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Abstract

Scene understanding in the context of a smart meeting
room involves the extraction of various kinds of cues at
different levels of semantic abstraction. Specifically, hu-
man activity in a scene is usually monitored using arrays
of audio and visual sensors. Tasks such as person local-
ization and tracking, speaker ID, focus of attention detec-
tion, speech recognition and affective state recognition are
among them. In this paper we demonstrate a system that ex-
tracts such information by synergistically combining the in-
formation from the various tasks to support each other. We
exploit the fact that the output of one kind of human activ-
ity analysis task contains valuable information for another
such block and by interconnecting them, a robust system re-
sults. We demonstrate this in a smart meeting room context
equipped with 3 cameras and 16 microphones. The system
performs the tasks of person tracking, head pose estimation,
beamforming, speaker ID and speech recognition using au-
dio and visual cues. The novelty lies in putting together the
tasks such that they can provide relevant information to one
another. We evaluate the performance of our system and
present results for tasks such as keyword spotting and track-
ing re-identification on real-world meeting scenes collected
in our audio-visual testbed.

1. Introduction
Scene understanding in the context of intelligent meet-

ing rooms involves, among others, the following important
types of information to be extracted from noisy sensory in-
put, usually audio-visual[22].

• What is in the scene? : In the specific case of hu-
man activity analysis, this points to detecting the pres-
ence or absence of humans. Detecting people in indoor
scenes has been addressed using both video and audio
sensors.

• Where are the objects at a particular time? : In our
case, this corresponds to tracking people continuously
using audio and video cues.

• Who are the people present in the scene? : This cor-
responds to identifying the people using speaker ID
or face recognition modules and associating the cor-
responding tracks and speech segments with them.

• What is happening in the scene? : This corresponds
to detection of specific events, keywords in the scene,
enabling to draw higher level conclusions about the ac-
tivity taking place in the room.

These tasks correspond to extracting semantic informa-
tion at different levels of abstraction. Existing work ad-
dresses almost all these individual issues using appropriate
modalities. While little is known on how humans under-
stand and interpret the complex visual world, the consensus
is that an integration of information at different levels of the
semantic hierarchy has to come together for this task. In this
paper we demonstrate that not only is such an hierarchical
integration of audio and video cues necessary, but it is also
beneficial to the performance of the individual blocks be-
cause the output of one kind of human activity analysis task
contains valuable information for another such block and by
interconnecting them, a robust system results. In Figure 1,
we illustrate the interconnected blocks in our hierarchical
fusion framework.

2. Literature Review

Algorithms for specific multimodal tasks such as per-
son tracking [21][9][5][3], speech recognition[19][15],
biometrics[1] and affective state recognition[23] have been
researched. General and specific multimodal fusion
schemes have also been proposed [18][6][16]. Even hier-
archical fusion schemes have been investigated for specific
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Figure 2. The audio-visual testbed - sensor configurations.
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Figure 1. The hierarchical fusion of multimodal information.

tasks [24][17][7][4]. In [4], the authors develop a prob-
abilistic integration framework for fusion of audio visual
cues at the track and identity levels. This is an example of
fusion at multiple levels of abstraction. Similarly, in [20],
the utility of head pose estimation and tracking for speech
recognition from distant microphones is explored. In [12],
the authors use video localization to enhance the perfor-
mance of the beamformer for better speech reconstruction
from far field microphones. The utility of hierarchical fu-
sion to develop robust human activity analysis algorithms
is quite evident from these existing examples. In this pa-
per we develop a hierarchical fusion framework and ex-
plore the relationship between tasks such as person tracking,
speech recognition, beamforming, speaker identification,
head pose estimation and key word spotting. We demon-
strate that these tasks can be synergetically performed and
the whole is greater than the sum of the parts. The rest of
the paper is organized as follows. We describe the individ-
ual tasks, the challenges, algorithms and the additional cues
that can enhance performance of these algorithms. We then

describe the fusion process in the particular context of an
intelligent meeting room. We then describe the experimen-
tal testbed and provide performance evaluation results from
specific tasks.

3. Audio-visual scene analysis tasks
3.1. Person tracking

Tracking persons is necessitated by the non-obtrusive na-
ture of the observing sensors. An intelligent space should be
capable of functioning without imposing restrictions on the
natural behavior of its inhabitants. This makes the tracking
of humans necessary. In this paper we restrict ourselves to
the problem of tracking multiple persons in an indoor space
equipped with multiple cameras and microphones. Also,
we assume that in the general case, the output of the tracker
will be the 3D co-ordinates of the multiple subjects. This
necessitates the calibration of the audio and video sensors
with respect to one another and the world co-ordinates. We
discuss this briefly in Section 5.

The tracker is expected to initiate and maintain tracks
based on the sensory observations. A simple background
subtraction and blob tracking scheme is implemented in
each video field of view. Using triangulation and the
calibration parameters of the cameras, the 3-D world co-
ordinates of the subjects are obtained. The video based
tracker could confuse tracks due to occlusions. Also, we
would like to relax the conditions of uniform lighting be-
cause in many meeting scenarios, especially during presen-
tations, we have drastic variations in ambient lighting situ-
ations.

The SRP-PHAT algorithm [8] is used to localize the ac-
tive speaker. We detect only one source at a time by search-
ing over a uniform grid of points in the world co-ordinates.
Unlike the video tracks, audio localization cues on the other

108



hand are not always available, being robustly estimated
when a single dominant speaker is active. This leads us to
the data association problem - which track should be asso-
ciated with the particular active speaker location. We asso-
ciate the audio clues with the video tracks that are close in
the spatiotemporal domain. This association is then used to
disambiguate the merging and diverging tracks in the video
domain using the iterative decoding algorithm.

3.2. Iterative Decoding Algorithm

In [21], the iterative decoding framework is used to track
multiple persons in the sensor co-ordinates, demonstrat-
ing improvements in the multimodal tracker’s performance
when using audio and video sensors. In this paper we use
the algorithm to track multiple people in the 3D world co-
ordinates. This is possible because our sensors are cali-
brated with respect to the 3D world co-ordinates and this
makes the algorithms simpler and more intuitive compared
to [21].

Consider a hidden Markov model Λk for sensor k with
N hidden states. For clarity, we drop the sensor index k.
Λ has a parametric transition density. The hidden state
qt corresponds to the true location of the object at time
t in the world co-ordinates. We consider discrete hidden
states, by selecting a grid of points, to make the prob-
lem tractable. Thus the hidden states are, in a Bayesian
sense, the quantized and filtered observations. The con-
ditional distribution of the observation ot when the hid-
den state is qt is assumed to be Gaussian. Now, the de-
coding problem is to estimate the optimal state sequence
QT

1 = {q1, q2 . . . qT } of the HMM based on the sequence
of observations OT

1 = {o1, o2 . . . oT }.

The Maximum aposteriori probability state sequence is
provided by the BCJR (Bahl Cocke Jelinek and Raviv)
algorithm[2]. The MAP estimate for the hidden state at time
t is given by q̂t = arg maxP (qt, O

T
1 ). The BCJR algorithm

computes this using the forward and backward recursions.

The forward recursion variable αt(m), the backward re-
cursion variable βt(m), the joint likelihood of the hidden
state and the observation sequence λt(m) and the recursion
variable γt(m′,m) are defined as follows,

λt(m) =P (qt = m,OT
1 ) (1)

αt(m) =P (qt = m,Ot
1) (2)

βt(m) =P (OT
t+1|qt = m) (3)

γt(m′,m) =P (qt = m, ot|qt−1 = m′) (4)

where, m = 1, 2 . . . N, m′ = 1, 2 . . . N

Observe that these variables allow us to estimate the

MAP hidden state,

λt(m) =P (qt = m,OT
1 ) (5)

=αt(m) · βt(m) (6)

q̂t =arg maxP (qt, O
T
1 ) = arg maxλt(m) (7)

We can then establish the recursions,

αt(m) =
∑
m′

αt−1(m′) · γt(m′,m) (8)

βt(m) =
∑
m′

βt+1(m′) · γt+1(m,m′) (9)

λt(m) =αt(m) · βt(m) (10)

At the first sensor, we decode the hidden states using the
observations from the first modality. We obtain the aposte-
riori probabilities, λ

(1)
t (m) = P (qt = m,OT

1 ).
In the second sensor, these aposteriori probabilities,

λ
(1)
t (m) are utilized as extrinsic information in decoding the

hidden states from the observations of the second modal-
ity. Thus the aposteriori probabilities in the second stage of
decoding are given by λ

(2)
t (m) = P (qt = m,OT

1 , Z(1)T

1 )
where Z

(1)
t = λ

(1)
t is the extrinsic information from the first

sensor.

λ
(2)
t (m) =P (qt = m,OT

1 , Z(1)T

1 ) (11)

α
(2)
t (m) =P (qt = m,Ot

1, Z
(1)t

1) (12)

β
(2)
t (m) =P (OT

t+1, Z
(1)T

t+1|qt = m) (13)

γ
(2)
t (m′,m) =P (qt = m, ot, Z

(1)
t |qt−1 = m′) (14)

Then the recursions do not change, except for the com-
putation of γ

(2)
t (m′,m).Since the extrinsic information is

independent of the observations from the second modality,

γ
(2)
t (m′,m) =P (q2,t = m, o2,t, Z

(1)
t |q2,t−1 = m′)

γ
(2)
t (m′,m) =P (q2,t = m|q2,t−1 = m′)

· P (o2,t|q2,t = m) · P (Z(1)
t |q2,t = m)

γ
(2)
t (m′,m) = P (q2,t = m|q2,t−1 = m′) · P (o2,t|q2,t = m)

·
∑

n

{P (Z(1)
t |q1,t = n)P (q1,t = n|q2,t = m)}

where q2,t and o2,t correspond to the hidden state and ob-
servation at time t for modality 2.

Assuming that P (Z(1)
t |q1,t) = 1 if q1,t =

arg maxn Z
(1)
t,n and 0 otherwise, where Z

(1)
t,n is the nth com-

ponent of the vector Z
(1)
t , which corresponds to a hard de-

cision rule, we are now left with the evaluation of P (q1,t =
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n|q2,t = m) which is assumed to be approximated by a
rescaled Gaussian kernel with zero mean and whose covari-
ance corresponds to the association of close tracks in the
spatial domain. This is possible because states m and n
correspond to 3D co-ordinates and we choose a Gaussian-
looking discrete distribution to model the conditional den-
sity.

Thus, the iterative decoding algorithm provides us with
a probabilistic information for the fusion of audio and video
tracks.

The tracking ambiguities can be greatly resolved using
speaker ID information as elaborated in [4]. However, in
that work, the authors consider the output from the far field
microphones directly, to evaluate the speaker ID. In our
system, we augment the tracker information with speaker
ID obtained by beamforming towards the dominant source.
The beamformer uses the position information from the
tracks and head pose information to reconstruct good qual-
ity speech from far field microphones. The overall flow di-
agram is shown in Figure 1. Thus we see that the tracker
performance can be improved by augmenting it with infor-
mation obtained by the fusion of several other cues. This is
a theme that will repeat at various stages of our paper.

3.3. Head pose estimation

The video based head pose estimator adds valuable infor-
mation to human activity analysis[14]. Head pose is useful
in attentional studies, face recognition as well as for effec-
tive beamforming[20][13]. Headpose estimation can also
be helpful in face recognition based systems [11][4]. In this
paper we use the head pose estimates for effective beam-
forming, thus fusing video cues for better audio processing.

In our experiments we use a simple ellipse fitting method
to estimate the head pose. Figure 6 illustrates the process.
A skin tone detector is used to extract the face pixels. An
ellipse is fit to the skin pixels and the orientation of the el-
lipse gives us an estimate of the head pose of the subject
relative to the camera. We only consider the horizontal di-
rection of the person head and ignore the vertical tilt. A
linear regression model is used to map the orientation of
the best-fit ellipse with the actual head direction. The skin
tone detector is prone to false positives. This is improved
by using a mean shift tracker for reducing the search space
in the camera view. Also, the ellipse method gives only a
coarse estimate of the head pose. The numerical results and
analysis are provided in Section (5).

3.4. Beamforming

Beamforming allows us to reconstruct good quality
speech from far field microphones. Speech reconstruction
from distant microphones in reverberant microphone is a
challenging task[10]. But it is essential for better perfor-
mance of the speech recognizer and speaker ID systems,

while using far field microphones. Since we use micro-
phone arrays with arbitrary geometry and wide aperture, we
train a delay, filter and sum beamformer using the a stochas-
tic gradient descent algorithm. The structure of the beam-
former is shown in Figure 3.

Mic 1

Mic 2

Mi 3

Beamformed
Signal

ΣMic 3
Time 
Delay

Filter Taps

Mic MMic M

Figure 3. The delay, filter and sum beamformer. The filter taps are
trained for specific location and head orientation using a stochastic
gradient descent algorithm to match the beamformer output to a
close talking microphone. After the taps are determined, the close
talking microphone is not needed for beamforming.

The beamformer requires the appropriate delays to align
the microphone outputs. In [12], the authors explain the
benefits of using video based tracking to enhance speaker
localization for effective beamforming. In our setup, we
use the beamformer with the smoothed delay estimates ob-
tained from the tracker’s output, combined with the active
speaker localization. Note that speaker localization by itself
is quite noisy and using the tracking information improves
the accuracy of the beamformer. Also, in [20], the authors
discuss the significance of speaker’s head orientation in the
beamformer accuracy. In our set up, we use both the loca-
tion and head orientation information for beamforming.

3.5. Speaker ID

Speaker ID provides valuable information for the tracker
in allowing the tracker to recover from failures that cannot
be resolved otherwise. For example, it allows us to pro-
ceed through drastic lighting changes. In [4], this is called ’
identity tracking’. We use a Gaussian mixture model based
maximum likelihood classifier to build our speaker recog-
nition system. The models are trained using close talking
microphones. Beamformer output is used for recognition.
Also, all the speech from a whole speech segment corre-
sponding to a sentence or phrase spoken by a speaker is used
for the speaker ID task, boosting the recognition accuracy
compared to frame-wise recognition. The details are ex-
plained in Section 4. Our basic speaker ID module is based
on Gaussian mixture models (GMM) and maximum likeli-
hood classification. The feature vectors are 39 dimensional
MFCC co-efficients as used in standard speech recognition
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tasks. Each GMM has 4 mixture components with diagonal
co-variance matrices.

3.6. Speech Recognition and keyword spotting

Speech recognition in unconstrained meetings is a chal-
lenging task. We use a commercially available speech
recognition software. In order to boost the performance,
we have also trained the models for keyword spotting. This
works much better than unconstrained speech recognition
which has very poor performance in a multiparty interac-
tion without close talking microphones. The keyword spot-
ting accuracy is one of our main evaluation metrics because
it involves the accuracy of the whole system.

4. Hierarchical fusion framework
In Figure 1, we present a flow diagram of the fusion of

multimodal cues. The audio and video signals provide the
person location information and this is fused in the audio-
visual tracking step to come up with robust estimates of the
3D co-ordinates of the subjects. The tracking information is
augmented with the speaker ID when available and this bet-
ters the re-identification of the tracks in ambiguous cases.
The location and head pose estimates are fused for effec-
tive beamforming. The reconstructed clean speech from the
beamformer is used by the speaker ID module which identi-
fies the active speaker. The speech recognizer uses both the
speaker ID and the reconstructed speech to recognize full
speech or spot keywords in the utterance.

Thus, when the various blocks for audio-visual human
activity analysis are put together, there is a whole range of
fusion possibilities to make the system more robust and ef-
fective. This fusion hierarchy is the main contribution of
this paper. In our experience, there is no other set up which
combines audio and visual cues at such varying levels of
abstractions to achieve a set of tasks.

The fundamental information extracted from the audio
and video sensors are the person locations. For every video
frame and the corresponding audio frame, we detect and
track foreground objects and sound sources. The tracking
module is described in detail in Section 3.1. The output of
this module is a set of tracks that are identified with a track
ID Γi, 1 ≤ i ≤ N . In the second pass, we use an adap-
tive threshold based voice activity detector on audio frame
energy for all the microphone outputs to separate speech
frames from non speech frames. This is a standard pre-
processing step and we do not describe it further here. For
the speech frames, the output of the SRP source localizer
(Section 3.1) is used to associate the speech frame with one
of the active tracks using the nearest neighbor approach.

Let t be the frame index of a speech frame, that is, the
audio energy of one of the microphones exceeds the thresh-
old (adaptively set) at frame t. Let the output the of the SRP

source localizer be the source location xs = (xs, ys, zs) and
the indices of active tracks at time t be Tt. Then, the frame
is assigned to track i = arg minjεTt

d(xs, x(j,t)) where
x(j,t) denotes the jth track’s location at frame t and d is the
Euclidean distance metric. We then group together adjacent
speech frames assigned to same tracks. This corresponds to
forming sentences or phrases that are spoken by the same
speaker. This grouping is necessary to increase the perfor-
mance of the speaker ID module as described in Section
3.5. Note that we are restricting the case to deal with one
dominant speaker at any time. For each speech segment we
calculate the TDOA and beamform ( Section 3.4) to obtain
the reconstructed speech. Using this reconstructed speech
segment, we ID the speaker as described in Section 3.5. In
our present framework we follow a conservative approach
and use the speaker ID to index the tracks. Significant im-
provements are obtained in the re-identification of the per-
sons through merging, occluding and re-entering tracks.

Next, we describe the fusion of information for effective
beamforming. In order to reconstruct the speech from far
field microphones, the beamformer described in Section 3.4
needs the correct TDOA values to align the signals of the
microphones to the reference microphone. For a particular
speaker location, there is a fixed TDOA vector. However,
small changes in the speaker’s mouth position lead to corre-
sponding changes in the TDOA vector. Hence the location
information from the tracker is too coarse to calculate the
exact TDOA vector. For a set of M microphones, assuming
that the first microphone is our reference, the TDOA vector
is M − 1 dimensional vector τ = (τ2, τ3, . . . τM ), where
τj is the relative delay between the signals received at the
reference microphone and the jth microphone. This is es-
timated using the GCC-PHAT algorithm [21]. However, an
interesting observation is that the TDOA vector evaluated
per frame, over a speech segment, is noisy. Using longer
frames improves the robustness but makes the process com-
putationally expensive. In our framework the location es-
timate from the tracker is used to discard the noisy TDOA
vectors. Only those TDOA vectors that are within a certain
neighborhood of the computed TDOA vector are retained
for further processing. At this stage, we make a simplifying
assumption that during the course of a speech segment, the
source is stationary and we can use the average TDOA vec-
tor, computed over all clean frames in the speech segment
to align the signals in our beamformer, Also, the beam-
former filters are trained for specific locations and hence
the speaker location from the tracker is necessary for us-
ing the appropriate filter co-efficients. Also, the filters can
be trained for specific locations and particular head orienta-
tions. In our present scenario, if the head pose information
is unavailable, we use head pose agnostic beamformer taps
for the particular location. We have described the fusion of
the location information from the tracker and the head pose
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information for effective beamforming.
The reconstructed speech signal from the beamformer is

also used in our keyword spotting experiment. Keyword
spotting is one way to address the issue of ”what is happen-
ing in the scene?”. The performance of the keyword spotter
is an indicator of the effect of beamforming on reducing the
reverberations in the far-field microphone signals. Also, the
keyword spotter is a first step in using the spoken words
to draw inferences about the scene. However we do not
explore such possibilities in the current paper. Moreover,
other tasks such as face recognition could be added to the
current framework, but such extensions are not described
here.

The flow of information described above is summarized
in Figure 4. In Section 5, we present a realworld testbed
where the performance of such a framework is demon-
strated through experimental evaluations.
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Figure 4. Flowchart summarizing the exchange of audio and visual
cues at multiple levels of semantic abstraction.

5. Experimental testbed, datasets and results
The experimental testbed is shown in Figure 2. It is

equipped with multiple cameras and microphones of which
3 rectilinear cameras and 16 microphones are used in the
experiments described in this paper. The audio and video
feeds are completely synchronized. Two of the cameras and
all the microphones are calibrated with respect to the world
co-ordinates. The third camera provides us with the close
up view of the subjects in its field of view, for accurate head
pose estimation. The microphones are arranged in 4 sets of
4, located at the 4 corners of the meeting room. The datasets
used to evaluate the system consist of 5 to 10 minute long
clips of meetings involving 3 to 4 people. The total duration
of the test set is 62 minutes. The video frame rate is 15 fps
and we use audio frames that are 66ms long, to match the
frame rates.

From practical considerations, we have made some sim-
plifying assumptions in out meeting setup. We assume that

majority of the meeting interactions occur when the partic-
ipants are seated or presenting next to the screen. Based on
this observation, we have four areas in the meeting room
that are considered for training the beamformer filter taps.
We use a close talking microphone when training the beam-
former for these particular locations. Also, when seated,
the participants in the meeting are most likely to face the
other participants or the presenter, when speaking. Thus,
for each location, there are three head poses that we train
our beamformer for. To demonstrate the utility of the head
pose estimates, we restrict our focus to one of the locations
and use the third camera to obtain a close-up view for head
pose estimation. Thus, the tracker results are for the entire
space. The beamformer results are averaged over the four
locations and the head pose based beamformer results are
for the one location monitored by the third camera. The
framework itself is general and these restrictions are only
for the results presented in this paper.

In Figure 5, we present some snapshots from the audio-
visual tracker. In Table 1, we present the results of the
various tracker configurations. The results correspond to
the percentage of times a track was successfully maintained
through an occlusion. Also, the number of true tracks in
any meeting scene was 3 or 4. Before using speaker ID,
the average number of tracks that would be detected in one
meeting scene was 11.3. This was due to track merging, re-
entry and occlusions. However, using speaker ID, we were
able to resolve the issue of track re-identification in 88% of
cases. The errors correspond to the speaker ID errors that
led to tracks being tagged with the wrong speaker ID.

The speaker ID module was evaluated separately. The
number of people in our dataset is 20. The per-frame per-
formance is presented in Table 2. While using this in our
algorithm, we apply the speaker ID module to speech seg-
ments rather than frames of speech. Each speech segment
is an average of 15 frames long. On such long segments of
speech, the speaker ID module performs with 98% accuracy
on the close talking microphone and 95% accuracy on the
beamformed signal. However, there are many short speech
segments that contribute to tracking errors.

The beamformer is illustrated in Figure 7. During our
experiments, the average SNR of a farfield mic was 11dB.
The SNR at the output of the beamformed mic was 16dB.
The beamformer can also undo the channel effects to a great
extent. This is important in reverberant environments and
we illustrate this in a keyword spotting experiment.

The headpose estimation using ellipse fitting is coarse.
In our experiments, the root mean squared error of the head
pose estimate was 21o. However, for our beamformer, we
are interested in three orientations of the head that corre-
spond to −60o, −10o and 30o. Thus, the high MSE of the
head pose module is not an issue in our current setup. How-
ever, in order to be generalizable, a more accurate head pose

112



Table 1. Audio-visual person tracker’s performance before and after incorporating the speaker ID information.
1 camera 1 camera and 1 camera and 2 cameras and 2 cameras and

16 microphones 16 mics. and Speaker ID 16 microphones and 16 mics. and Speaker ID
49% 56% 80% 76% 85%

Table 2. The speaker ID module’s performance on our 20 person
dataset

Nearfield mic Farfield mic Beamformed signal
89% 56% 78%

estimator is necessary.
In Table 3, we show the results of a keyword spotting ex-

periment conducted on the output of the final beamformed
signal. A set of 20 commonly occurring words were chosen
for the experiment. The keyword spotting was implemented
in the commercially available Dragon Naturally speaking
software. Because we do not have access to the parameters
used in the software, it is not feasible to present ROC curves
for the keyword spotting task.

6. Concluding Remarks
We have presented a novel hierarchical fusion strategy

for the fusion of audio and visual cues at different levels
of abstraction. This not only facilitates a holistic approach
to scene understanding but also provides performance im-
provements by fusion relevant cues from different blocks.
The results are promising. There are many open issues to be
addressed in the near future including the extension of the
system to include more blocks like face recognition, ges-
ture recognition etc. Similar fusion approaches can be in-
vestigated in other scenes such as intelligent vehicles. Such
an extension will also facilitate the comparison of fusion
strategies in different scenes and might eventually lead to
the development of a general scheme for hierarchical fusion
of multimodal cues.
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