
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Optimal Control of DDoS defense with Multi-
Resource Max-min Fairness

Wei Wei, Yabo Dong, Dongming Lu
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

{weiwei_tc, dongyb, ldm}@zju.edu.cn

Guang jin
College of Information Science and Engineering

Ningbo University
Ningbo, China

d05jinguang@zju.edu.cn

Abstract—Distributed defense of DDoS (Distributed Denial of
Service) attack has been extensively researched in recent years
and control-based defense is a hopeful way. However, existed
methods only deal with bandwidth protection. The paper takes
defense of DDoS flood as a kind of Processing and Bandwidth
Resources allocation and solves it using control theory. Our
defense mechanism FFDRF (Feedback Filtering with Dual-
Resource Fairness) sets up filters in edge routers of AS and
adjusts the filtering thresholds through feedback between these
routers and the victim. The simulation results show that FFDRF
can make the legitimate traffic keep high survival rate while is
stable and converges quickly even in case of heterogeneous flow
sources and link conditions. Compared with level-k max-min
fairness defense, FFDRF is more effective against CPU-
consuming flood. And an implementation of FFDRF in a linux
router indicates that FFDRF is feasible in real-life routers.

Keywords—DDoS, max-min fairness, filtering

I. INTRODUCTION
DDoS is a serious threat to Internet security nowadays and

packet flood is a prevalent form of DDoS. Because attack
flows exhaust the bandwidth in bottleneck link near victim, the
local defense by victim is usually not effective. As a result,
distributed defense was proposed. Its principle is to coordinate
between several upstream routers of victim and filter out
attack traffic as close to sources as possible. Most of existed
methods need complicated communication between routers
and involve lots of routers when deployment approaches the
attacking sources. In this situation, AS (Autonomous System)
based defense is a feasible solution and it involves limited
number of routers. More importantly, it avoids deployment
across ASes and is more practical than most of other solutions.
In the method, when under packet flood, the victim sends filter
messages to edge routers and then traffic to the victim is
filtered accordingly in every edge router. The victim
periodically checks the rate of traffic to itself and sends
changed filter messages to edge routers if necessary.

But existed edge-router based methods only take bandwidth
into considerations. While packet flood may not only
consumes bandwidth, but also the processing time of victim,

Funded by Zhejiang Provincial Science and Technology Program
(2007C21034)

and in some conditions the attacking flood consumes more
processor time than bandwidth, e.g. S. Kumar [1] points out
that ping flood mainly waste CPU cycles even it also waste
bandwidth. As a result, we consider bandwidth and CPU at the
same time. Actually, we take the dispatching of filtering
messages as a dual-resource allocation problem and name it
FFDRF (Feedback Filtering with Dual-Resource Fairness).
While multi-resource allocation is a hot problem in AQM, we
provide our revised algorithm which will be given in session
IV. Through simulations in NS2, we find that even in a
network of heterogeneous link condition and flows from
heterogeneous source, FFDRF is stable and has fast
convergence rate. And legitimate traffic has high enough
survival ratio even in heavy attacks. Compared to level-k max-
min fairness in [13], FFDRF is effective even in circumstance
where level-k max-min fairness fails. At last, we implement
FFDRF in a linux based router and find it is applicable even
when up to thousands of filters are installed.

As stated above, FFDRF has the following advantages:
Deployment. All routers are inside one AS under single

administration region. Different from earlier methods, ISPs
have enough motivation to deploy. And not all hosts and
routers need deploying, except edge routers, only vulnerable
sites need to pay for protection.

Costs. Through analyzing internet topology, we find that
most ASes have reasonable number of edge routers, which
means their deployment costs could be restricted.

Effectiveness. Because inside one AS, the edge routers are
the nodes nearest the attacking sources, their filtering the most
effective. Additionally, FFDRF is able to defend several kinds
of packet flood.

Expansibility. Filtering in one edge router equals to
punishment to the corresponding neighbor AS which has not
deployed FFDRF. So neighbor ASes have the motivations to
deploy. And neighbor ASes could share edge routers to push
filtering point closer to sources.

The rest of paper is organized as follows. In section II we
discuss related work. FFDRF system model and related
definitions are presented in section III. A detailed description
of FFDRF algorithm is provided in section IV. Then we give
simulations in section V to test FFDRF. Section VI shows the

performance of FFDRF implementation. And a conclusion is
given at last.

II. RELATED WORK
There are some effective researches in distributed defense

of DDoS. K. Wan et al consider deploying local detection
system in routers of several Internet core ISPs, coordination
between these systems lead to filtering attack traffic in the
right incoming ports of right routers [2]. R. Mahajan et al [3]
provide methods for filtering aggregate flow, and the defense
router cooperates with upstream routers to improve the
effectiveness of filtering.

To mitigate DDos attack, much of current researches focus
on distributed overlay network, A. Keromytis et al [4] present
the conception of Secure Overlay Services (SOS) overlay
network through which the legitimate traffic is sent. The SOS
network is able to change overlay topology dynamically to
avoid DDoS and can survive in case that some key nodes are
attacked. D. Xuan et al improve SOS to counter intelligent
attack aiming at the architecture of SOS itself [5]. A. Stavrou
et al [6] present a stateless multipath SOS to make it harder to
attack the SOS architecture.

Except SOS, path identification (PI) is also a feasible way
to filter and trace back DDoS. A. Yaar et al [7] propose that
one packet is marked in every router it passes and all the
marks become path identification (Pi) when packet arrives at
destination. The host can filter packets according to Pi. S.
Savage et al suggest that router mark packets with a
probability and when attacking traffic flood, the victim could
get enough packet to construct attack path and trace back the
attacking sources [8].

Additionally, capability is designed to prevent internet
architecture from attack. X. Yang et al [9] propose that every
sender should send request to destination for permission and
get a certification called capability, and then the sender can
added capability in packet header to send a certain bytes in a
certain time range.

The above methods use a significant proportion of routers in
Internet. And in some other methods only edge routers are
needed. Z, Duan et al [10] pick out packets with faked source
address in edge routers using BGP update information. K. Park
et al [11] setup two filters in edge router, one only checks
source address and the other check both the source and
destination address.

Here we emphasize some defense methods combined with
feedback control. S. Chen et al propose two defense
mechanisms and related trace-back algorithm in edge routers.
Their mechanisms can be incrementally deployed between
ASes [12]. D. Yau et al [13] propose filtering deployed in
level-k upstream router of victim and introduce max-min
fairness in traffic control. They have also proved the stability
and convergence of AIMD (Additive Increase Multiplicative
Decrease) adjustment. Because above methods are only for
bandwidth resource, they may fail in case of CPU-consuming
attacks, e.g., ping flood and udp flood. And current QoS
researches suggest taking both bandwidth and processing time

into consideration [14, 15]. To improve defense effectiveness,
we propose FFDRF.

III. SYSTEM MODEL

A. AS Topology
Edge route is routers that sit at the periphery edge of a

network. Internet composes of AS regions and each of them

-1 0 1
x 10

4

0.2

0.4

0.6

0.8

1

Edge Router Count

A
S

es
 C

D
F

(a) Distribution from 1 to 20000

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Edge Router Count

A
S

es
 C

D
F

(b) Distribution from 1 to 100

Figure 1. The cumulative distribution of edge router count of ASes in
internet

E

E

E

E

E E

E
E

E

H

H

Host

Edge Router

Router

A

B

C

.Figure 2. The inner topology of AS

are usually under the administration of single ISP (Internet
Service Provider). In contrast with core routers that are in the
middle of a network, edge routers are at the periphery of ASes
and help to connect to other ASes. The advantages of edge
routers are that they are under one single administration region.

Fig. 1 is the cumulative distribution of the count of ASes in
internet which is calculated from CAIDA 2003 ITDK data
[18]. (a) is the distribution with AS inside edge routers count
from 1 to 20000 while (b) is the distribution from 1 to 100. We
find ASes with 1 to 100 edge routers has summed up to 92%
of all ASes in Internet. That indicates that edge router based
defense is feasible for most of ASes.

And about the topology inside AS, there are some
misunderstandings. S.chen et al [12] think nearly every host
has only one upstream edge routers, but it may not be the case,
e.g., host in Fig. 2 connects to several edge routers through
several middle routers. In [13], because the fan out of one host
is nearly always less than the count of edge routers, the
packets from edge routers converge in some middle routers.
However, different from the model in [13], where there is no
link between level-k nodes, links exist among edge routers
which has been proved by CAIDA data. The representative
topology from one host to edge routers is in Fig. 2 where there
is a link between edge routes B and C.

B. Assumptions of DDoS Attack
In DDoS, large amount of packets are sent to victim in a

short time and most of legitimate packets are dropped because
of the congestion in upstream links of victim. And it probably
costs victim a lot of time to process attack packets, actually,
sometimes even dropping flood packets can bring up victim’s
CPU utilization significantly. As a result, legitimate requests
can not be served. Here we only think of attacks which do not
exploit application vulnerabilities, like in [12] and [13].

And DDoS traffic may be a mixture of several kinds of
packets. It means that the impact of DDoS may vary a lot and
the defense architecture should response quickly. And at the
same time, we only consider attacks from AS outside where
most DDoS attacks come from.

C. Multi-Resource Max-Min Fairness
Max-min fairness is proposed by J. Jaffe [19] and the aim is

to give an optimized bandwidth distribution to several flows
sharing limited links. The contribution of [19] is the principle
of fairness and algorithm to achieve it. But max-min fairness is
only for homogeneous resources, as several other kind of max-
min fairness, e.g. proportional fairness [20] and utility fairness
[21]. The max-min fairness for heterogeneous resources is still
an open problem, and its background is given as below.

With l flows and m kinds heterogeneous resources, set Si
(0≤i≤m) as the number of instance of resource i and every flow
use one or several instances of every kind of resources. Set
C=(Cij | 0≤i≤m, 0≤j≤Si) as the capacity matrix of these
resources where Cij is the capacity of instance j of resource i.
Set U=(Ukij | 0≤k≤l, 0≤i≤m, 0≤j≤maxi(Si)) as usage matrix of

resources and if the flow k uses the instance j of resource i,
Ukij=1, otherwise it is 0. Set A=(Akij | 0≤k≤l, 0≤i≤m,
0≤j≤maxi(Si)) as the allocation matrix and Akij ≤ Cij is the
amount of instance j of resource i allocated to flow k. Here a
rational allocation is constrained as next:

1 1 1= = =

≤∑ ∑∑
iSl m

kij kij ij
k i j

U A C (1)

In max-min fairness, m=1 and one flow has same
requirement of bandwidth in all instances of link resource, so
element of A can be written as Ak. Set TA as the set of A that
satisfied (1).Given U and C, the allocation A′ meeting max-
min fairness is:

 Aarg asc(max{asc() | T }})′ = ∀ ∈ A A A (2)
Here the function asc is to rearrange the elements of A in

dictionary order and function max returns the biggest element
of its parameters.

Max-min fairness can not be directly expanded to
circumstance of multi-resource. There has been some
researches on it. Y. Zhou et al [14] discuss the fairness with
constraint that every resource is essential and has only one
instance, namely, {Si=1 | 0≤i≤m} in (1) and then the element
of the allocation matrix A can be written as Aki and the element
of C is Ci. Here if the requirement of one resource does not
decrease even the requirement for other resources increase, the
resource is essential and you can think it as the basic resource
in a network, such as bandwidth. Y. Zhou’s fairness principle
FERA (Fair Essential Resource Allocation) is based on basic
fairness such as max-min, and the fair allocation of A under
basic fairness F is in next:

 A{LNA() satisfies F | T }′ = ∀ ∈A A A (3)
Here LNA(A) is the Largest Normalized Allocation vector

of A, which is:
 LNA() {[] |1 , max(/)}= ≤ ≤ =k k ki ii

A D k l D A C (4)

But the A′ in (3) may not be unique and Y. Zhou et al
discussed the precondition of basic fairness F which leads to a
unique A′. To be practical, they provided an algorithm used for
fairness with single CPU and single link and testified that the
algorithm satisfy FERA. .

In the meantime, M. Shin et al [15] give out DRQ, an
approximated proportional fairness algorithm for a shared
processor and a shared link. They calculate a fixed processing
density for every flow involved. Here one flow’s processing
density is the average number of CPU cycles required per bit
of this flow.

Through comparison between above multi-resource fairness
schemes, Y. Zhou‘s principle FERA is suitable for our defense
algorithm, and the algorithm will be given in section IV.

IV. ALGORITHM: FFDRF
Our aim is to use max-min fairness to coordinate throttling

of attack traffic in edge routers. Our fairness also aims to
allocate one processor and one link to several flows. Here the
link resource is the incoming link of the victim where attack

packets cause congestion and the processor resource is the
processor of victim. And single flow is the aggregate which is
from AS outside and destined for the victim and transits one
edge router. If one flow enters edge router from a port which
connects to a router outside the AS, we consider the flow is
from AS outside. So, the coordination of throttling could be
solved as a problem of fairness among those flows sharing one
processor and one link. To throttle effectively, we must get the
resources consumption rate of every flow. However, processor
consumption rate is hard to measure in edge routers because
the actual consumption of a flow is unknown until it is
processed by the destined host, except some particular
circumstances, e.g., in work of [14] the processing
consumption of one packet can be precisely measured in
routers. In [17], P. Pappu et al consider two kinds of router
application: header-processing applications and payload-
processing applications. And for four given sub-kind
applications, the processing time of one packet is a fixed value.
But the problem is sophisticated here because the processing
time per packet in victim is uncertain and related to specific
application circumstance. For DDoS, there are mainly 3 kinds
of attack packets: TCP, UDP, and ICMP. When the victim
receives ICMP attack packets, the reaction is to drop or reply
an echo. Similarly, when the victim receives TCP or UDP
attack packets, the victim’s reaction is dropping or reply an
error message. Since for every TCP packet, the victim will
search the connection table, so the processing cost of attacking
TCP packets may be much larger than that of UDP and ICMP
packets while the actual cost is uncertain and related to the
size of connection table. So we think it is hard to give a certain
processor cost for different attack packets as in [17]. Besides,
we do not need the actual cost of one packet but one
measurement for FFDRF to balance the CPU cost from
different edge routers. If we can identify attack packets, we
would rather set their CPU cost a large value to block them
and set legitimate packet‘s cost a small value to encourage the
acceptance. However, we do not identify attack packets from
legitimate packets in FFDRF. Because the legitimate packets
do not have absolute more CPU cost than attack packets, e.g. a
legitimate http request may need lots of computing in web
server. It is feasible to set every packet’s CPU cost the same
value and we consider this kind of value will help defense
effectively and will illustrate it in our simulations.

Given the measurement above, we proposed our FFDRF
(Feedback Filtering with Dual-Resource Fairness) algorithm
based on Y. Zhou‘s FERA principle. The system using FFDRF
functions as a control system: the incoming packet rate of edge
routers is input and ingress traffic rate of victim is the output.
Victim is the controller and periodically checks ingress rate
and sends feedback to edge routers.

Because edge routers may be involved in several DDoS
defense, the algorithm in edge routers should be stateless. In
FFDRF, the edge routers’ function is just to get filter message
from victim and install or uninstall filter or change the filtering
threshold. The filter message R‘s structure is as below:

 (, ,)=R t b d (5)
Here t is the type of R, can be INSTALL or UNINSTALL

that tell an edge router to install or uninstall filter related to
victim. If t is INSTALL, b and d are respectively the byte rate
and packet arrival rate that is permitted through. And if t is
UNINSTALL, just uninstall the filter.

In the mean time, victim periodically check the incoming
rate and CPU utilization and feedback correspondingly. If
average flow rate v is out of boundary [Lv,Uv] or CPU
utilization c is out of boundary [Lc,Uc], the throttle value b or
p is adjusted and sent to every edge routers. We use AIMD
(Additive Increase Multiplicative Decrease) to adjust the
filtering value, i.e., increase filter value by adding a step value
and decrease it by dividing 2. The algorithm is given in Fig.3.

Figure 3. The FFDRF algorithm.

V. SIMULATIONS
We use the topology of AS 15412 from CAIDA ITDK data

[18] and there are 134 edge routers of 148 routers. Because
FFDRF bases on periodical feedback of incoming traffic, its
parameters and incoming traffic fluctuation will impact its
stability and convergence. We will check it at first. Then the
effect of FFDRF under different attack scenario is given. At
last we compare FFDRF with level-k max-min fairness in [13].
The default traffic rate is in units of KB/S and default packet
arrival rate is in units of one thousand packets/S.

Procedure FFDRF_allocate{
 Groupcast initial R to edge routers;
Do{
 Get incoming traffic rate v and average CPU utilization rate
 c;
Rule 1:
 if(v < Lv and c < Lc) then {
 if(attack stopped) then set message
 type as UNINSTALL
 else increase b and d
 }
Rule 2:
 If((Uv≥v≥Lv and c ＜Lc) or (Uc≥c≥Lc and v ＜Lv))
 then {
 Check which of v and c is throttling bottleneck
 and increase it
 }
Rule 3:
 If((v > Uv and c ≤ Uc) or (c > Uc and v ≤ Uv)) then {
 If(v > Uv) decrease throttling threshold b
 If(c > Uc) decrease throttling threshold d
 }
Rule 4:
 If(v > Uv and c > Uc) then {
 Decrease b and d
 }
Rule 5:
 If (Uv≥v≥Lv and Uc≥c≥Lc) then {
 Do nothing;

 }
 Groupcast R to edge routers;
}While(1);

A. Stability and Convergence
(1)Stability

120 attackers outside AS send flood to the victim. 80 of
them send constant flows with rate of 50 and 20 of them send
flows with Pareto distribution (both on and off interval are 500
ms, on rate is 100 and off rate is 50). The final 20 attackers
send synchronized square-pulse flow with low rate of 50, high
rate of 100 and half period of 5 seconds. The average packet
length is 500 bytes and the incoming bandwidth of victim is
10000. Here we consider four kinds of steps: b=5000 and
d=10, b=500 and d=1, b=50 and d=0.1, b=5 and d=0.01. The
bound is Lv=65000,Uv=75000 with Lc=130,Uc=150. The result
is shown in Fig. 4(a). We can see that the incoming rate is
unstable in big step and is stable in small step.

(2)Convergence
Here we use four steps close to each other: b=10 and d=

0.02, b=30 and d=0.06, b=50 and d=0.1, b=70 and d=0.14. The
bound is Lv=68000, Uv=72000 with Lc=136, Uc=144. Fig. 4(b)
shows that the step should neither be too small, otherwise, the
incoming rate is stable enough but may not utilize bandwidth
well, and more important, my not converge quickly. So a
medium step may be a good choice. In the simulation a good
choice is b=50 and d=0.1.

B. Legitimate survival ratio
Here attack agents outside AS initiate a distributed flood to

one host inside AS and the onset lasts for 100 seconds. In
different attack scenarios, CPU or bandwidth is the bottleneck
(the resource is jammed firstly) or both are bottlenecks.
Furthermore, the ratio of the average CPU cost between
legitimate and attack packets may be larger or less than or
equal to 1. We give five corresponding simulations.

(a)

(b)

Figure 6. The legitimate survival ratio in simulation 2.

(a)

(b)

Figure 4. The incoming throughput in different steps.

(a)

(b)

Figure 5. The legitimate survival ratio in simulation 1.

(1) Simulation 1: The CPU cost ratio is larger than 1 and
bandwidth is the bottleneck

The incoming rate of victim is 100000 and average packet
size is 500 bytes. For legitimate traffic, the rate is between 50
and 100 and the CPU consumption of single packet is
randomly between 1 CPU cycle and 200 cycles. The attack rate
is between 50N and 100N (N is the multiples) and CPU
consumption is between 1 and 100 cycles. The peak processing
capacity of victim is 2500000 cycles per second. The control
bound in victim is between 2400000 cycles and 2450000 cycles
with byte rate of 96000 and 99200, i.e., two resources would be
jammed and bandwidth is exhausted at first. And attacking
traffic come through 40% edge routers where the ratio is
represented as p. The simulation results with p=40% and
N=5,10 and 20 are plotted in Fig.5 where (a) is constant rate
attack and (b) is variable rate attack. In variable rate attack,
byte rate of attacking traffic randomly changed inside the
bound every 10 seconds.

(2) Simulation 2: The CPU cost ratio is larger than 1 and
CPU is the bottleneck

Here the simulation scenario is a little different from
simulation 1, i.e. for legitimate traffic, the average packet size
is 500 bytes and for the attack traffic, the average packet size
is 100 bytes, as a result, when traffic come from edge routers
at full speed, CPU is jammed at first. The simulation results
are plotted in Fig.6 where (a) is constant rate attack and (b) is
variable rate attack.

(3) Simulation 3: The CPU cost ratio is less than 1 and
bandwidth is the bottleneck

The incoming rate of victim is 100000 and average packet
size is 500 bytes. For legitimate traffic, the rate is between 50
and 100 and the CPU consumption of single packet is between
1 CPU cycle and 50 cycles. The attack rate is between 50N
and 100N and CPU consumption is between 1 and 100 cycles.
The peak processing capacity of victim is 2500000 cycles per
second. The control bound in victim is between 2400000
cycles and 2450000 cycles and 96000 and 99200. The
simulation results are plotted in Fig.7 where (a) is constant rate
attack and (b) is variable rate attack.

(4) Simulation 4: The CPU cost ratio is less than 1 and CPU
is the bottleneck

For legitimate traffic, the average packet size is 500 bytes
and for the attack traffic, the average packet size is 100 bytes.
And the rest is the same to simulation 3. The simulation results
are plotted in Fig.8 where (a) is constant rate attack and (b) is
variable rate attack.

In above 4 simulations, we can see that no matter how
attack traffic changes, as legitimate traffic is not aggressive, the
survival ratio can reach up to 90% around.

C. Legitimate survival ratio in meek DDoS attack
The filter can effectively depress attack flows with high rate.

But when one attack consists of many low rate flows which act
like legitimate flow, FFDRF may not work very well because it
punishes legitimate and attack flows equally. We setup a
simulation to test the effect under meek attack. Here the
incoming bandwidth of victim is 50000 and average packet size

is 500 bytes. The CPU of victim could process at most 12500
packets per second. The attack rate is the same to legitimate

rate,is between 50 and 100. Fig 9 is the survival ratio when
p=20% and 40%. We could see that the survival ratio drops to a

(a)

(b)

Figure 8. The legitimate survival ratio in simulation 4.

(a)

(b)

Figure 7. The legitimate survival ratio in simulation 3.

low level and similar situation happened in level-k max-min.
However, the victim is at least in service, not overwhelmed by
attack traffic.

D. Comparison between FFDRF and level-k max-min
Because level-k max-min only considers bandwidth flood,

when attack traffic mainly consume processor time, such as,
ping flood [1], the level k max-min would leave victim
dropping packets. To compare FFDRF and level-k max-min,
the simulation scenario is as below: The incoming bandwidth
of victim is 100000 and average size of legitimate packet and
attack packet are 500 bytes and 100 bytes. The CPU of victim
could process at most 25000 packets per second. The legitimate

is between 50 and 100 and the attack rate is between 50N and
100N. In FFDRF the bound is Lv=96000, Uv=100000 and

Lc=24000, Uc=25000. And in level-k maxmin it is just [96000,
100000]. Fig.10 shows the comparison of survival ratio while
in (a) p=40%, N=20 and attack rate is constant and in (b)
p=40%, N=20 and attack rate is variable. We can see a clear
difference in result.

VI. IMPLEMENTATION
We implement FFDRF in a linux router. The router is

implemented in a Sun Server with two 2.0GHz CPUs and 2GB
memory. An application level daemon routes incoming
packets and FFDRF filter is implemented as a kernel module.
When FFDRF filter requests arrive, routing daemon reads the
parameters and sends it to FFDRF filter module to install or
uninstall a filter.

To test the feasibility of FFDRF, we firstly test the memory
overhead of up to 1000 filters are installed, which is shown in
Fig. 11(a). We can see memory overhead is linear to the filter
count and could still keep low when thousands of filters are
installed.

In the other hand, we test the processing time per packet
and total throughput with different number of filters installed.
When one packet arrives, the filter list is searched linearly.
Here we give tests in two situations. One is that the filter list is
searched through and no matched filter (no hit), another is the
matched filter is in the tail of list (last hit). The results are given
in (b) (c) (d) (e) of Fig. 11. It is shown that the simplest
implementation of FFDRF could have high throughput and low
processing delay.

VII. CONCLUSIONS
In the paper, we present a new countermeasure against

DDoS flood. Here the defense is considered as a resources
allocation problem. Compared to earlier work [13], our
defense mechanism takes both bandwidth and processor time
into considerations. Based on a newly proposed principle, we
present our max-min fairness algorithm FFDRF. To
implement the fairness filter, only edge routers is needed. The
simulation results show that it is effective against common
constant and variable rate attacks and have advantages over

(a)

(a)

(b)

Figure 10. The comparison between level-k max-min and FFDRF.

Figure 9. The survival ratio in meek attack.

existed single resource method. The implementation in a linux
router testifies the feasibility.

But like existed methods, our mechanism is less effective in
meek DDoS attack. And attack from AS inside can not be
effectively filtered. We will improve it in the future.

REFERENCES
[1] S. Kuman. PING attack – How bad is it? Computers & Security, Jan

2006.
[2] K.K.K. Wan, R.K.C. Chang. Engineering of a global defense

infrastructure for ddos attacks. In proceedings of 10th IEEE international
conference on networks (ICON 2002), pp. 419-427, 2002.

[3] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, S.
Shenker. Controlling high bandwidth aggregates in the network. ACM
SIGCOMM Computer Communication Review, vol. 32, no. 3, July 2002.

[4] A.D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, Aug 2002.

[5] D. Xuan, S. Chellappan, X. Wang, S. Wang. 25. Analyzing the secure
overlay architecture under intelligent ddos attacks. In proceedings of the
24th International Conference on Distributed Computing Systems
(ICDCS'04), 2004

[6] A. Stavrou, A. D. Keromytis. Intrusion detection and prevention:
Countering DoS attacks with stateless multipath overlays. In proceedings
of the 12th ACM conference on Computer and communications security
(CCS '05), 2005.

[7] A. Yaar, A. Perrig, D. Song. Pi: a path identification mechanism to
defend against ddos attacks. In proceedings of Symposium on Security
and Privacy, pp. 93-107, May 2003.

[8] S. Savage, D. Wetherall, A. Karlin, T. Anderson. Practical Network
Support For IP Traceback. In proceedings of ACM Sigcomm 2000.

[9] X.W. Yang, D. Wetherall, T. Anderson. A DoS limiting Network
Architecture. Computer Communication Review, vol. 35, no. 4, p241-
252, oct 2005.

[10] Z. Duan, X. Yuan, J. Chandrashekar. Constructing Inter-Domain Packet
Filters to Control IP Spoofing Based on BGP Updates. In proceedings of
IEEE Infocom, 2006.

[11] K. Park, H. Lee. On the Effectiveness of Route-Based Packet Filtering
for Distributed DoS Attack Prevention in Power-Law Internets. ACM
SIGCOMM Computer Communication Review, vol. 31, no. 4, 2001.

[12] S. Chen, Q. Song. Perimeter-Based Defense against High Bandwidth
DDoS Attacks. IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 6, June 2005.

[13] D. K. Y. Yau, J. C. S. Lui, F. Liang, Y. Yam. Defending Against
Distributed Denial-of-Service Attacks with Max-Min Fair Server-
Centric Router Throttles. IEEE/ACM Transactions on Networking, vol.
13, no. 1, Feb 2005.

[14] Y. Zhou, H. Sethu. On Achieving Fairness in the Joint Allocation of
Processing and Bandwidth Resources: Principles and Algorithms. IEEE
IEEE/ACM Transactions on Networking, vol. 13, no. 5, Oct 2005.

[15] M. Shin, S. Chong. Dual-resource TCP/AQM for processing-constrained
networks. In proceedings of IEEE Infocom, 2006.

[16] T. Wolf and M. A. Franklin. CommBench - a telecommunications
benchmark for network processors. In proceedings of IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), p154–162, Apr 2000.

[17] P. Pappu and T. Wolf. Scheduling processing resources in
programmable routers. In proceedings of IEEE Infocom, pp.104–112,
June 2002.

[18] http://www.caida.org/home/
[19] J.Jaffe. Bottleneck Flow Control. IEEE Transactions on

Communications. vol. 29, no. 7, pp. 954-962, July 1981.
[20] F. Kelly. Charging and rate control for elastic traffic. Europen

Transactions on.Telecommunications, vol. 8, no. 1, pp. 33–37, Jan 1997.
[21] Z. Cao, E.W. Zegura. Utility max-min: an application-oriented

bandwidth allocation scheme. In proceedings of IEEE Infocom, 1999.

(d)

(e)

Figure 11. The performance of FFDRF implementation.

(b)

(c)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

