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Abstract

Contextual models play a very important role in the task
of object recognition. Over the years, two kinds of con-
textual models have emerged: models with contextual in-
ference based on the statistical summary of the scene (we
will refer to these as Scene Based Context models, or SBC),
and models representing the context in terms of relation-
ships among objects in the image (Object Based Context, or
OBC). In designing object recognition systems, it is neces-
sary to understand the theoretical and practical properties
of such approaches. This work provides an analysis of these
models and evaluates two of their representatives using the
LabelMe dataset. We demonstrate a considerable margin of
improvement using the OBC style approach.

1. Introduction
In the computer vision community, contextual models

for object recognition were introduced in late 1980’s and
early 1990’s [1, 6, 11], and were popularized by Oliva and
Torralba in 2001 [7]. While they employ a variety of for-
mulations, most of the approaches can be classified into
two general categories: (i) models with contextual infer-
ence based on the statistical summary of the scene (we will
refer to these as scene based context models, or SBC), and
(ii) models representing the context in terms of relationships
among objects in the image (object based context, or OBC).

The approach of [7], later termed Gist [12], was funda-
mental among the SBC models. Since then, variants of the
SBC model were presented in [3, 5, 14, 15]. These recent
works have shown that a statistical summary of the scene
provides a complementary and effective source of infor-
mation for contextual inference, which enables humans to
quickly guide their attention to regions of interest in natural
scenes.

SBC models of context, Gist-based approaches in partic-
ular, aim to capture the surrounding information around the
object of interest. By incorporating the statistics of the clut-

ter or background, context becomes a global feature of the
object category. For example, refrigerators usually appear
in a kitchen, thus the usual background of refrigerators is
similar. Having learned such a global feature of an object
category, one can infer a potential object label: if the back-
ground resembles a kitchen, then the patch of interest may
be a refrigerator. However, many objects can have similar
backgrounds, e.g., refrigerators, coffee makers, and stoves
all belong in the kitchen. Alternatively, instances of a par-
ticular object (a face or a car), may have very different back-
grounds depending on the environment they are in. Faces,
for example, may appear outdoors or inside, at night or dur-
ing the day. As illustrated in Figure 1(a,c), the background
of an object may not always be indicative of the object itself.

Proceeding with the SBC model, after measuring the
global features of the image, one first infers the scene con-
text of the image, e.g., kitchen, and then with scene context
in hand, the label of the object is inferred, e.g., refrigera-
tor. Notice that if the scene context is inferred incorrectly, it
becomes impossible to identify the object label accurately.

(a) (b) (c)

Figure 1. The structure of objects and their backgrounds (taken
from [12]). In this illustration, each image has been created by
averaging hundreds of images containing a particular object in the
center (a face, keyboard and fire hydrant) at a fixed scale and pose.
Before averaging, each image is translated and scaled so that the
target object is in the center. The averages can reveal the regulari-
ties existing in the color/brightness patterns across all the images.
However, this behavior is only visible for the keyboard in (b). In
(a), the background of a face is approximately uniform, since faces
appear in a variety of settings. Alternatively in (c), the background
of a fire hydrant, may be identical to that of a bus stop or a street
sign.
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An alternative approach to Gist and other SBC models
is to use a method based on the OBC model, variants of
which were presented by [2, 8]. Rather than measuring
global image statistics, inter-object constraints are imposed
on potential object candidates in the image. With learned
category interaction probabilities, either from training data
or generic sources on the web, object labels are given to
image regions, such that mutual co-occurrence and spatial
constraints among all the object labels in the image are max-
imized. In OBC approaches, only the object category labels
must be inferred given the context between categories and
individual object appearance, without regard for scene con-
text. To illustrate this further, turn to the example of an
idealized OBC model in Figure 2, taken from [8].
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Figure 2. A possible idealized model for object recognition. An
original image is segmented into objects; each object is catego-
rized; and object labels are adjusted with respect to semantic con-
text in the image. As a result, the label of the yellow blob changes
from “Lemon” to “Tennis Ball”.

In the scene of a tennis match, four objects are de-
tected and categorized: “Tennis court”, “Person”, “Ten-
nis Racket”, and “Lemon”. Using a categorization system
without a contextual module, these labels would be final;
however, in context, one of these labels is not satisfactory.
Namely, the object labeled “Lemon”, with an appearance
very similar to a “Tennis Ball” is mislabeled due to the
ambiguity in visual appearance. By modeling context with
OBC constraints provided by an oracle, the label of the yel-
low blob changes to “Tennis Ball,” as this label better satis-
fies the contextual conditions. While the above mentioned
formulations of context appear rather different, it is clear
that inclusion of context, in some form, in object recogni-
tion is a must. Thus, we are faced with a dilemma: which
contextual model is more suitable in the framework of au-
tomated object recognition or categorization? Furthermore,
which model is simpler, and finally, do the differences in
the formulations matter? In the following sections, we pose
both SBC and OBC models in a manner most suitable for a

comparison and an evaluation.

2. Scene Based Context (SBC) Model
To provide the necessary analysis of SBC models we

pick a representative formulation of Gist. To stay consis-
tent with the original work, we will use the same notation
as in [12].

Consider an image with image statistics represented by
some measurement v. In particular, let v = {vL, vC},
where vL refers to statistics in the local spatial neighbor-
hood, at scale σ, around some interest point at location
x; vL = {σ, x}. vC captures the image statistics from
the rest of the image (contextual information); vC is a low
dimensional holistic representation that encodes the struc-
tural scene information. In other words, there is a corre-
lation between low level representation of the scene and
the objects that can be found inside. A typical appearance
based object likelihood function p(O|v) = p(O,v)

p(v) , with
O being the object of interest, can now be re-written as
p(O|v) = p(O|vL, vC). It is important to note that ma-
jority of the existing approaches to recognition simply omit
vC , and only compute p(O|vL). To formally include the
contextual information into the objective function, we use
Bayes’ rule to re-write (1):

p(O|v) =
p(O, v)
p(v)

=
p(vL|O, vC)p(O|vC)

p(vL|vC)

=
p(vL|O, vC)p(O|vC)

p(σ, x|vC)

=
p(vL|O, vC)p(O|vC)
p(σ|x, vC)p(x|vC)

, (1)

where p(vL|O, vC) refers to the spatial relationship be-
tween objects: knowing the object label O, and the con-
text of the scene vC , what is the most probable location of
the object in such an image; p(σ|x, vC)p(x|vC) is the nor-
malization term referring to the distribution of scales and
locations for various contexts; and finally p(O|vC) is the
contextual object recognition term.

Let us concentrate on p(O|vC). The object label O in-
corporates the scale at which the object is found, the label,
and the location in the image: O = {σ, o, x}. The function
of interest here, p(O|vC), can thus be factored as:

p(O|vC) = p(σ|x, o, vC)p(x, |o, vC)p(o|vC), (2)

where p(σ|x, o, vC) is the scale selection component,
p(x|o, vC) is the focus of attention (i.e., the most likely
location for the object of interest) and p(o|vC) is the con-
textual priming. This function is further evaluated in [12].
Here, however, by the chain rule of conditional probability,
p(O|vC) can be decomposed in a number of different ways.
For example:

p(O|vC) = p(o|σ, x, vC)p(σ|x, vC)p(x|vC), (3)
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where p(o|σ, x, vC) is the contextual priming given context,
object location and scale, p(σ|x, vC) is the scale parameter,
and p(x|vC) determines the most probable location of the
object in the image.

In turn, let’s examine p(o|σ, x, vC) in detail. The la-
bel of the object is dependent on its physical properties
(σ and x), and its surroundings (vC). Furthermore, it is
generally true that physical properties of objects are inde-
pendent of context: (x, σ) ⊥ vC . For example, a hu-
man face may be of different sizes and may appear in dif-
ferent locations in the image, independent of the context
that it is in. Therefore, it is reasonable to assume that if
scale and position are independent of context given the ob-
ject label, then p(σ, x, vC |o) = p(σ, x|o)p(vC |o). In turn,
p(o|σ, x, vC) = p(o|σ,x)p(o|vC)

p(o) , since p(o) is constant (i.e.,
same number of training images per category), this term is
omitted for clarity. Thus, we can re-write (2) as follows:

p(O|v) =
p(vL|O, vC)p(o|σ, x, vC)p(σ|x, vC)p(x|vC)

p(σ|x, vC)p(x|vC)
= p(vL|O, vC)p(o|σ, x)p(o|vC). (4)

For the multi object case

p(on|vC) =
k∑

i=1

p(on|Ci, vC)p(Ci|vC)

≈
k∑

i=1

p(on|Ci)p(Ci|vC), (5)

where k is the number of possible scenes, Ci are various
scene context categories, and on is the label for the nth ob-
ject. Finally:

p(On|v) = p(vL|On, vC)p(on|σ, x)
k∑

i=1

p(on|Ci)p(Ci|vC).

(6)
In this approach, the statistics of the local neighborhood vL

and the contextual information vC are both represented us-
ing global image features. In particular, in the scene rep-
resentation proposed in [7], the image is first decomposed
by a bank of multiscale oriented filters (tuned to eight ori-
entations and four scales). Then, the output magnitude of
each filter is averaged over 16 non-overlapping windows ar-
ranged on a 4 grid. The resulting image representation is a
4×8×16 = 512 dimensional vector. The final feature vec-
tor, used to represent the entire image, is obtained by pro-
jecting the binned filter outputs onto the first 80 principal
components computed on a large dataset of natural images.

Now, as mentioned earlier, another approach to contex-
tual object recognition is possible. In the next section we
discuss such an alternative method based only on interac-
tions between individual object labels in the image.

3. Object Based Context (OBC) Model
As a representative of OBC approaches, we selected

CoLA, the context-based object recognition system de-
scribed in [2] based on Co-occurrence, Location and Ap-
pearance. To stay consistent with the original work, we will
use the same notation as in [2].

At a high level, this representation is built on considering
multiple stable segmentations for the input image, resulting
in a large collection of segments, though variants also ex-
ist using, for example, random segmentations or bounding
boxes. Each segment is considered as an individual image
and is used as input into a Bag of Features (BoF) model for
recognition. Each segment is assigned a list of candidate
labels, ordered by confidence. The segments are modeled
as nodes of a Conditional Random Field (CRF), where lo-
cation and object co-occurence constraints are imposed. Fi-
nally, based on local appearance and contextual agreement,
each segment receives a category label.

3.1. Appearance
As the CoLA approach relies on segmentation based

recognition, segment appearance is quantified as in [8]. To
review, segments are classified based on a simple nearest
neighbor rule with the un-normalized distance of the test
segment Sq to class c as:

d(Sq, c) = min
i

d(Sq, Iic) = min
i
‖φ(Sq)− φ(Iic)‖1. (7)

Segment Sq is assigned to its closest category c1(Sq):

c1(Sq) = argmin
c

d(Sq, c). (8)

Similarly, the Sq is assigned to the rest of the categories:
ci(Sq) = sort(d(Sq, ci)), ∀ 1 ≤ i ≤ n, with sorting in as-
cending order of distance. In order to construct a probability
distribution over category labels for image query segment,
we introduce the following definition:

p(ci|Sq) =

[
1− d(Sq, ci)∑n

j=1 d(Sq, cj)

]
, (9)

and is proportional to the nearest neighbor distance between
the query segment Sq and the category: d(Sq, c).

3.2. Location and Co-Occurrences
To incorporate a complete notion of visual context, both

spatial and semantic (co-occurrence of labels) contexts
must be included into the recognition system. A CRF is
used to learn the conditional distribution over the class
labeling given an image segmentation. Here, the CRF
formulation uses a fully connected graph between a small
number of segment labels instead of a sparsely connected
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graph on the huge set of all pixels, which yields a much
simpler training problem.

Context Model. Given an image I , its corresponding
segments S1, . . . , Sk, and probabilistic per-segment la-
bels p(ci|Sq) (as in [8]), we wish to find segment labels
c1, . . . , ck ∈ C such that all agree with the segments’ con-
tent and are in contextual agreement with one other.

This interaction is modeled as a probability distribution:

p(c1 . . . ck|S1 . . . Sk) =
B(c1 . . . ck)

∏k
i=1 p(ci|Sq)

Z(φ0, . . . φr, S1 . . . Sk)
,

(10)

with B(c1 . . . ck) = exp
( k∑

i,j=1

q∑

r=0

αrφr(ci, cj)
)
,

where Z(·) is the partition function, q is the number of pair-
wise spatial relations, and αr is the weighting for each rela-
tion. The marginal terms p(c|S), which are provided by
the recognition system, are explicitly separated from the
interaction potentials φr(·). To incorporate both semantic
and spatial context information into object categorization,
namely into the CRF framework, context matrices are con-
structed.
Location. Spatial context is captured by co-ocurrence ma-
trices for each of the four pairwise relationships (above, be-
low, inside and around). The matrices contain the frequency
among objects labels in the four different configurations, as
they appear in the training data. An entry (i, j) in matrix
φr(ci, cj), with r = 1, . . . , 4, counts the number of times
an object with label i appears with an object label j for a
given relationship r. For a detailed overview of the location
descriptor, we refer the reader to [2].
Co-occurrence Counts. The co-occurrences of category
labels is computed directly from the above mentioned spa-
tial co-occurrences matrices as described in Section 3.3.
An entry (i, j) in the co-occurrence matrix counts the
times an object with label i appears in a training im-
age with an object with label j. The diagonal entries
correspond to the frequency of the object in the train-
ing set: φ0(ci, cj) = φ′(ci, cj) +

∑|C|
k=1 φ′(ci, ck), where

φ′(·) =
∑q

r=1 φr(ci, cj). Therefore the probability of
some labeling is given by the model: p(l1 . . . l|C|) =

1
Z(φ) exp

( ∑
i,j∈C

∑q
r=0 lilj · αr · φr(ci, cj)

)
, with li in-

dicating the presence or absence of label i. For a detailed
description of this example OBC model, refer to Chapter 3.

4. SBC vs. OBC: a Comparison
In the previous section we formulated both the SBC and

the OBC models in a manner suitable for a direct compari-
son. In the following section we show that both definitions

of context extract the same physical and semantic informa-
tion from images and training set, yet use it quite differently.

4.1. Differences and Similarities
Let us compare

p(On|v) = p(vL|On, vC)p(on|σ, x)
k∑

i=1

p(on|Ci)p(Ci|vC)

(11)
to

p(c1 . . . ck|S1 . . . Sk) =
B(c1 . . . ck)

∏k
i=1 p(ci|Sq)

Z(φ0 . . . φr, S1 . . . Sk)
(12)

term by term.
Spatial Context:

p(vL|On, vC) ↔
exp

( ∑k
i,j=1

∑q
r=1 αrφr(ci, cj)

)

Z(φ1 . . . φr, S1 . . . Sk)
,

(13)
where p(vL|On, vC) refers to estimating the probability
of the local patch vL containing the object of interest
On, given the scene information vC . In other words, as-
suming the scene context and object identity, where are
the probable locations for the object of interest? Simi-

larly, exp(
Pk

i,j=1
Pq

r=1 αrφr(ci,cj) )

Z(φ,S1...Sk) , the spatial component

of B(c1...ck)
Z(φ,S1...Sk) , estimates approximately the same informa-

tion. Given all the potential objects in the scene, the proba-
bility of each spatial arrangement of objects is calculated.
However, instead of estimating the absolute location for
each candidate object individually, the relative pairwise lo-
cations of all objects are chosen simultaneously.
Appearance:

p(on|σ, x) ↔ p(ci|Sq), (14)

where p(on|σ, x) is the likelihood of a particular object be-
ing present in a given region of the image (region is defined
by scale and location). In turn, p(ci|Sq) is also the likeli-
hood of a particular object, ci being present at a particular
region of the image, yet here the region is defined by seg-
ment Sq.
Semantic (co-occurrence) Context:

k∑

i=1

p(on|Ci)p(Ci|vC) ↔
exp

( ∑k
i,j=1 α0φ0(ci, cj)

)

Z(φ0, S1 . . . Sk)
.

(15)
Here,

∑k
i=1 p(on|Ci)p(Ci|vC) captures the semantic con-

text via the scene information Ci. Once the scene category
p(Ci|vC) is estimated, the most probable object label, on, is
chosen from the potential labels in the given scene. Alterna-

tively, exp(
Pk

i,j=1 α0φ0(ci,cj) )

Z(φ0,S1...Sk) , provides a likelihood of all
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possible combinations of objects that the existing segments,
S1 . . . Sk, may be labeled with. Only pairwise relationships
between object co-occurrences are learned during training.

As shown above, the SBC and OBC models are analo-
gous in terms of the information and statistics they use to
apply contextual reasoning to object recognition. However,
as we show next, there are a number of differences between
the two models that make the OBC model more attractive
and empirically more effective.

4.2. Inference
In estimating quantities 11 and 12, it is crucial to un-

derstand the processes of inferring the likelihoods, thresh-
olding, and error propagation. In the case of Gist, one first
estimates the scene context p(Ci|vC), and subsequently the
object label, given the chosen scene p(on|Ci), as illustrated
in Figure 3(a). In particular, choosing the scene context is
critical since it constrains the possible object labels in the
image. Inferring an incorrect scene from the context re-
duces the likelihood of identifying the true object labels,
see Figure 5 (3 bottom rows in column (b)). Furthermore,
only the scenes that have been predefined or learned in train-
ing may be considered for an input image, however, objects
that exist in the training set may appear in different con-
figurations (scenes) from those in test images, see Figure 5
(bottom row in column (b)). Thus, the accuracy of identify-
ing the labels of objects that exist in an image is critically
dependent on identifying the correct scene label for the im-
age. In turn, scene information also requires learning, and
is heavily dependent on the training set or manually defined
rules.

Alternatively CoLA, an OBC model, Figure 3(b), em-
ploys a simple representation and an efficient algorithm for
extracting information from visual input without commit-
ting to a scene label in a preprocessing stage. Using the tra-
ditional Bayesian likelihood estimation of a particular im-
age region being a given object, p(ci|Sq), a graphical model
selects the particular object labels based on the object cat-
egory co-occurence and spatial relations according to the
training data.

Although scene based context is not required for accu-
rate object recognition with an OBC model, we think that
scene-level information is indeed an interesting notion. Us-
ing the CoLA formulation, this information can be available
as a byproduct, rather than as an input, as in Gist. Once the
probability of a given set of object labels, B(c1...ck)

Z(φ0...φr,S1...Sk) ,
is determined, that set of labels can be mapped to a particu-
lar scene.

4.3. Training
Training is a crucial part of any classification task, and

object recognition in particular. The two key aspects per-
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Figure 3. Gist (a) and CoLA (b). Inferring the object labels us-
ing Gist requires one first to commit to a scene category and only
then infer the object label; with CoLA, no such commitment is
necessary.

taining to training data are the level of detail in the data
labeling and the training set size. Scene based approaches
require a large training set since many examples are needed
to capture not only the statistics of the object category, but
also its scene context [9, 13]. Furthermore, training data
must be labeled with the individual object labels, and also
with the scene labels. To our knowledge, the majority of
object recognition datasets do not contain scene definitions
and moreover, it is not clear how to define the scene con-
text. For example, nearly identical scenes may be identified
as either beach or coast, or even as shore. Potentially, word
hierarchies such as WordNet may be used to resolve such
ambiguities, but this adds another layer of complexity to the
model. Also, as the number of object categories increases,
the number of scenes will likely also increase as well and
ambiguities between scenes will also be greater.

Approaches based on individual object interactions,
however, require considerably less training data as only
object appearance and object co-occurrence needs to be
learned. In [2, 8] only 30 examples per category were used
for training. Only object labels themselves are necessary
for training, rather than scene context.

4.4. Scalability

One drawback of the OBC model, is that the required ex-
ample interactions between object labels are rather sparse in
the currently available datasets. Not many object categories
co-occur in the same images. However, with the inclusion
of many more object categories, the contextual matrices will
only get richer and importance of contextual constraints will
be even more evident. Note that the complexity of learning
co-occurrences is only quadratic in the number of categories
since only pairwise relations are computed.

The approach of Gist type methods, which heavily rely
on scene information, will perhaps only suffer from an in-
clusion of additional object categories. New scenes will
have to be defined, and the problem of scene inference given
the semantic context, vC will become even more ambigu-
ous.
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5. Empirical Comparison of Contextual Mod-
els

In this section we perform an empirical comparison of
the two discussed approaches. We used the same subset of
the LabelMe, [10], dataset for the experimental compar-
ison as was done by [9]. We trained and tested the CoLA
approach with twelve categories. The training set has 15691
images and 105034 annotations and the test set has 560 im-
ages and 2026 annotations. The test set comprises images
of street scenes and indoor office scenes. To avoid over-
fitting, street scene images in testing were photographed in
a different city from the images in the training set. Fig-
ure 5 shows localization and recognition accuracy for ex-
ample images taken from the LabelMe dataset using Gist
and CoLA. Column (c) in Figure 5 shows the accuracy of
localization using the stable segmentations used by CoLA.
Since this database contains many more categories than just
twelve that were chosen by [9], some of the localized re-
gions are not labeled, due to low recognition accuracy, to
avoid a forced choice label. In this experiment we mark
regions as ‘unknown’ if the maximum label probability is
less than or equal to chance. (On average, of 54 segments
per image, 1.51 were labeled as ‘unknown’.) Note that the
segmentation based approach not only eschews the step of
predicting the scene first, thus avoiding as possibly incor-
rect retrieval set, but it also provides accurate localization
with object boundaries rather than bounding boxes. We re-
fer the reader to [9] and [2] for implementation details and
runtime complexity for both Gist and CoLA.

The results in Figure 5 show qualitative differences be-
tween the two compared models; however, we wish to eval-
uate the models quantitatively. In Table 1, we report recog-
nition accuracy, true positive rate (TPR), and the false pos-
itive rate (FPR) for both models. The results for Gist were
taken directly from ROC curves in [9]; results for CoLA are
computed from the confusion matrix shown in Figure 41.
Since [9] formulated the recognition problem as a detection
task, they emphasized the low FPR per bounding box per
category, while in recognition problems the TPR is maxi-
mized with less attention to FPR. We show TPR rates for
the FPR suggested in [9], and show corresponding FPR
per image per category, shown in hypercolumn “Gist (low
FPR)”, rather than per bounding box. TPR and FPR, per
image per category, for CoLA are shown in hypercolumn
“CoLA”. Note that TPR for CoLA is almost 3 fold greater
than for Gist, while FPR for CoLA is almost two orders
of magnitude lower than that of Gist. This comparison,
however, does not isolate the effectiveness of the contextual
model itself. In the case of Gist, the underlying detector or

1TPR corresponds to the diagonal entries of the confusion matrix and
the FPR is the hollow confusion matrix column sum; both refer to the
confusion matrix in Figure 4.

ECCV-08 submission ID 551 11

Gist (low FPR) Gist (high TPR) SVM (no context) CoLA

category TPR FPR TPR FPR TPR FPR TPR FPR

tree 9.59% 1.05 76.0% 36.1 53.1% 41.9 78.1% 0.03
building 7.29% 2.09 85.3% 108 60.2% 111 85.8% 0.04
person 21.1% 0.78 68.5% 24.8 78.4% 25.1 64.0% 0.02

sidewalk 7.98% 2.11 70.2% 52.6 66.0% 54.5 74.4% 0.02
car 68.0% 0.03 68.6% 0.83 44.4% 0.89 69.6% 0.03
road 37.0% 0.86 84.6% 31.6 64.3% 29.7 84.7% 0.03
sky 34.5% 1.49 89.6% 106 60.1% 107 91.9% 0.01

motorbike 48.6% 0.81 55.6% 1.19 63.9% 2.10 55.4% 0.02
screen 50.0% 1.17 64.2% 3.81 88.3% 4.57 68.1% 0.02

bookshelf 13.0% 1.04 61.7% 17.9 46.8% 27.8 59.1% 0.03
keyboard 26.5% 0.61 62.0% 10.3 81.4% 15.2 64.5% 0.01

wall 3.08% 0.88 47.7% 84.6 29.2% 61.7 60.0% 0.02

mean 27.2% 1.14 63.2% 39.9 61.4% 40.2 70.9% 0.02
Table 1. Recognition accuracy (true positive rate TPR) and false positive rate (FPR)
per image per category for both Gist and CoLA approaches. Gist (low FPR): TPR
for the FPR per image per category that was suggested in [28]. Gist (high TPR):
FPR (from ROC curves in [28]) per image per category for TPR that is comparable
to that of CoLA. SVM (no context): FPR (also from [28]) per image per category
for TPR, without aid of context, that is comparable to one achieved by CoLA. CoLA:
TPR and FPR per image per category using CoLA. Note that TPR for CoLA is almost
3 fold greater than for Gist (70.9% vs. 27.2%), while FPR for CoLA is almost two
orders of magnitude lower than that of Gist (0.02 vs. 1.14) per image per category.
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The results in Figure 6 show qualitative differences between the two compared282 282

models; however, we wish to evaluate the models quantitatively. In Table 1, we283 283

report recognition accuracy, true positive rate (TPR), and the false positive284 284

rate (FPR) for both models. The results for Gist were taken directly from ROC285 285

curves in [28]; results for CoLA are computed from the confusion matrix shown286 286

in Figure 5.287 287
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Fig. 5. Confusion Matrix for
the LabelMe dataset using
CoLA.

Since Russell et al. [28] formulated the recognition problem as a detection288 288

task, they emphasized the low FPR per bounding box per category, while in289 289

Table 1. Recognition accuracy (true positive rate TPR) and false
positive rate (FPR) per image per category for both Gist and CoLA
approaches. Gist (low FPR): TPR for the FPR per image per cate-
gory that was suggested in [9]. Gist (high TPR): FPR (from ROC
curves in [9]) per image per category for TPR that is comparable to
that of CoLA. SVM (no context): FPR (also from [9]) per image
per category for TPR, without aid of context, that is comparable
to one achieved by CoLA. CoLA: TPR and FPR per image per
category using CoLA. Note that TPR for CoLA is almost 3 fold
greater than for Gist (70.9% vs. 27.2%), while FPR for CoLA is
almost two orders of magnitude lower than that of Gist (0.02 vs.
1.14) per image per category.

classifier (SVM) may be weak, or in the case of CoLA the
stable segmentations may be useless. Similar to the work
of [8], where the authors show the significant improvement
yielded by including of context in the recognition frame-
work, we evaluate the relative improvement of adding con-
text to the Gist method. In Table 1, we show the TPR (at
competitive rates) and FPR for the Gist approach with con-
text “Gist (high TPR)”, and only the SVM detector module
of the “Gist (SVM no context)”. Means of both TPR and
FPR are within one standard deviation of each other, and the
difference between them is not statistically significant. This
suggests that recognition rates of the full Gist approach is
hindered by its contextual model rather than the underlying
detector or classifier. A possible avenue for improvement of
the Gist approach could be to entertain multiple scene cate-
gory hypotheses, rather than committing to the most proba-
ble one.

6. Discussion
Over the past few years, the role of contextual models

has become more prominent in object recognition systems.
As the field of contextual object recognition in computer vi-
sion evolves, SBC and OBC models have emerged. In the
approach proposed by [12], an example of SBC model, con-
textual information is captured by the statistical summary
of the image. This approach may be related to the con-
textual processing in the human visual system. The SBC
model is very intuitive and potentially efficient. An alter-
native, OBC based, formulation of context for recognition
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Figure 4. Confusion Matrix for the LabelMe dataset using CoLA.

has recently been proposed. With the OBC model, relation-
ships between individual objects are leveraged, instead of
capturing the context of the scene by its low level holistic
representation.

Recently, Heitz and Koller of [4], also acknowledged
these categories of models and revisited the long standing
discussion of thing vs. stuff in this context. The authors
refer to SBC and OBC as scene-thing and thing-thing con-
text, respectively. However, neither the SBC nor the OBC
models explicitly separate thing from stuff. In particular,
an example OBC model, [2], avoids the thing/stuff distinc-
tion, and treats all entities to be recognized equally, result-
ing in thing-thing/stuff context. Similarly, instances of SBC
models also avoid separation of thing and stuff, leading to
scene-thing/stuff context. Perhaps in the future, when thing
vs. stuff distinction becomes more rigorous, SBC and OBC
models will be formulated explicitly using this formalism.

Nonetheless, the comparison of these contextual models
shows similarities and differences between them. In par-
ticular both models capture analogous physical and seman-
tic information from the image. We demonstrated analyti-
cally that the OBC model, although computationally more
expensive due to the cost involved in computing the sta-
ble segmentations, gives rise to a simpler inference prob-
lem. Using the LabelMe database, we empirically com-
pared the two models and showed that CoLA, an approach
using an OBC model, considerably outperformed Gist, an
SBC based method. The two major differences between
OBC and SBC models are the use of stable segmentations
vs. sliding window, and the notion of context ( object based
vs. scene based).

The significant improvement in performance by the OBC
model is due in part to the stronger contextual constraints
provided by the object-object interactions. But, without a
compact representation of image partitions, it is combina-

torially difficult to enforce these constraints. Thus, many
algorithms tend to settle for scene based contextual connec-
tions, which in turn lead to rather confined and weak contex-
tual support. Multiple stable segmentations, in turn, are able
to represent the image in such a compact and informative
manner for the task of object recognition. Considering thou-
sands of bounding boxes, on the other hand, greatly hinders
the false positive rates of the recognition system and leads
to intractable inference, as suggested by the experiments.
We believe that the shortlist of stable segmentations (aim-
ing for only those segmentations that matter) is the essential
substrate for competitive Object Based Context models for
object recognition and categorization.
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