
 

 

 
Abstract 

In this paper, we explore ways to combine boundary 
information and region segmentation to estimate regions 
corresponding to foreground objects. Boundary 
information is used to generate an object likelihood image 
which encodes the likelihood that each pixel belongs to a 
foreground object. This is done by combining evidence 
gathered from a large number of boundary fragments on 
training images by exploiting the relation between local 
boundary shape and relative location of the corresponding 
object region in the image. A region segmentation is used to 
generate a likely segmentation that is consistent with the 
boundary fragments out of a set of multiple segmentations. 
A mutual information criterion is used for selecting a 
segmentation from a set of multiple segmentations. Object 
likelihood and region segmentation are combined to yield 
the final proposed object region(s).  

1. Introduction 
Bottom-up segmentation of regions corresponding to 

individual objects in images without top-down information 
is a difficult task because the only available information is 
in the form of low level cues such as pixel intensity, color 
and edges. Some of the previous bottom-up approaches rely 
on segmentation based on the homogeneity of the regions 
[1][2][3][4]. After the segmentation process, detection 
methods estimate regions corresponding to objects by 
ranking the regions based on features such as depth [5], or 
compactness [6]. 

Figure/ground segmentation [7] approaches determine to 
which regions perceived occlusion boundaries belong. In 
the computer vision domain, computational approaches to 
figure/ground segmentation have been proposed using 
convexity [8], familiar configuration [9], and T-junction 
[9][10][5] to extract the important regions or to determine 
to which regions estimated boundaries are attached.  

Recently, some object detection methods that exploit the 
shape of the occlusion boundaries have been proposed 
[11][12][13][14]. The traditional template based methods 
[15][16] use only the internal texture of the target objects 
and do not use the contour information explicitly, even 

though contour information is a natural cue for object 
detection. The boundary based methods show the usefulness 
of the occlusion boundaries to detect the objects while 
remaining robust to texture changes.  

In this paper, we explore ways to use partial contour 
information, in the form of boundary fragments estimated 
from the image to segment out regions corresponding to 
objects in the scene. At the beginning of the whole process, 
we detect the occlusion boundary candidates by using the 
approach described in [17]. Second, we use the 
segmentation algorithm of [18], yielding multiple candidate 
segmentations that are consistent with the occlusion 
boundary candidates. After obtaining the multiple 
segmentations, we select the optimal segmentation among 
all the segmentations based on a normalized mutual 
information criterion. We estimate also the object regions in 
the image by first generating a region hypothesis for each 
candidate boundary fragment based on its shape. Then all of 
the hypotheses are combined into a single object region 
likelihood map which encodes the likelihood that each pixel 
belongs to an object region. Finally, we integrate the results 
of the segmentation and the figure region estimation to 
obtain the object regions in the images. We use the image 
database of [19] for most of the experiments. 

2. Segmentation from candidate occluding 
contours 

The first component of the algorithm is to generate image 
segmentations that are consistent with candidate contour 
fragments corresponding to occluding boundaries. To 
generate the initial contours, we use the occlusion boundary 
detector proposed in [17]. The boundary detector starts with 
an over-segmentation of the input image by applying 
watershed segmentation to the output of the Pb contour 
detector [20]. We call the over-segmented regions 
“segments” and we call “fragments” the boundary between 
two segments. The detector applies a classifier to the 
fragments to distinguish between occlusion boundary 
fragments and non-occlusion boundary fragments. The 
classifier is trained using Adaboost based on features such 
as edges, colors and morphological features. Once the 
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classifier is applied, the detector groups the fragments into 
consistent extended boundaries with global inference. 

We modified the algorithm of [17] in several ways. We 
use additional features such as the chi-square distance 
between the texton histograms of the two regions abutting to 
each fragment for unary features, and the chi-square 
distance between the texton histograms of the figure 
segment and ground segment and the chi-square distance 
between the texton histograms of two figure regions for the 
pairwise features. We also use the global Pb detector 
proposed in [21] instead of the original Pb detector since 
global Pb detects better boundary candidates. 

Table 1 shows the F-values [20] of global Pb and the 
improved occlusion boundary detector. The F-values of 
modified detector are 0.71. 

Table 1 Evaluation of boundary detector. 
 Global Pb[21] Independent 

Labeling 
After Global 
Inference 

F-value 0.70 0.71 0.71 
We use the contours to generate multiple segmentations 

by using Stein’s segmentation method described in [18], 
which we briefly summarize now. This segmentation 
method is based on Normalized Cuts [3] but differs in the 
way the weights used in building the affinity matrix. Stein’s 
method uses the fact that one of the segment connected to a 
boundary fragment must be in the background, while the 
other one must be in the foreground.  For each fragment, 
these two regions are used as seeds to a matting process [22], 
which assigns to each pixel  a α-value vector. The  value 
at a pixel characterizes the likelihood that the pixel is a 
foreground pixel. The weight associated with each of the 
graph edges is the correlation of the α-value vectors of the 
two nodes to which the edge is connected. From these 
weights, an affinity matrix is built and used in Normalized 
Cuts, which yields a segmentation of the image.  

This object segmentation method requires the target 
number of regions to be specified in advance. In this paper, 
we use a method based on normalized mutual information 
[23] to find the “best” segmentation among the multiple 
segmentations obtained with different values of the number 
of regions. Normalized mutual information relies on the 
assumption that a good segmentation should share as much 
information as possible with all of the remaining 
segmentations. In this approach, normalized mutual 
information becomes the metric used to evaluate how well 
the image is segmented. More precisely, if Sa and Sb are two 
segmentation candidates, the normalized mutual 
information (NMI) between two segments is computed as: 
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where |Rh| and |Rl| are the areas of region h and l, 
respectively, |Rh,l|  is the area in common between regions h 
and l, n is the number of pixels in the image, and |Sa| and |Sb| 
are the numbers of segments in segmentations Sa and Sb, 
respectively. Since a “good” segmentation shares more 
regions with the other segmentations, the segmentation So 
whose averaged normalized mutual information (ANMI) is 
the highest of all segmentations is selected as the final 
segmentation. The averaged mutual information is: 
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where  = { S1,.., SN} is the set of N input segmentations. An 
example of segmentation selected by using this criterion is 
shown in Fig. 1. In our experiments, the multiple 
segmentations are obtained by varying the number of 
regions between 2 and 20. 

 
Fig. 1 The segmentation selected by the normalized 

mutual information criterion. 

3. Object region likelihood estimation from 
boundary fragments 

The next step is to generate an object likelihood image, 
which encodes the likelihood of object/background 
membership at each pixel, from the fragments. To do this, 
we exploit the fact that the shape of a contour fragment and 
the location of the corresponding object region are 
correlated. For instance, the contours of human heads are 
usually convex and the head object is located in the inside of 
the convex contours as shown in Fig. 2. If there are other 
relations between the shapes of contours and the location of 
the corresponding object regions, these relations can be 
strong cues to decide which segments are the object regions 
in images.  

To estimate the object regions from the fragments found 
in the input images, we use an exemplar-based codebook 
which encodes the relations between the fragments and the 
corresponding object regions in the training images. In this 
section, we first explain how the codebook is generated. 
Then, we describe how the object region is estimated using 
the codebook. We use the figure/ground labeling data [9] to 
learn and evaluate the estimation of the object likelihood 
image.  

Final 
segmentation 

Multiple segmentations 
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Fig. 2 Relation between boundary and object region. 

3.1. Fragment codebook 
The exemplar based codebook is built by collecting 

boundary fragments and their corresponding object regions 
from the training data. The boundary fragments are 
collected from the training images through the following 
procedure: 
1. Over-segment the training data and obtain the 

fragments (Fig. 3 (b)). 
2. Assign figure/ground labels in the ground truth data 

(Fig. 3 (c)) to the fragments by bipartite matching [9] 
(Fig. 3 (d)). 

3. Discard the fragments which do not have enough 
consistent figure/ground labels connected to them (Fig. 
3 (e)). 

4. Normalize the center positions of all the fragments and 
their corresponding object regions.  

5. Collect the pairs of the fragments and their 
corresponding object regions (Fig. 3 (f)). 

We divide the large set of fragments into a smaller set of 
clusters. This is necessary because of the large number of 
pairs (fragments, regions) which prevents their direct use, 
e.g., in a nearest-neighbor approach. 

To cluster the fragments, we first construct a fully 
connected graph in which the nodes correspond to the 
fragments and the edges are weighted by te-d(fi,fj), where te 
is the threshold and d(fi,fj) is the distance between the two 
corresponding fragments to the nodes connecting the target 
edges. The distance between two fragments is computed by 
using the chamfer distance [25]. The distance between two 
fragments, fi and fj is:  
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where Ni and Nj are the numbers of pixels of fi and fj, 
respectively.   

To estimate the fragment clusters, we use the clique 
partitioning algorithm of [24]. This clique partitioning 
algorithm divides the graph into several disjointed 

sub-graphs so as to maximize the total weights of the 
remaining graph edges. The detailed algorithm is: 
1. Construct the initial clique set C so that each clique c 

in C contains one node of the graph. 
2. For each clique c in C, compute the best clique a(c) 

with which to merge and the corresponding score b(c):  
),,(maxarg)( tcmca Ct  ),,(max)( tcmcb Ct  (4) 

where m(c,t) is the sum of the weights of all the edges 
between c and t: 
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3. Merge cliques ci, cj if and only if a(ci)=cj and a(cj) = ci 

and b(ci) = b(cj) > 0. 
At step 2, the algorithm selects the pairs of cliques to merge 
next and based on the merging score of Eq. (4). At step 3, 
the algorithm merges two cliques if each one represents the 
best merging option for the other and if merging them 
increases the total score. Steps 2 and 3 are iterated until no 
clique can be merged. 

Clique partitioning produces a set of sub-graphs whose 
total edge weight is maximized. The set of fragments 
corresponding to the nodes in each sub-graph is grouped 
into a fragment cluster and the distances between the 
fragments in the fragment cluster are minimized because the 
edge weights increase as the distances between two 
corresponding fragments decrease and are maximized by 
the clique partitioning. The initial fragment set F is divided 
into m subsets, F1,..,Fm by applying clique partitioning to 
the graph. The fragment whose total distance to all the other 
fragments in the same cluster is the shortest is selected as the 
prototype fragment for that cluster. The prototype fragment 
is the one used for computing the distance between a new 
input fragment and a cluster. In our experiments, we set the 
threshold te to 2.0. 

3.2. Estimating the object likelihood map from a 
single fragment 

We use the codebook described in the previous section to 
estimate which image pixels are likely to belong to the 
object region attached to each fragment. We start by 
associating to each fragment f from a training image a binary 
mask pf, such that pf(x) is 1 if the pixel at position x in the 
image belongs to an object, 0 if it belongs to the background. 
To ensure invariance to translation of the object in the 
image plane, the position x is relative to the fragment. More 
precisely, x is the vector of pixel coordinates obtained by 
using the center of the fragment f as the origin of the 
coordinate system. We denote by fj

o the prototype fragment 
associated with cluster j. For each cluster j, we estimate an 
object likelihood image such that if x is the position of a 
pixel relative to the prototype fragment fj

o, the 
corresponding likelihood value is: 

Boundary 

 object 
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Fig. 3 The procedure for estimating the fragment labels  

(see text). 
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where Ncj is the number of fragments belonging to cluster j. 
Informally, pj(x) measures the likelihood that a pixel at  
relative position x belongs to an object instead of the 
background, given a fragment from cluster j. Fig. 4 shows 
six examples of the prototype fragments and the object 
likelihood images of the corresponding clusters. In Fig. 4, 
the first and the third rows show the prototype fragment in 
black and all the fragments in the cluster in gray. The white 
diamonds are the center positions of the fragments. The 
second and the bottom rows show the object likelihood 
images. As the object likelihood increases, the pixel 
intensity becomes darker. The white diamonds are the 
center position of the corresponding fragments. The object 
likelihoods of pixels under the horizontal lines (cluster 1) 
are higher than those above it. This bias arises because the 
horizontal lines in the training data tend to be the part of the 
horizon lines and the figure regions of the horizon lines are 
assigned to the regions under the horizon lines, that is, the 
ground regions. The object likelihoods for the vertical lines 
(cluster 2) are unbiased because the object regions could be 

  
Fig. 4 Examples of obtained fragment clusters (see text). 
 
on either side of the vertical lines. The other examples show 
the results of the convex fragments (cluster 3-6). The 
likelihoods of pixels inside the convex fragments are higher 
than those of the pixels on the outside. These results are 
consistent with our initial observations in Section 3. 

Given an input image, we estimate a similar likelihood 
distribution for every fragment f from the input image. The 
likelihood image for a single fragment f is estimated by 
summing the likelihood images from all of the clusters in the 
codebook, with higher weights given to clusters closer to f. 
More precisely, if f is a fragment from the input image, the 
likelihood map relative to f at pixel i is:  
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where Z is the normalization factor: Z = j w(f,fj
o). As a 

slight abuse of notations, we denote by xi the relative 
position of the pixel with respect to a fragment, even though 
we do not indicate explicitly which fragment since it is 
implicit in the form of the equation. The weight w is 
designed to favor clusters close to the input fragment f and it 
is computed as:  
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o
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where k is set to 4 in the experiments below and d(.,.) is the 
distance defined in Eq. (3).  

(a) Training data (b) Over-segmentation 

White: figure side  Black: ground side 
   Blue: fragments without enough figure/ground labels 

(c) Ground truth (d) Labeled fragments 

(e) Labeled fragments 
for training data 

(f) Examples of fragments 
(black) and their object 

regions (gray) White: figure side  
Black: ground side 

Fragments 1 Fragments 3 

Fragments 4 

Object region 4 
Cluster 4 

Fragments 5 

Object region 5 
Cluster 5 

Fragments 6 

Object region 6 
Cluster 6 

Fragments 2 

Object region 1 
Cluster 1 

Object region 3 
Cluster 3 

Object region 2 
Cluster 2 
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Fig. 5 Object likelihood for a single fragment (see text). 
 

 
Fig. 6 Object likelihood for a single fragment with 

natural image (see text). 
Fig. 5 shows examples of object likelihood maps. With 

the input image (Fig. 5 (a)) and the potential occlusion 
boundaries estimated by the algorithm of Section 2 (Fig. 5  
(b, red lines)), the object likelihood for every potential 
occlusion boundaries is estimated. Fig. 5 (c) shows the 
object likelihood for a horizontal fragment, a slanted 

fragment and a convex fragment from left to right. In Fig. 5 
(c), the object likelihood increases as the pixel color 
becomes darker. The red lines in Fig. 5 (c) are the target 
fragments with which the object likelihood is estimated. In 
the horizontal fragment and the slanted fragment case, the 
likelihoods of pixels under the fragments are higher than 
those above them. In the convex fragment case, the 
likelihoods of pixels inside the convex fragment are higher 
than those of the pixels on the outside. These biases are 
obtained with the fragment and their regions in the 
codebook automatically.  
 Fig. 6 shows examples of object likelihood estimated 
from a natural image. The object likelihoods of the pixels 
belonging to the true objects (bear) are higher than those of 
the other regions when estimated with the slanted fragments 
in the top two rows. Though the object likelihoods 
estimated with the convex fragment in the third row images 
is composed of a few object region exemplars, the object 
likelihoods of the pixels inside the convex fragments are 
higher than those of the pixels on the outside. With the small 
horizontal fragments in the bottom row images, the object 
likelihoods of the water region become higher than those of 
the bear regions. However, the object likelihoods of the 
pixels above the target fragment are also high and they are 
still useful for the estimating the object likelihood map for 
the whole image describes in the following section. 

3.3. Estimating the object likelihood map from the 
whole image 

After obtaining the set of candidate occlusion boundary 
fragments f1,..,fn, we estimate the likelihood of pixel i to be 
on an object in the image by combining the contributions of 
all the fragments to pixel i:  

).()( j
j

ji fcxpp   (9) 

The same abuse of notation is used as before for x.  If C(fj) is 
the value of the output of the boundary detection algorithm 
of Section 2, c(fj) is the confidence normalized over the 
entire image: 
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 Fig. 7 shows the result of the object region estimation on 
a toy image. Fig. 7 (a) shows the input image, (b) shows the 
occlusion boundary fragments (red lines), (c) is the 
estimated result and (d) is the averaged likelihood of the 
segments. Brighter regions or segments correspond to 
higher likelihood values in (c) and (d). As seen in Fig. 7 (d), 
the pixels on the objects have higher likelihood than the 
background. 

In all of the examples shown in this section, we used 100 
training images from the data set of [9] from which the 
algorithm of Section 2 generated 9852 fragments which are 
summarized in 142 clusters.  

Target fragment 
 (red lines) 

Estimated object 
likelihood 

(a) Input image (b) Occlusion 
boundaries (red lines) 

(c) Object likelihood 
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Fig. 7 Likelihood estimation for the whole image.  

 

 
Fig. 8 Labeling boundary fragments. 

3.4. Estimation results 
To evaluate the performance of the object region 

estimation, the fragments in the images are assigned the 
figure/ground labels through the following algorithm:  
1. Estimate the object regions for the whole image (Fig. 8 

(b)). 
2. Average the likelihood in each segment (Fig. 8 (c)). 
3. Assign figure/ground labels to each occlusion 

fragment by comparing the averaged figure probability 
(Fig. 8 (c)) of the two segments connected to the 
fragment (Fig. 8 (d)). 

After the figure/ground labels are obtained, the evaluation is 
performed by following the same protocol as in [9] and the 

result is compared with the local shapeme and global CRF 
based on the Pb boundaries described in [9]. The precision 
rate of the figure/ground estimation, 65.1%, is comparable 
to the precision rate of Ren’s method [9] based on local 
shapemes. It is lower by 4% than Ren’s global CRF because 
we do not use an additional step of global smoothing. This is 
a natural extension for future work. This result shows that 
this approach is competitive with the most related approach 
with the key difference that it produces additional 
information in the form of the object likelihood maps. In the 
next section, we combine the likelihood maps with the 
segmentation of Section 3 to generate the final object 
segmentation. 

4. Combining segmentation and object region 
estimation 

The last step is to combine the segmentation selected by 
the algorithm of Section 3 with the likelihood map 
generated by the algorithm of Section 4. The proposed 
method obtains the object regions by integrating the optimal 
segmentation chosen by normalized mutual information and 
the estimated object likelihood images. The integration is 
performed as follows: 
1. Generate the boundary fragments of the segmentation 

(Fig. 9 (b)) chosen by normalized mutual information 
(Fig. 9 (c)). 

2. Obtain the average object likelihood (AOL) from the 
object likelihood image estimated in Section 4 (Fig. 9 
(d)) in two thin regions around each fragment (Fig. 
9(e)). 

3. Assign figure/ground labels to the fragments (Fig. 
9(f)) by calculating the confidence values cf  : 

)()( AOLRightAOLLeftc f  . (11) 
Each fragment is oriented and the left and right sides 
are defined according to the fragment direction. 

4. Threshold the absolute confidence values (Fig. 9(g)). 
5. Derive the figure confidence map (Fig. 9(h)) by 

assigning to each segment a figure confidence cs : 
),(#)((#1 labelsgroundlabelsfigure

N
c

p
s   

(12) 

where Np is the number of pixels on the all fragments 
surrounding the segment. 

6. Decide the threshold which divides the figure 
confidence map into the figure region and the 
background region by separating the two regions so 
that their combined variance is minimal. 

7. The final result is obtained by thresholding the figure 
confidence map with the threshold obtained at the 
previous step (Fig. 9(i)). 

Fig. 10 shows other examples on natural images. Even 
though each object region includes some background, this 
method detects the approximate object regions. Table 2 
summarizes the quantitative evaluation of the system on the 

(a) Input image (b) Estimated object region 

(c) Averaged 
object likelihood 

(d) Figure/ground labels  

Occlusion boundary 
fragments 

Figure : right 

Figure : left 

(a) Input image (b) Fragments 

(c) Estimated object 
region 

(d) Averaged object 
likelihood   

74



 

 

data of [9]. We used the same procedure as Ren's [9] to 
derive the precision rate. The generation of the likelihood 
image from boundary fragments yields similar performance 
as the local approach of [9] based on shapemes and Pb 
boundaries. However, it enables us to combine the evidence 
from the boundary fragments with region segmentation to 
yields higher performance than the global version of [9] in 
which the local evidence is combined into a global 
interpretation by using a CRF based on Pb boundaries. The 
performance is evaluated on 100 test images, using 100 
images for training. As in Section 4, we used 142 clusters to 
represent the fragments from the 100 training images. 

Fig. 11 shows some failure examples. The shadow 
regions are detected in the first row image. The proposed 
method cannot distinguish the shape of the physical 
boundaries and the shape of the shadow boundaries because 
the shadow shape reflects the physical boundaries.  This 
method also finds the trees in the second image because 
there are some similar boundaries between the sky and the 
trees in the training data and the tree regions are more 
figural than the sky. The polar bears in the third row image 
are not detected.  The boundaries of the right polar bear’s 
neck are assigned the wrong labels because the downside 
boundaries of the neck are almost horizontal and this 
method estimates that the figure regions for these 
boundaries are under them.  

Table 2 Precision of figure/ground labeling 
Object 
region from 
boundary 
fragments 
(Section 4) 

Combination 
boundary 
fragments and 
region 
segmentation 
(Section 5) 

Local 
shapeme 
[9] 

Global  
CRF [9] 

Human  
labeled  
ground  
truth 

65.1% 78.0% 64.9% 68.9% 88% 

5. Conclusion 
This paper describes a general approach to estimating 

object regions from local contour configurations. The shape 
of the object contours implies the positions of the objects. 
We extract the relations between the contour shape and the 
object position and estimate the figure region in the image 
with the relations. We also automatically choose the optimal 
segmentation among the multiple segmentations with 
normalized mutual information. By integrating the figure 
region estimation and the optimal segmentation, the 
important object regions are segmented out without the 
object specific knowledge.  
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Fig. 9 Combining segmentation and object likelihood. 

 
Fig. 10 General object segmentation results. 

 

Fig. 11 Example of incorrect segmentations. 
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