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Abstract

This paper presents a method that considers not only
patch appearances, but also patch relationships in the form
of adjectives and prepositions for natural scene recogni-
tion. Most of the existing scene categorization approaches
only use patch appearances or co-occurrence of patch ap-
pearances to determine the scene categories, but the rela-
tionships among patches remain ignored. Those relation-
ships are, however, critical for recognition and understand-
ing. For example, a ‘beach’ scene can be characterized by
a ‘sky’ region above ‘sand’, and a ‘water’ region between
‘sky’ and ‘sand’. We believe that exploiting such relations
between image regions can improve scene recognition. In
our approach, each image is represented as a spatial pyra-
mid, from which we obtain a collection of patch appear-
ances with spatial layout information. We apply a feature
mining approach to get discriminative patch combinations.
The mined patch combinations can be interpreted as adjec-
tives or prepositions, which are used for scene understand-
ing and recognition. Experimental results on a fifteen class
scene dataset show that our approach achieves competitive
state-of-the-art recognition accuracy, while providing a rich
description of the scene classes in terms of the mined adjec-
tives and prepositions.

1. Introduction

In this paper, we address the problem of natural scene
classification and understanding. We aim to develop algo-
rithms that can recognize scene classes such as highway,
mountain, or living room from input images, as well as learn
the types of image patches and the relationships among such
patches that define each scene category.

A common strategy for scene classification is based on

(a) Highway (b) Coast

Figure 1. Examples showing the discriminative and descriptive
ability of our approach. Both the “highway” and “coast” images
have sky regions on the top (yellow patches). Using prepositions,
the highway image can be described as having a region of sky
above a region of road (cyan patches), while the coast image can
be described as having a region of sky above sand (blue patches)
and water (magenta patches) in between.

the bag-of-words image representation [17, 2]. However,
although this approach has demonstrated competitive per-
formance, its descriptive and discriminative abilities are
severely limited, partly because the bag-of-words represen-
tation ignores the geometrical arrangement of patches in the
image.

One promising strategy to obtain more discriminative
features for scene classification and understanding, consists
of exploring the spatial relationships among image regions.
For example, in Figure 1(b), a ‘coast’ image can be de-
scribed as having a ‘sky’ region above a ‘sand’ region, and
a ‘water’ region between ‘sky’ and ‘sand’. This represen-
tation is capable of not only discriminating between ‘coast’
and ‘highway’ (Figure 1(a)) images, but also understand-
ing the intrinsic properties of ‘coast’ images. In this work,
we aim to explore such relationships for scene classifica-
tion and understanding. We consider relationships of two
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types: adjectives (e.g. smaller, brighter) and prepositions
(e.g. above, left).

In general, modeling adjectives and prepositions for im-
ages can be computationally challenging due to the large
number of possible adjectives and prepositions. In our ap-
proach, we adopt an image representation inspired by the
spatial pyramid method [8]. We partition the image into
increasingly finer subregions, and compute a histogram of
local features on each subregion, similarly to [8]. Further-
more, instead of considering local features of a fixed size
as in [8], we use local image patches at multiple scales.
Our method can represent multiple relationships among lo-
cal patches which capture their appearances as well as spa-
tial layout. Based on this multi-scale image representation
with spatial layouts, we apply a data mining approach [1] to
obtain all discriminative patch relationships for each class.
Those relationships can be interpreted as adjectives and
prepositions. The data mining approach is suitable in our
problem due to its ability to deal with large amounts of data
efficiently.

The remaining part of this paper is organized as follows.
Section 2 overviews related work. Our image representation
and feature mining approaches are described in Section 3
and Section 4 respectively. The classification approach used
in our method is presented in Section 5. Finally, we present
experimental results on a natural scene data set in Section 6.

2. Previous Work
In order to encode spatial information in images, sev-

eral methods have considered using feature compositions to
classify images (e.g. ‘doublets’ [15] and ‘correlatons’ [14]).
The discriminative ability of these approaches is limited
due to their reliance on feature co-occurrences only. Sev-
eral other approaches based on generative part-based mod-
els (e.g. Pictorial Structures [3] and Constellation mod-
els [4, 18]) usually entail significant computational cost, and
are therefore limited to a small number of image parts (typ-
ically less than 10).

Recently, researchers have proposed the application of
graphical models to the problem of learning spatial rela-
tionships among image regions [13, 11]. These approaches
first use segmentation algorithms to obtain image regions,
and then learn the relationships among image regions via
graphical modeling. In the graphical models, each node rep-
resents one image patch, and each edge represents one rela-
tionship between two patches. This line of approaches can
perform object/scene recognition and localization simulta-
neously and achieve promising performance on many data
sets. However, they rely on image segmentation as a pre-
processing step. Although it has been shown that current
segmentation can already facilitate image recognition [10],
obtaining semantically meaningful image segmentations is
still an active research topic in computer vision.

Instead of using generative models and relying on im-
age segmentation as pre-processing stage, in this paper we
aim to discover discriminative relationships to understand
scene classes. One work closely related to ours is the spa-
tial pyramid matching method [8]. In their framework, the
image is partitioned into increasingly finer sub-regions and
histograms of local features are computed inside each sub-
region. The similarity between two histograms is mea-
sured by the pyramid match kernel [5]. This approach
shows promising performance in scene and object recog-
nition tasks, partly due to its ability to encode weak spatial
relationships among image patches and the effectiveness of
the pyramid match kernel. However, the spatial pyramid
representation does not explicitly capture stronger relation-
ships (such as adjectives and prepositions) among patches
in the image.

Another work for adjectives and prepositions modeling
is the method of Gupta and Davis [6]. On a set of weakly la-
beled images, this approach uses relationship words (adjec-
tives and prepositions) to reduce correspondence ambigu-
ity and applies a constrained model to achieve better image
labeling performance. But the adjectives and prepositions
considered in this approach are manually pre-defined rather
than automatically discovered. In this paper, the adjectives
and prepositions can be automatically obtained given a set
of training images.

Our method is based on a data mining approach [1]. Due
to its computational efficiency, data mining has been re-
cently used to mine feature configurations for object and
action recognition [12, 19]. Our method differs from these
approaches in that our mining procedure considers more
precise spatial information.

3. Adjectives and Prepositions in Images

In this section, we first introduce our image representa-
tion which is based on a spatial pyramid and local patches
of multiple scales. We then define adjectives and prepo-
sitions within the scope of our framework. We also show
that our approach can cover a large volume of patch rela-
tionships, which instantiate the adjectives and prepositions
under consideration.

3.1. Multi-Scale Local Patches and Spatial Pyramid
Image Representation

The goal of feature representation is to obtain an image
description which is robust to within-class variations and
can discriminate images from different classes. In addition,
the feature representation should enable us to extract ad-
jectives and prepositions effectively. We achieve the goals
by representing images in a multi-scale (or ‘coarse-to-fine’)
manner [16] and adopting a modified spatial pyramid tech-
nique [8]. Figure 2 provides an illustration of our represen-
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Figure 2. Image representation based on multi-scale local patches
and a spatial pyramid. This figure shows an example that uses a
3-level spatial pyramid and local patches with 2 different scales.

tation scheme.
Our image representation is constructed as follows. We

adopt a modified spatial pyramid representation [8], which
captures the spatial layout of patches in the image. A spa-
tial pyramid is constructed by sequentially dividing an im-
age into increasingly finer sub-regions. Figure 2 shows
an example of a 3-level spatial pyramid. In the l-th level
(l ∈ {0, 1, 2} in Figure 2) of the spatial pyramid, the image
is divided into 2l × 2l subregions. We extract local im-
age patches of multiple scales from each subregion, which
are obtained by densely sampling the image using a regular
grid. In our example of Figure 2, we use two different lo-
cal patch sizes. In order to represent the appearance of each
patch, we first extract SIFT descriptors [9] and then assign
each patch to one codeword. The visual dictionary of code-
words can be obtained by clustering patch descriptors from
the set of training images. Finally, the image is represented
by a set of histograms1, where each histogram counts the
occurrence of visual codewords of a particular scale over
one subregion in the spatial pyramid.

Implementation Details. In our experiments, we use a
three-level spatial pyramid, i.e., we partition the image into
1×1, 2×2, and 4×4 sub-regions respectively. Overlapping
image patches of size 8 × 8, 16 × 16, and 24 × 24 are ex-
tracted from the image, and SIFT descriptors are computed
for each case. The overlap is defined as half the length of the
patch side. We use k-means clustering to build three visual
vocabularies, one per patch size. The number of codewords
in each vocabulary is set to 200.

1The number of histograms is Ns ·
∑L−1

l=0 22l, where Ns is the number
of patch scales and L is the number of levels in the pyramid.
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Figure 3. {A, B, C, D, E, F, G} represent local patches and their
layout on the 3rd level of the spatial pyramid (4× 4 sub-regions).
The texture filling each patch indicate different visual codewords.
Our multi-scale local patches and spatial pyramid representation
facilitates the extraction of relations among local patches. Rela-
tionships such as G is above E and F is smoother than D can
be automatically mined. Note that one codeword may appear in
a subregion for many times and one subregion usually contains
patches of many different codewords.

3.2. Definition of Adjectives and Prepositions

Given our image representation, which captures patch
appearances (based on a visual codebook) and spatial lay-
out of patches (based on a spatial pyramid), we are now
ready to define the concept of adjectives and prepositions.
In our approach, the adjectives and prepositions can be con-
structed by simply considering particular spatial relation-
ships among patches with specific appearances.

Figure 3 illustrates some adjectives and prepositions that
can be represented with our method. The figure shows a
spatial layout of the patches A,B, C, D, E, F, G in a 4× 4
image partition. In the following, we describe some of the
adjectives and prepositions that can be extracted from our
image representation:

• Above(G,E): Patch G is above patch E.

• Left, Near(A,C): Patch A is on the left of C, and
they are close to each other.

• Left, Far(A,D): Patch A is on the left of D, and they
are far away from each other.

• Larger(B,C): Patch B is larger than C.

• Brighter(D, A): The intensity of patch D is brighter
than the intensity of A.

• Smoother(F, E): The texture of patch F is smoother
than the texture of patch E.

We can see that, based on the image representation of
multi-scale local patches and the spatial pyramid, we can
encode many different types of adjectives and prepositions,
including relationships of texture, position, size, etc. Note
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that the relationships that our method can represent are not
limited to the ones listed above. In this work, we encode
adjectives and prepositions in each spatial pyramid level
independently, i.e. we do not consider the relations be-
tween patches from two different pyramid levels. In this
method, the first level of the pyramid only encodes simple
co-occurrence of image patches, with no information about
their spatial layouts. As we move up in the pyramid level,
more detailed spatial information is included in the adjec-
tives and prepositions that are extracted.

Furthermore, instead of only considering relations
among pairs of image patches, we consider the relation
among multiple image patches simultaneously. This allows
us to define more complex adjectives and prepositions, and
even the relationships that combine adjectives and preposi-
tions. For example, in Figure 3, we can encode the relations
among {A,B, C} simultaneously: (patches B and C are on
the right of A) AND (B is larger than C).

4. Mining Discriminative Adjectives and
Prepositions

4.1. Extraction of Adjectives and Prepositions As a
Mining Problem

Having shown how the adjectives and prepositions are
described, we are now ready to extract a set of discrimi-
native adjectives and prepositions from the training images.
Since we can represent not only adjectives and prepositions,
but also the combination of them (Section 3.2), we denote
the relationships that our approach can describe Relation-
ship Sets (RSets). One RSet consists of several Relationship
Units (RUnits); each unit indicates that a specific codeword
appears in a specific image sub-region. A relationship that
consists of m RUnits is called an m-RSet. Note that each
RUnit is a 1-RSet.

An RSet R is discriminative for a class c if R has large
occurrence scores on images belonging to class c, and has
small occurrence scores on images of other classes. Con-
sidering an m-RSet R = {R1, · · · , Rm} and an image I,
the occurrence score s of R on I is computed by

s = min
{I(Rj), j = 1, · · · ,m

}
(1)

where I(Rj) is the number of occurrences of the RUnit Rj

in image I.
Given the occurrence score of each RSet, the discrimi-

native ability of an RSet R for a class c is measured by two
terms, the Support value Supp(R, c) and the Confidence
value Conf(R, c). An RSet R is discriminative for a class
c if both Supp(R, c) and Conf(R, c) are large. Let si de-
note the occurrence number of R in an image Ii with class
label ci. The support and confidence values ofR for class c

are computed by

Supp(R, c) =

∑
ci=c si∑
ci=c 1

(2)

Conf(R, c) =
Supp(R, c)

Avgc′ 6=cSupp(R, c′)
(3)

where Avgc′ 6=cSupp(R, c′) indicates the average value of
all support values Supp(R, c′) where c′ 6= c.

Intuitively, a large Supp(R, c) indicates that R gener-
ally has large occurrence numbers on images of class c,
and a large Conf(R, c) implies small occurrence numbers
of R on images of other classes. Therefore, in order to
find discriminative RSets for a class, we want to find the
RSets which have both a large support and a large confi-
dence value on this class.

However, it is computationally expensive to evaluate
support and confidence values for all RSets, because the
number of relationship sets is extremely large. In the third
pyramid level of our image representation, we have 16
image sub-regions and 600 codewords (200 for each lo-
cal patch size). Therefore, only at this level, there are
600 × 16 = 9600 RUnits. Because we have to consider
all possible combination of RUnits, the total number of po-
tential RSets is 29600. In order to effectively explore this
large space, we apply a data mining method [1], which en-
ables us to obtain a set of discriminative RSets for each class
efficiently.

Input: Support threshold TSupp and confidence
threshold TConf .

foreach Class do
Scan all RUnits, select the RUnits with support
values larger than TSupp as 1-RSets;
for p = 2 to P do

Generate candidate p-RSets based on the
selected (p− 1)-RSets;
Scan all candidate p-RSets and remove the p
RSets if the support values are smaller than
TSupp;
if The number of p-RSets <2 then

break;
end

end
Scan all selected RSets, remove the RSets whose
confidence values are smaller than TConf .

end
Algorithm 1: The Apriori mining algorithm. P is the
total number of RUnits.
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4.2. The Apriori Algorithm for Feature Mining

Apriori [1] is a data mining algorithm. The basic idea
behind the Apriori algorithm is that, if an RSet has large
support value, then any subset of that RSet must also have
large support value. The Apriori [1] algorithm consists of
two steps. The first step consists of several passes. The
first pass finds all 1-RSets whose support values are larger
than a threshold TSupp. Then in a subsequent pass p, the al-
gorithm first generates a set of candidate p-RSets based on
the selected (p−1)-RSets, then computes the support value
for each candidate p-RSet and remove the p-RSets whose
support values are smaller than TSupp. This step stops in
the pass where no more RSets are generated. In the sec-
ond step of the algorithm, confidence values are computed
for all selected RSets, those with confidence values smaller
than a threshold TConf will be removed. An overview of
the Apriori algorithm is shown in Algorithm 1.

Implementation Details. In our implementation, we
fix the value of TConf to 0.005, and use different val-
ues of TSupp for different classes. The value of TSupp

for a class c is determined as follows. The support val-
ues and confidence values of all RUnits in the first pyra-
mid level (without partitioning it into sub-regions) are com-
puted. Then we select the RUnit with confidence values
larger than TConf = 0.005, and rank their support values
in a descending order. TSupp for class c will be set as the
20-th largest value in this ranking. If the number of RUnits
with larger confidence values is smaller than 20, then we set
TSupp to 0.005.

5. Scene Classification with RSets
In this section, we describe how to build classifiers for

scene classification based on the mined RSets. For each
image I, we compute the occurrence number of all mined
RSets within this image. Therefore each image can be rep-
resented as a D-dimensional vector, where D is the total
number of mined RSets. Our classifier is an SVM with
a histogram-intersection kernel that is trained on the D-
dimensional vectors of all training images. Given two his-
tograms I1 and I2, the histogram intersection kernel is
computed by

κ =
D∑

d=1

min
(Id

1 , Id
2

)
(4)

where Id
1 is the value of the d-th bin in histogram I1.

6. Experiments
We carry out experiments on the fifteen scene categories

data set from [8]. The dataset contains grayscale images of
the following scene classes: highway, inside of cities, tall
buildings, streets, suburb residence, forest, coast, mountain,
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Figure 4. Confusion matrix of our approach on the scene category
data set. Average classification results of 10 experiment runs are
listed. The entry in the i-th row and j-th column is the percentage
of images from class i that are classified as class j.

open country, bedroom, kitchen, living room, office, indus-
trial, and store. Each class has around 150 ∼ 400 images,
and the average image size is approximately 300×250 pix-
els. This is one of the most complete natural scene category
data set used in the literature so far.

We use the same experiment setup as that in [8]. For
each class, 100 images are randomly selected for training,
and the remaining images are used for testing. We use the
SVMlight package [7] to train our SVM classifier. We re-
port performance accuracy as an average of 10 runs.

Table 1 shows the recognition accuracy of our approach.
The ‘Single-level’ column summarizes the recognition ac-
curacy when using patches and relations from a single pyra-
mid level. The second column, labeled as ‘Pyramid’, sum-
marizes the performance of our method when using patches
and relationships extracted from all levels in the pyramid.
We note that our method exhibits competitive performance
to the state-of-the art results from [8]. We attribute such
performance improvement to our stronger representation of
spatial relationships among image patches.

Finally, recognition accuracy of each single level of our
approach is also higher than the results in [8]. This is be-
cause the multi-scale local patch description can capture
more information from the image.

The confusion matrix of our approach is shown in Fig-
ure 4. Our method tends to confuse visually similar scene
classes, for example: bedroom vs. living room, kitchen vs.
living room, and coast vs. open country.

Some mined relationships are shown in Figure 5. For
each class, we only show the relationship of two codewords
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Method Accuracy
Result in [2] 65.2

Result in [8]: Single-level Pyramid
Level 1 74.8± 0.3 74.8± 0.3
Level 2 78.8± 0.4 80.1± 0.5
Level 3 79.7± 0.5 81.4± 0.5

Our Method: Single-level Pyramid
Level 1 75.3± 0.6 75.3± 0.6
Level 2 79.9± 0.4 82.6± 0.5
Level 3 80.4± 0.5 83.5± 0.6

Table 1. Recognition accuracy for different methods. The accuracy
in [2] is measured in only 13 categories.

on the pyramid level that corresponds to 2× 2 sub-regions.
We observe that our approach can obtain some adjectives
and prepositions with semantic meanings, e.g. sky above
water in the ‘coast’ scene, sky above grass and trees in the
‘suburb’ scene.

7. Conclusion

This paper presents an approach to automatically mine
adjectives and prepositions for natural scene recognition.
Our method is based on an image representation that is built
upon multi-scale image patches and a spatial pyramid. We
apply a data mining approach to obtain a set of adjectives
and prepositions, and combinations of adjectives and prepo-
sitions that are discriminative for the scene classification
task. An interesting direction for future research would ex-
plore methods to automatically link the mined relationships
to semantic descriptions in natural language.
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Figure 5. Examples of adjectives and prepositions that are inferred from the mined results. The image patches that are assigned to the same
codeword are labeled with the same color. For example, in the “coast” images we show the relationship that yellow patches (sky) appear
above cyan patches (water). In the “tall building” images we show the relationship that the texture of yellow patches (sky) is smoother than
the orange patches (building).
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