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Abstract

Future intelligent environments and systems may need to
interact with humans while simultaneously analyzing events
and critical situations. Assistive living, advanced driver as-
sistance systems, and intelligent command-and-control cen-
ters are just a few of these cases where human interactions
play a critical role in situation analysis. In particular, the
behavior or body language of the human subject may be a
strong indicator of the context of the situation. In this paper
we demonstrate how the interaction of a human observer’s
head pose and eye gaze behaviors can provide significant
insight into the context of the event. Such semantic data de-
rived from human behaviors can be used to help interpret
and recognize an ongoing event. We present examples from
driving and intelligent meeting rooms to support these con-
clusions, and demonstrate how to use these techniques to
improve contextual learning.

1. Introduction
Those Intelligent Environments that must assist humans

in time- and safety-critical situations would benefit from
using contextual information in recognizing objects and
events. Such support systems could observe multimodal
cues from humans as well as the environment to robustly
and efficiently analyze the scene. Context information that
could be derived from human behavior include, for exam-
ple, whether there are distractions, or what kinds of goals
the humans have in mind. Such cues might manifest them-
selves in various human behaviors under different contexts.
This leads to two related questions:

1. Is it possible to observe differences in human behav-
ioral cues in different contexts?

2. Is it possible to extract and use those cues to help iden-
tify or learn contextual information?

In particular, the task of driving offers many avenues for
intelligent systems to assist people in improving safety and
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Figure 1. Flowchart of proposed approach for context and situation
analysis. The body language analysis is used to derive attentional
behavior, which can give important clues to the context analysis
engine.

performance. Every year there are over one million traffic-
related fatalities worldwide [27], with an estimated 26,000
in the U.S. alone due to driver inattention [16, 1]. Re-
cent advances have promoted the integration of driver be-
havior analysis into Intelligent Driver Assistance Systems
[36, 35], to counteract inattention and poor driving behav-
ior. The analysis of body language in critical situations,
such as the time prior to a lane change, becomes central in
giving these systems the ability to predict the context of the
situation.

Another environment in which an intelligent system
could benefit from human behavior-related context analysis
is in intelligent Command-and-Control centers or intelligent
meeting rooms. An interactive system monitoring the par-
ticipants or operators, could base decisions on context and
amount of required assistance upon the subjects’ body lan-
guage. This may help reduce distractions and help improve
performance of whatever task is being performed.

For example, if an operator is checking a particular mon-
itor for some expected information, they may have different
body language than when they are distracted by something
or if something on the monitor draws their attention unex-
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pectedly. Landry et al. [15] discovered that certain patterns,
or “gestalts”, of aircraft on a radar screen drew the attention
of the air traffic controllers due to their location, though they
were not relevant to the task. An air traffic control training
manual from the FAA [4] states that “even in low-workload
conditions, distractions can clobber short-term or working
memory.” An assistance system could mitigate this dan-
gerous situation with knowledge of the context of the at-
tention shift, with warnings when the attention shift is not
task-related.

In this paper we demonstrate how the interaction of an
observer’s head pose and eye gaze behaviors can provide
significant insight into the context of the event, as seen in
Figure 1. In essence, we claim that one can detect whether
the human subject had prior knowledge of the scene or the
task upon which they are focusing. That contextual knowl-
edge may be useful to real-time interactive object and event
recognition systems. Specifically, it could provide seman-
tic hints such as whether there is a distraction in a scene,
or what kinds of goals the human subjects are pursuing.
We present examples from driving and intelligent meeting
rooms to support these conclusions.

The remainder of the paper is organized as follows. Sec-
tion 2 covers previous work, and an overview of gaze behav-
iors is presented in Section 3. Supporting analysis from an
intelligent meeting room-style environment is in Section 4,
with further analysis from a driving-related environment in
Section 5. A concluding discussion appears in Section 6.

2. Related Research
2.1. Human Behavior Analysis and Prediction

A great amount of recent research has been in the de-
tection of human behaviors. Many of these examples use
patterns of human behavior to learn about the scene or pre-
dict future behaviors [33, 26, 29]. In considering time-
and safety-critical situations such as driving scenarios, we
present an overview of research related to behavior analysis
and prediction in vehicles.

2.1.1 Driver behavior and Intent Prediction

Recent research has incorporated sensors looking inside the
vehicle to observe driver behavior and infer intent [36, 35].
Bayesian learning has been used to interpret various cues
and predict maneuvers including lane changes, intersection
turns, and brake assistance systems [6, 21, 20]. More re-
cently head motion has been shown to be a more useful cue
than eye gaze for discerning lane change intentions [7].

The assumption made in all of these systems has been
that head motion or eye gaze is a proxy for visual atten-
tion. In other words the system tries to measure head motion
given that the driver is likely paying attention to whatever

they are looking at, in whichever direction they are look-
ing. The system then infers that because their attention is
in a certain direction, they must have goals associated with
that direction. For example, a driver may look left prior to
changing lanes, as a direct result of their need to be attentive
of vehicles in the adjacent lane.

2.2. Gaze behavior and Visual Search

However a gaze shift may or may not be associated with
a particular goal. The broad question of “why people look
where they look” is a subject of research for cognitive psy-
chologists, neuroscientists, and computer vision researchers
alike.

A significant amount of research in psychology has ex-
amined whether such visual searches are guided by goals
(such as the goal of changing lanes), or by external stim-
uli [12, 25, 30, 13, 32]. These stimuli may include visual
distractions, which could pop up in a scene and thereby at-
tract the attention of the observer. For the most part any vi-
sual search is presumed to be guided by some combination
of a goal-driven and stimulus-driven approach, depending
on the situation [39].

Itti et al. [12, 25, 30] have made inroads in developing
saliency maps that model and predict focus of attention on
a visual scene. Initial models were based on “bottom-up”
based cues, such as edge and color features. However it
was found that “top-down” cues may be more influential;
in other words the context of the scene and the goals of
the human subject are crucial to determining where they
look. Jovanevic et al. [13] determined that even in the pres-
ence of potentially dangerous distractions, in complex en-
vironments gaze is tightly coupled with the task. Several
other works have similarly concluded that in natural envi-
ronments, saliency does not account for gaze, but task and
context determine gaze behavior [14, 32, 11, 41].

It is clear that in certain critical environments, distrac-
tions play an important role in attracting attention. Carmi
and Itti [5] show that dynamic visual cues play a causal role
in attracting visual attention. In fact, perceptual decisions
after a visual search are driven not only by visual informa-
tion at the point of eye fixation but also by attended informa-
tion in the visual periphery [10]. In certain cases these stim-
uli may affect task performance; Landry et al. [15] found
certain unrelated gestalt motion patterns on radar screens
drew the attention of air traffic controllers away from the
task at hand. In the driving context there are many well-
known cognitive and visual distractions that can draw the
driver’s attention [1]. Recarte and Nunes [31] measured
the number of glances to the mirror during a lane change,
noting that visual distractions decrease the glance durations
from by 70-85%. This result is well-aligned with more
recent results indicating the limitations of drivers’ multi-
tasking abilities [18]. Moreover, some suggest that visual
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distractions may even increase likelihood of “change blind-
ness”, a phenomena whereby a subject may look in a cer-
tain area and not see or comprehend the objects in front of
them [9, 17]. In these cases, it would be useful to know
whether a gaze shift is attributable more to irrelevant visual
stimuli or to a specific goal or context.

Several studies have used eye gaze or head pose to de-
tect the attention of the subject [3], or estimate user state
or gestures [2, 19]. As shown in Figure 1, we instead use
the interaction of eye gaze and head pose to determine the
attentional state of the subject, and proceed to use that infor-
mation as contextual input to event detection and criticality
assessment systems. In the following section we describe
the framework of eye-gaze interactivity analysis, and in the
later sections we describe some supporting experiments.

3. Framework for Proposed Approach

3.1. Attention shifts: top-down versus bottom-up

Attention shifts can be of two kinds, or some combina-
tion of the two [39]. Top-down attention shifts occur when
the observer has a particular task in mind. This task may
necessitate a visual search of a potentially predetermined
location, or a search of likely relevant locations. An ex-
ample may be as simple as shifting one’s attention from a
television to a newspaper, after having turned the television
off. There may also be learned tasks, such as the search for
oncoming cars when crossing a road, as a driver in a vehicle
or as a pedestrian at a crosswalk.

Bottom-up attention shifts are caused by interesting
stimuli in the environment. These stimuli may include dis-
tractions or salient regions of a scene. For example, flash-
ing police lights on the highway may draw unnecessary at-
tention, as may an instant chat message popping up on the
screen during a technical presentation.

In many cases an object in the scene may easily be a dis-
traction in one instance, and part of the task at hand at an-
other time. For example, in a classroom, the person stand-
ing in front of the blackboard may be the teacher during a
lesson, to whom the student should be paying attention. On
the other hand, the person in front of the blackboard may
just be someone walking by, who is distracting the student
from the task at hand. By classifying the student’s interac-
tive behaviors, we may be able to easier set the context for
each object and thereby improve recognition.

3.2. Head and Eye Gaze during attention shifts

Zangemeister and Stark [40] performed a controlled
study of eye-head interactions and posited various condi-
tions of different styles of eye-head movements. In their
paper they found several styles of movements, depicted in
Figure 3.2. Among the most pertinent of movements are
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Figure 2. Examples of various interactions of head and eye move-
ments, with type labels from [40]. Note in certain cases eye gaze
tends to move first, where in others the head tends to move first.

those labeled “Type III,” which include early or anticipa-
tory head movement with respect to the gaze shift. They
theorized that this behavior is associated with a repetitive,
predetermined, or premeditated attentional shift, as is the
case for any goal-directed attentional shift.

Morasso et al. [22] examined control strategies in the
eye-head system, and observed that “The head response [to
a visual target], which for random stimuli lags slightly be-
hind the eyes, anticipates instead for periodical movements
[of the target].” The implication is once again that for
trained or predetermined gaze shifts, the head movement
anticipates the gaze.

Indeed eye shifts can occur much faster than head move-
ments and thus near-instantaneous gaze changes can be
made with eye shifts alone. Shifts of larger amplitudes
would necessitate a head movement to accommodate the
limited field of view of the eyes. Most likely, when a large
visual attentional shift is about to occur, and the observer
has prior knowledge of the impending shift, these studies
imply that there may be some amount of preparatory head
motion [28].

In the following sections, we show that by extracting the
dynamics of eye gaze and head pose, it may be possible
to identify those gaze shifts which are associated with pre-
meditated or task-oriented attentional shifts. In each case,
we find that a majority of task-related shifts occur with an
anticipatory Type III gaze shift. Based on these results and
the studies listed above, we might further hypothesize that
a Type III gaze shift could imply a task-related shift, and
Types I or II are more likely to occur in conjunction with
stimulus-related and smaller gaze shifts.
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4. Experiments with Visual Displays

In the case of intelligent rooms such as Command-and-
Control centers or Meeting rooms, it may be useful to an-
alyze the behavior of the participants in order to sense the
context of the interaction. For example, if the focus of at-
tention shifts to a projection screen at some point, it may be
due to a direction by some participant, or due to a distrac-
tion. In such a case, if we are able to detect a Type III visual
search by a participant, it may indicate that the attention
shift was goal-oriented and thus the material on the screen
may be relevant to the current discussion. The context may
be different if the participant is bored or distracted, in which
case an ambient sensor may be directed to find the source
of the distraction.

In this section we present the results of a meeting simu-
lation study in which we analyze the gaze behavior of the
participants in various situations. The results will demon-
strate the feasibility of detecting body language to help infer
events and the current context of the meeting.

4.1. Data collection

The setup in this experiment is designed to simulate a
tele-conference or meeting presentation, where there is one
main speaker with slides as additional material. This could
of course be repeated with real people as opposed to videos
of people, as in a meeting room scenario. However to main-
tain repeatability, videos are used in these trials.

As shown in Figure 4.1, the subject is seated facing a
main monitor displaying a video of a presenter; and their
slides show up on a side monitor sitting on the left side of
the participant. The video is simply one of a professor lec-
turing, with the corresponding presentation slides shown on
the side monitor.

Participants are instructed to pay attention to the video
presentation as they might do naturally. They are also di-
rected, as a secondary task, to glance over at the slides
on the side monitor whenever the video professor indicates
to do so (by pointing or looking over his shoulder). This
gaze-following/side-monitor-checking task would simulate
a goal-oriented attention shift in the subject.

At various other times during the experiment, an attempt
is made to distract the subject from their task, without the
subject’s knowledge. These distractions include flickering
small LED’s, abruptly changing the display on the sec-
ondary monitor, and arbitrarily moving into the subject’s
peripheral field of view to halt the experiment. These dis-
tractions are chosen simply because they are capable of
drawing the subject’s visual attention away from the task
at hand. Whenever the distraction is successful at engag-
ing the visual attention of the subject, a note is made of that
time.

It is important to note that a thorough treatment of dis-

Primary Display

Secondary Display

Head & Eye Tracking System

Figure 3. Setup of the Intelligent Room experiment. Note the sub-
ject has to maintain focus on the primary monitor while checking
the secondary monitor under certain conditions. The head and eye
motion is tracked using a commercial eye tracking system.

tractions would require controls for numerous variables in-
cluding the awareness level of the subject, which is beyond
the scope of these preliminary experiments. Future work
would include measuring and accounting for such variables
to gain further insight. However currently we find that it is
enough to note the existence of a reaction to a visual dis-
traction; when there is no reaction we simply ignore that
example in analysis. As seen in the results in Table 4.2,
this artificially deflates the number of False Negative detec-
tions, although we are able to draw interesting conclusions
even without those results.

During the entire experiment, eye gaze and head pose are
captured by using a commercially-available non-intrusive
stereo-camera eye tracking system. The system uses in-
frared illumination and requires manual calibration for each
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Table 1. Confusion Matrix for Detecting Goal-Oriented Gaze
Shifts (G) versus Stimulus-Oriented Shifts (S) in Meeting-Room
Experiment

Number of examples...
Actually G Actually S

Predicted G 46 0
Predicted S 6 9

subject. In addition to outputting data related to eye and
head dynamics, it also outputs a confidence gauge in its
own estimates. To ensure reliability results are retained only
when this measure remains above a significant threshold.

4.2. Analysis

A total of six subjects were tested in this experimen-
tal setup, each on 10 to 15 minutes of lecture-style video.
Out of all the data, 61 usable gaze shifts were found, as
others were discarded due to low tracking confidence or
noise. These gaze shifts were then manually labeled as
either ’stimulus-oriented’, if there was a distraction was
present during the gaze shift, or ’goal-oriented’.

According to the hypothesis presented above, there may
be a particular interaction between eye gaze and head pose,
indicative of a goal-oriented gaze shift. Specifically, in the
Type III case, a preparatory head motion may occur before
the actual gaze shift. In order to detect such a motion, if
it exists, we first must find the exact locations of the start
of the actual gaze shifts. These shifts occur at an inflection
point in the eye gaze signal, which is found as the maxi-
mum of the second derivative of eye gaze signal. To ensure
robustness we only search for second derivative maxima in
a small window around peaks in the raw eye gaze signal.

We then measure the average head motion, over a .5-
second window prior to the initial gaze shift. If this mo-
tion is relatively small, then we might conclude there is no
preparatory movement; on the other hand a large motion
vector might likely indicate a Type III interaction associ-
ated with goal-oriented gaze shifts.

Optimal results were obtained by setting a threshold of
approximately .15 radians per second. As shown in Ta-
ble 4.2, 46 goal-oriented gaze shifts were correctly iden-
tified, for a detection rate of 88.5%. The stimulus-oriented
shifts were all correctly classified as well, though in smaller
numbers.

A closer look at some of the raw data gives some inter-
esting insight. The top of Figure 4 shows several exam-
ples of the eye gaze and head pose data from goal-oriented
gaze shifts, while the bottom shows some stimulus-oriented
shifts, from various subjects in this meeting-style experi-
ment. An intelligent environment may be able to spot the
body language of these subjects and either assist them in
their task, or gain clues on how to detect and reduce distrac-
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Figure 4. Various examples of goal-oriented (a) and stimulus-
oriented (b) gaze shifts obtained from an interactive meeting room-
style experiment. Note the preparatory head motion prior to the
goal-based shifts.

tions.

5. Experiments with Naturalistic Driving
McCall et al. [21] demonstrated the ability to detect a

driver’s intent to change lanes up to 3 seconds ahead of
time, by analyzing driver head motion patterns. Doshi and
Trivedi [7] extended this study and found that head motion
was in fact an earlier predictor of lane change intentions
than eye gaze. However the reasons for this interesting find
were not clear.

We propose that the visual search that occurs prior to
lane changes, and potentially in other similar common driv-
ing maneuvers, is initiated by a top-down process in the
driver’s mind. The driver has a goal in mind, and thus is
trained to initiate a search in particular locations such as
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the mirrors and over the shoulders, for obstacles. Here we
present a deeper analysis into real driving data to support
this hypothesis, that the visual search prior to lane changes
is a Type III search. The ability to detect this type of be-
havior is crucial in being able to identify the context of the
situation, and then to assess its criticality or determine if
objects around the vehicle are of interest.

5.1. Data collection

For this research, data was collected in a driving exper-
iment with an intelligent vehicle testbed outfitted with a
number of sensors detecting the environment, vehicle dy-
namics, and driver behavior. This data is drawn from the
same data as was used in the lane change intent work by
McCall et al. [21]. A camera-based lane position detector
and CAN-Bus interface provided most of the data related to
the vehicle and surrounding environment.

The main driver-focused sensor was a rectilinear color
camera mounted above the center console facing toward the
driver, providing 30fps at 640x480 resolution. To calculate
head motion, optical flow vectors were compiled and av-
eraged in several windows over the driver’s face (detected
with a Viola-Jones [37] face detector). This method was
found to be stable and robust across different harsh driv-
ing conditions and various drivers. Other methods could
be used for these purposes [24, 23]. Various automatic eye
gaze detectors exist (e.g., [38]), however to ensure accuracy
and reliability, eye gaze was labeled using a manual reduc-
tion technique similar to several recent NHTSA studies on
workload and lane changes [16, 1].

The dataset was collected from a naturalistic ethno-
graphic driving experiment in which the subjects were not
told that the objective was related to lane change situations.
Eight drivers of varying age, sex, and experience drove for
several hours each on a predetermined route. A total of 151
lane changes were found on highway situations with min-
imal traffic. 753 negative samples were collected, corre-
sponding to highway “lane keeping” situations.

5.2. Analysis

These examples were used with the features described
above to train a classifier to predict 3 seconds in advance of
a lane change, whether the driver would intend to change
lanes. Another classifier was train for 2 seconds ahead of
the lane change. In these studies an extension of SVM,
namely Relevance Vector Machines, was used to classify
to enforce sparsity and account for fewer training exam-
ples [34, 21]. In a comparative study, Doshi et al. [8] found
that such a classifier based on head motion has significantly
more predictive power than one based on eye gaze 3 sec-
onds ahead of the lane change, but not 2 seconds ahead of
time.

Table 2. Average Intent Prediction Confidences (IPC) for Each
Type of Classifier

Seconds before Lane Change: 3 Sec 2 Sec
Eye-Gaze Classifier (IPCeye) 0.27% 46.91%
Head-Pose Classifier (IPChead) 44.11% 66.39%
ANOVA: IPChead > IPCeye p < .01 p > .05

By looking at the outputs of each classifier, we can get a
better sense of the performance of eye gaze and head pose
over time. Specifically, the RVM classifier outputs a class
membership probability, ranging from -1 (for negative ex-
amples) to 1 (for positive examples); thus the more positive
the value, the more confident it is in its predictions of a true
intention. By looking at the average over all positive exam-
ples of these “Intent Prediction Confidences,” in Table 5.2,
we can tell that the Eye-Gaze-based classifier is hardly bet-
ter than chance 3 seconds before the lane change, but im-
proves significantly in the 2 second case. On the other hand,
the Head-Motion-based classifier works very well even in
the 3 second case.

The results suggest that drivers engage in an earlier
preparatory head motion, before shifting their gaze to check
mirrors or blind spot. A number of samples of eye gaze vs.
head pose can be seen in Figure 5, with the top of that fig-
ure showing actual pictures of the driver at various points
through the maneuver. The preparatory motion can cer-
tainly be seen in many of these cases.

ANOVA significance tests comparing the population of
Intent Prediction Confidences (IPC) demonstrate quantita-
tively that the preparatory head motion prior to the eye gaze
shift, is a significant trend across all drivers (p < 0.01).
This implies that the detection of a Type III gaze shift may
be quite useful in future Advanced Driver Assistance Sys-
tems, by helping to determine the context of the drive and
whether the driver is indeed paying attention or not.

6. Concluding Remarks
There are many arenas for intelligent systems to signif-

icantly improve safety and comfort of everyday life. Intel-
ligent systems and agents can monitor the environment and
gain contextual awareness of a situation in order to assist
people in performing a task, or even to perform the task
independently. In many situations, the interactions of hu-
man subjects is an essential key to understanding the en-
vironment and the context of the situation. Real-time ob-
ject or event detection systems could find semantic data de-
rived from human behaviors useful when interpreting a vi-
sual scene.

A particular aim of this project has been to use computer
vision to determine whether a visual search is more influ-
enced by a top-down goal or a bottom-up stimulus. Existing
research hypothesizes, as the success of previous intent de-
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Figure 5. Various samples of eye-head motion prior to lane
changes in several test subjects. Images from an actual natural-
istic driving experiment are shown above, with a depiction of each
stage of the gaze shift where the head moves first.

tection models reasonably demonstrate, that while perform-
ing a specific task, most gaze changes will be associated
with the task-oriented visual search [32]. However distrac-
tions are a well documented and growing risk in driving and
other environments, and so external stimuli may be increas-

ingly competitive with driving tasks in attracting attention.
Intelligent environments would benefit from the knowledge
of the cognitive processes behind attentional shifts in hu-
mans, as such contextual clues could direct the system to
assist or act appropriately in critical situations.

We have quantitatively demonstrated the ability to distin-
guish goal-oriented behaviors in humans by analyzing the
interaction of head and eye movements. These results are
seen in experiments from an intelligent room and intelligent
vehicle scenarios. By distinguishing such body language
we are better able to draw out the context of the scene, and
whether that context is time- or safety-critical. Intelligent
environments could use this context to assist humans and
improve the safety and comfort of their interactions and sur-
roundings.
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