. By integrating the figure
region estimation and the optimal segmentation, the
important object regions are segmented out without the
object specific knowledge.

Acknowledgment
This work was partially supported by NSF Grant

IIS0713406.

References
[1] P.F. Felzenszwalb, and D.P. Huttenlocher, Efficient

Graph-Based Image Segmentation, IJCV, V. 59, No. 2, 2004
[2] D. Comaniciu, and P. Meer, Mean Shift: A Robust Approach

toward Feature Space Analysis, PAMI, 2001.
[3] J. Shi and J. Malik, Normalized Cuts and Image

Segmentation, PAMI, Vol.22, No.8, 2000.
[4] J. Malik, S. Belongie, T. Leung, and J. Shi, Contour and

Texture Analysis for Image Segmentation, IJCV, Vol. 43, pp.
7-27, 2001.

[5] M. Dimiccoli, and P. Salembier, Exploiting T-Junctions for
Depth Segregation In Single Images, ICASSP, 2009.

[6] D. Hoiem, A. Stein, A. Efros, and M. Hebert, Recovering
Occlusion Boundaries from a Single Image, ICCV, 2007.

[7] E. Rubin, Figure-Ground Perception, In Readings in
perception, 1958.

[8] H.K. Pao, D. Geiger, and N. Rubin, Measuring convexity for
figure/ground separation, ICCV, 1999.

[9] X. Ren, C. Fowlkes, and J. Malik, Figure/Ground
Assignment in Natural Images, ECCV, 2006.

[10] S. Yu, T. Lee, and T. Kanade, A Hierarchical Markov
Random Field Model for Figure-ground Segregation, EMM
CVPR, 2001.

[11] J. Shotton, A. Blake, and R. Cipolla, Contour-Based
Learning for Object Detection, ICCV, 2005.

[12] V. Ferrari, T. Tuytelaars, L.Van Gool, Object Detection by
Contour Segment Networks, ECCV, 2006.

[13] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of
Adjacent Contour Segments for Object Detection, PAMI,
Vol. 30, No. 1, pp. 36-51, 2008.

[14] Q. Zhu, L. Wang, Y, Wu, and J. Shi, Contour Context
Selection for Object Detection: A Set-to-Set Contour
Matching Approach, ECCV, 2008.

[15] P. Viola, and M. Jones, Robust Real-time Object Detection,
ICCV, 2001.

[16] N. Dalal, and B. Triggs, Histograms of Oriented Gradients
for Human Detection, CVPR, 2005.

[17] A. Stein, D. Hoiem, and M. Hebert, Learning to Find Object
Boundaries Using Motion Cues, ICCV, 2007.

[18] A. Stein, T. Stepleton, and M. Hebert, Toward Unsupervised
Whole-Object Segmentation: Combining Automated
Matting with Boundary Detection, CVPR, 2008.

[19] D. Martin, C. Fowkles, D. Tal, and J. Malik, A database of
human segmented natural images and its application to
evaluating segmentation algorithms and measuring
ecological statistics, ICCV, 2001.

[20] D. Martin, C. Fowlkes, and J. Malik, Learning to Detect
Natural Image Boundaries Using Local Brightness, Color,
and Texture Cues, PAMI, Vol. 26, No. 5, 2004.

[21] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik, Using
Contours to Detect and Localize Junctions in Natural Images,
CVPR, 2008.

[22] A. Levin, D. Lischinski, and Y. Weiss, A closed form
solution to natural image matting, CVPR, 2006.

[23] P. Wattuya, K. Rothaus, J-S. Prasni, and X. Jiang, A Random
Walker Based Approach to Combining Multiple
Segmentations, ICPR, 2008.

[24] V. Ferrari, T. Tuytelaars, and L. Van Gool, Real-time affine
Region Tracking and Coplanar Grouping, CVPR, 2001.

75

[25] P.F. Felzenszwalb, and D.P. Huttenlocher, Distance
Transforms of Sampled Functions, Cornell Computing and
Information Science Technical Report, 2004.

Fig. 9 Combining segmentation and object likelihood.

Fig. 10 General object segmentation results.

Fig. 11 Example of incorrect segmentations.
Results Original images

(a) Input image

(c) Boundary fragments

(g) Thresholding
figure/ground labels

(i) Detected object region

(e) Average object
likelihood in 2 thin

regions (white, black)
beside fragment

(b) Optimal segmentation

(f) figure/ground labels

(d) Estimated object region
region

(h) Figure confidence map

Figure: lower side
Figure: upper side

Results Original images

76

