

978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Architectural Mismatch Detection between
Component and Aspect Based on Finite Automata

Yang Zhang
School of Information Science & Engineering

Hebei University of Science & Technology
Shijiazhuang, Hebei, P.R. China

zhangyang@hebust.edu.cn

Jingjun Zhang
Scientific Research Office

Hebei University of Engineering
Handan, Hebei, P.R. China

santt88@163.com

Hui Li
Scientific Research Office

Hebei University of Engineering
Handan, Hebei, P.R. China
lihuiflying1981@163.com

Abstract—Architectural mismatch increases the underlying
danger of compositional system and reduces the reusability of
component. Traditional architectural mismatch throws much
concern on the mismatch between components. Nonfunctional
property, regard as the second or even third-class entity, is used
to guide to choose component and connector, implement analysis
of the performance and check the constraint. By introducing
Aspect to software architecture, this paper extends the basic
elements of software architecture by two means: 1) taken
nonfunctional property as a first-class entity and 2) describing it
with Aspect. Firstly, this paper defines the connection between
component and aspect. The different way of composition between
component and aspect determines the mismatch which is
different from the mismatch between components. Secondly the
architectural mismatch is described through finite automata.
Finally, the algorithm of architectural mismatch detection is
proposed. A simple example validates the algorithm roughly, and
the advantages as well as the problems of the algorithm are
discussed.

Keywords—architecture mismatch, component, aspect, finite
automata

I. INTRODUCTION
The notion of architectural mismatch is generally used to

refer to incompatibilities that occur when assembling new
software system from existing components which need not
have common architectural origin [1, 2]. Architecture
mismatch occurs when the properties of one component
conflict with the properties of another one. Architectural
mismatch increases the danger of compositional system and
reduces the reusability of component. Research on architectural
mismatch is benefit to not only ensure the correct design of
software system, but also increase the reusability of the
component.

The origin of architectural mismatch can be traced to the
work of Parnas [1] on the effects of change on software design.
The term Architectural Mismatch was coined much later by
Garlan et al [2]. They identified four main categories of
assumptions that can contribute to architectural mismatch:
nature of components, nature of connectors, global
architectural structure and construction process. A finer
categorization of architecture mismatch is suggested in [3].

Architectural mismatch is sometimes characterized as being
structural or behavioral [3]. By structural mismatch they mean
static incompatibility of two components, where at least one of

the components lacks appropriate code that would avoid
mismatch. In contrast, behavioral mismatch implies a dynamic
incompatibility, which shows up in a certain run-time
environment that prevents the components from executing
appropriate paths in their otherwise compatible code. Deadlock
is the most common manifestation of the later form of
mismatch. Orlandic et al [3] have performed their research
work from the structural mismatch between components.

Software architecture depicts the whole structure of
software, which plays an important role in the process of
software development. Research on software architecture is
benefit to discover the commonness of different software
system, ensure flexible and correct design, and manage the
global property. Traditional software architecture includes three
basic elements: component, connector and constraint.
Architectural mismatch occurs when the implementation
properties of one component conflict with the properties of
another one. Architectural mismatch may lead to the poor
design of software system.

The work of [4][5][6] put their concerns on the mismatch
among components, because the component is the first class
entity in the architecture. Nonfunctional property crosscuts the
functional property and has not taken as a first-class entity to be
modeled and described. The mismatch between functional part
and nonfunctional parts is not concerned about, mainly for the
reason that nonfunctional spreads all over the inner software
and isn’t modeled as a first-class entity.

Aspect-oriented programming (AOP) [7] provides a
mechanism to modularize the crosscutting concerns.
Introducing AOP to software architecture, this paper extends
the basic elements of software architecture by considering
nonfunctional property as a first-class entity and describing it
with aspect. The extended software architecture includes four
parts: component, aspect, connector and constraint. In the
architecture, there exists the mismatch not only among
components but also between component and aspect as
component interacts with aspect [10]. Though much work has
emerged about the mismatch among the components, the
problem about the mismatch between component and aspect
remains unresolved.

In this paper, we concentrate solely on the behavioral forms
of mismatch. Firstly, we define the connection between
component and aspect formally. Secondly, the architectural

mismatch between component and aspect is described through
finite automata and the algorithm of architectural mismatch
detection is proposed. Finally, we discuss the advantage and
some problem of the algorithm.

II. COMBINATION BETWEEN COMPONENT AND ASPECT
Introducing AOP to architecture, the basic element of

architecture is extended to four parts including of component,
aspect, connection and constraint. In this section, we defined
the model of component and aspect separately at first. Based on
model of component and aspect, the static and dynamic
combination between component and aspect are described.

Definition 1. A component C = (P, M, β), where P is a set
of port, M is a set of message on the port and β is a mapping:

β: P→{-1, +1}

For ∀ p∈P, if β(p)= -1, p is the output port of the
component; if β(p)= +1, p is the input port of the component.

The model of component defined the port that is divided
into input port and output port. The input port receives the
message from the aspect and other components while the
output port sends out the message.

Definition 2. An aspect A = (Adv, M, γ), where Adv is a set
of advice, M is a set of aspect message, γ is a mapping:

γ: Adv→{Ak, Ac}

For ∀ adv∈Adv, if γ(adv) = Ak, adv is the sink advice of
aspect; if γ(adv) = Ac, adv is the source advice of aspect.

In the model of aspect, an advice of an aspect is divided
into sink advice and source advice that are prone to interact
with the component.

The AOSD community offers different approaches for
weaving aspects, depending on the points where the Pointcuts
can be placed. Some approaches support the definition of
Pointcuts at any place of the code (e.g., before, after, around,
…), mainly because they are based on the code intrusion.
Different kinds of message interception are used in other
approaches, so the aspect evaluation is triggered by the delivery
of a message or an event. This allows aspects to be applied to
black-box component, closely to the CBSD philosophy. The
aspect is evaluated when intercepting the message that sent out
from the component. The static combination between
component and aspect describe the connection between the port
of component and advice of aspect. The dynamic combination
is expressed through the executable model of finite automata.

Supposed that there is component C = (P, M, β) and aspect
A = (Adv, M, γ), the static connection between component and
aspect is a mapping:

Apply: P × Adv → {0, 1}

For ∀ a∈Adv, p∈P, if the mapping Apply(p, a)=1, there
exists the connection between component and aspect; if the
mapping Apply(p, a)=0, there doesn’t exist the connection
between component and aspect.

For Apply(p, a)=1, if β(p)= -1, γ(a)= Ac; if β(p)= +1, γ(a)=
Ak.

The dynamic combination mainly defined through finite
automata.

Definition 3. A finite automata is a quintuple FA=(S, Σ, f,
S0, Z), where S is a finite set of states, Σ is a finite set of input
message alphabet, f is the mapping from S×Σ to S, S0 is a set of
initial state, Z is a set of final state.

Let ε be empty message, ε ∈Σ. Empty message has no
impact on transition of state, then

(1) f’ (s, ε) = s;

(2) f’ (s, bw) = f’ (f(s, b), w), where b∈Σ, w∈Σ*, f’ is a
mapping from S×(Σ∪{ε}) to 2S.

Let finite automata FAT is an implementation of a system
that composed by component Ci(1≤i≤n) and aspect Aj(1≤j≤m),
when ∀ a∈Adv and p∈P, Apply(p, a) = 1, we say FAT = (ST,
ΣT, fT, S0T, ZT), where

ST = S1×S2×…×Sn+m

ΣT =Σi1×Σi2×…×Σin×Σj1×Σj2×…×Σjm, the message of
component and aspect build up input alphabet of ΣT;

ZT = Z1×Z2×…×Zn+m

For ∀ C1, C2∈C, a component C1= (P1, M1, β1) and C2=
(P2, M2, β2), the port P1 and P2 connected, there exists aspect A,
let Apply(p1, ac)=1∧Apply(p2, ak)=1, it shows that the message
of component is intercepted by aspect A. After aspect A deal
with it, the message passes to C2. Here ac and ak allow null.
When ac and ak are null, it represents two component connected
directly without the action of aspect.

III. ARCHITECTURE MISMATCH

A. Algrorithm Proposed
Component and aspect co-exist in the software architecture.

There may be mismatch between them if they are not properly
organized. For example, when a component send out message a
prior to message b, a aspect needs to intercept the message and
requires the message b prior to message a. When this situation
happens, the mismatch occurs. Another example of mismatch is
that a component and an aspect visit the same critical resource.
We define the architecture mismatch as following.

Definition 4. Let ε-Closure(q) be a set of state if the
following conditions are satisfied:

(1)∀ q∈S

(2) The set is composed by some state that begin from q,
and ε is the input message

Definition 5. For ∀ Si∈S，Sj∈S，Si →m Sj, → is said
to be the transition of a state.

Definition 6. Let St is the state of finite automata FA,
St∈S, if there exists a finite state sequence that started from
init state, S0 → 0m S1 → 1m S2 → 2m ... → −1nm Sn, S0
is the init state and Sn=St, we say St is reachable.

Definition 7. For ∀ St∈S, if St is reachable and St∈Z, we
say St is the reachable final state.

Definition 8. The system that composed by component and
aspect exist the architecture mismatch, if and only if the
following conditions are satisfied:

(1) ∀ a∈Σ, T = f’({si1, si2, … , sim}, a);

(2) qj =ε-Closure(T)

(3) the state of set qi is the unreachable final state.

Base on the definition above, the algorithm of architecture
mismatch detecting is proposed as following.

Begin
q0 = ε-Closure(S0);
Snew = {q0}; // Snew is a new set of state
For each unsigned qi in Snew

qi = 1; // qi is signed
For each of a∈Σ // Σ is composed by the message of

component and aspect
 T = f’({si1, si2, … , sim}, a);
 qj =ε-Closure(T);
End For
If qi

∉Snew
 put qi into the set Snew
 add the transition of state f’(qi, a) to f’
End If

End For
For each of qi∈Snew

If the element of set qi not in the reachable final state
set

 Mismatch = true;
End If

End For
End

B. An Example
Taken the book management system that we developed as

an example, the algorithm is validated roughly. In the software,
two components and two aspects are identified: borrowing
component and returning component, security aspect and
logging aspect. The use of two components needs the
validation of security aspect and the record of logging aspect.
The security aspect is set to prior to logging aspect, which
means that only the legal user can log on the system and record
the action of login. We analyze the action of component and
aspect to get all the initial state of them, which is composed of
q0 and the reachable final state set.

The states of transition of borrowing component are as
following: S10 →validation S11 → obook inf S12

 → onregistrati S13 →book S14. The states of transition of
returning component are as following: S20 →validation S21

 →book S22 →registInfo S23

Σ is composed by all the messages of component and aspect
and adds all the middle state to qi to create T. The message of
aspect and component, such as validation data, book data, etc
can be constructed of a. In this example, we set the message of

message A is prior to message B. Message A and B affect
Message validation. Through the message transition, we get qi.
The element of set qi is not in the reachable final state set, and
the mismatch is true.

IV. RELATED WORK AND ALGORITHM DISCUSSION
Software architecture provides a basis to the large software

system. Introducing AOP to software architecture may achieve
separation of concerns in a high level [8]. It helps to analyze
the nonfunctional property and the relationship between
component and aspect. Furthermore, combining AOP and
software architecture is an effective way to apply and validate
AOP in a large-scale software system.

Much work has been done on architecture mismatch.
Compare et al [4] demonstrate that the use of formalism is an
effective mechanism for detecting mismatch in dynamic
behavior of existing components assembled into the Chemical
Abstract Machine. Orlandic et al [3] perform their work on the
architecture mismatch among components from structure of the
component. They proposed a mismatch-free architecture to
avoid the mismatch. The tool of Unicon [5] may provide
mismatch detection, but it has the limitation in checking the
global properties. Zhang et al [6] propose a behavioral
mismatch description and the algorithm among components.
Vanderperren et al [9] propose a visual component composition
environment with advanced aspect separation features. But they
don’t consider the mismatch between them. The works
mentioned above put their concerns on the mismatch among
components. However, the mismatch among components is
different from the one between component and aspect as the
difference of the interaction. So the algorithm aims to resolve
the mismatch between component and aspect.

Now we have simply tested the algorithm through some
system we developed. The result shows that it is useful for
security aspect and logging aspect that are extracted from the
software system. However, when concurrent aspect and real-
time aspect are considered, the algorithm is not efficient for
their feathers of aspects related with the time. Improvement
needs to be done on our algorithm for concurrent aspect and
real-time aspect, which will be our future work.

V. CONCLUSION
The innovation of this paper is that we research on the

mismatch between component and aspect. We formally define
the connection between component and aspect, and the
architectural mismatch between component and aspect is
described through finite automata and the algorithm of
architectural mismatch detection is proposed. The algorithm is
benefit to discover the mismatch in architecture.

The next work includes of the improvement our algorithm
for concurrent aspect and real-time aspect, continuing to
validate the algorithm and analysis the performance of the
algorithm, such as the time and space complexity.

ACKNOWLEDGMENT
This work was supported by the Natural Science

Foundation of Hebei Province under Grant No. F2006000647,
P.R. China; Science-Technology Foundation of Hebei Province

under Grant No. 07215601D-3, P.R. China; and the Scientific
Research Foundation of Hebei University of Science and
Technology under Grant No.XL2005063, P.R. China.

REFERENCES
[1] D.L. Parnas, “On the criteria to be used in decomposing systems into

modules”, Communications of ACM, Vol.15, No.12, pp. 1053-1058,
1972.

[2] D. Garlan, R. Allen, J. Ockerbloom, “Architectural mismatch or why it’s
so hard to build systems out of existing parts”, In proceedings of 17th
Int. Conf. on software engineering, Seattle, WA, pp. 179-185, 1995.

[3] R. Olandic, J.L. Pfaltz, “Prevent mismatch of homogenous components
in the design of software architecture”, International journal of software
engineering and knowledge engineering, Vol.11, No.6, pp. 731-759,
2001.

[4] D. Compare, P. Inverardi, A.L. Wolf. Uncovering architecture mismatch
in component behavior. Science of computer programming. Vol.33,
No.2: pp. 101-131, 1999.

[5] M. Shaw, R. Deline, D.V. Klein, et al. Abstractions for software
architecture and tools to support them. IEEE transactions on software
engineering, Vol.21, No.4, pp. 315-335, 1995

[6] B. Zhang, K. Ding, J. Li. “An XML-message based architecture
description language and architectural mismatch checking”, In
Proceedings of 25th Annual International Computer Software and
Application Conference, Chicago, USA, 2001.

[7] G. Kiczales, “Aspect-oriented programming the fun has just begun”, In
Workshop on New Visions for Software Design and Productivity:
Research and Applications, December 2001.

[8] M. Hong, D.G. Cao, “ABC-S2C: Enabling separation of crosscutting
concerns in component-based software development”, Chinese Journal
of Computers, Vol.28, No.12, pp.2036-2044, 2005.

[9] W. Vanderperren, D. Suvée, B. Wydaeghe, V. Jonckers, “PacoSuite and
JAsCo: A Visual Component Composition Environment with Advanced
Aspect Separation Features”, In proceedings 6th International
Conference FASE 2003, April 7-11, 2003.

[10] J.J. Zhang, Y. Zhang, F.R. Li. “Combinatorial model and aspect-oriented
extension of architecture description language”. Proceedings of IEEE
3rd International Conference on Information Technology: Research and
Education (ITRE’2005). Hsinchu, Taiwan. June 27-30, 2005, 277-281.

