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Abstract—For depth information estimation of microscope 
defocus image, a blur parameter model of defocus image based 
on Markov random field has been present. It converts problem of 
depth estimation into optimization problem. An improved 
Iterated Conditional Modes Algorithm has been applied to 
complete optimization problem, which the select of initial point 
employed Least squares estimate algorithm prevents that the 
result gets into local optimization. The experiments and 
simulations prove that the model and algorithm is efficiency. 
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I.  INTRODUCTION 
The microscope vision is a stress approach which 

micromanipulation robotic obtains external information. As we 
know, the microscope vision with single CCD camera can only 
obtain 2D information in task space. In order to operate the 
object in 3D space, It is a exigent problem we encountered  that 
obtains the depth of the object (namely, Z direction position of 
robotic.). To obtain the depth of micromanipulation from 2D 
plane image is a research hot topic in microscope vision. Many 
peoples[3][4][5][6] have done something to deal with it. 
Usually, There are several methods to obtain the depth of 
object. One is that employs stereo vision to restore the 3D 
image from the 2D image, which the algorithm of stereo match 
is very difficult. The second method we focused on is that 
computes blur characterization of image in the frequency 
domain to obtain depth. Third, As a representative, 
Pentland[7][15] has presented the method of Depth from 
Defocus based the blur image, which computes image object’s 
depth from two blur images in same scene, with changing the 
inner and external parameter of CCD camera. Pentland’s 
method depends on CCD camera system model and precise 
system parameter.  

Since the change in the depth of a scene is usually gradual, 
the blur parameter tends to have local dependencies. Hence, we 
are motivated to model the blur parameter as a MRF[1][9]. A 
defocus image blur parameter model base MRF has been 
presented in this paper. It converts the depth problem into 
energy function optimization problem. Then, applies an 
improved Iterated Conditional Modes algorithm to optimization 
energy function, which the select of initial point employed 
Least squares estimate (LSE) algorithm prevents that the result 
gets into local optimization. Experiments and simulations 

confirm the efficiency of model and algorithm. This paper is 
organized as follows. Section two gives CCD camera imaging 
model of microscope vision defocus image, Section three 
constructs a blur parameter model of microscope defocus 
image based on MRF, The improved ICM[2][14] algorithm and 
it’s implementation is presented in section four. Section five 
carries out experiments and simulations and conclusion is given 
in section six. 

II. CCD CAMERA IMAGING MODEL OF DEFOCUS IMAGE 

Figure 1. CCD imaging principle of microscope defocus image 

CCD imaging principle is shown in Fig.1. According to CCD 
imaging principle, we can give formula as shown in (1) 
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Where f  is the focus length, 0u  is the distances from object 
to camera, and 0v  is the distances from image focus point to 
camera lens. When the distances from object to camera lens is 

0u  and the distances from camera plane to camera lens is 0v , 
we can obtain a clear image. If changes the distances from 
camera plane to camera lens, a blur image can be seen in CCD 
camera plane. When keeps a constant for camera parameter, It 
can be given the relationship between image defocus radius and 
the depth of image as shown in (2) 
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 For formula (2), F is the F number of CCD lens. br  is the 
defocus radius of image and u is the depth of the image. 
Therefore, There is a corresponding function relationship 
between the distances from CCD lens to object and the defocus 
radius of blur image, which can be used to obtain the depth of 
the image. According to formula (2), the positive or negative of 
distances u  depends on if the focus image locates fore or back 
in image plane. We restrict that the distances of object is higher 
than the distances of image. The formula (2) can be converted 
into (3) 
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 For two captured image with different focus length setting, we 
have formula (4) 
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 For defocus image, the blur parameter is ρ  and is given by 

brρ β= , With giving value i=1 2 and eliminating u , the 
relationship of two defocus image’s blur parameter is shown as 
(5) 

                                   1 2m nρ ρ= +                                   (5) 

 Since the blur parameter iρ  at location (x, y) is related to the 
depth of the scene, we can construct a model of the blue 
parameter based on MRF, meaning that the depth of the scene 
can be obtained indirectly. 

III. CONSTRUCTING THE BLUR PARAMETER MODEL BASED 
MRF 

A. MRF and Gibbs distribution 
For image function X in 2D image plane, it is thought as a 

2D random field. Random variable set { }:sX X s S= ∈ , it 

presumes that sx  is the realization of sX . Pixel S’s the 

neighborhood  is sN  and meets the conditions of probability 
distribution as follows: 

 

We calls that X is Markov random field[1][16] with 
neighborhood sN . Gibbs distribution keeps a close relationship 

with MRF. Gibbs distribution with neighborhood  sN  is 
expressed in formula (6) 
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Where ( )U x  is the energy function and represents as 
shown in (7)  
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c C

U x V x
∈

= −∑                            (7) 

For formula (7), C  is the set of cliques included by 
neighborhood sN  and ( )cV x  represents the potential function 

of clique. And ( )U x

x

Z e−=∑  is the partition function. For the 

model base on MRF, the second order neighborhood specifies 
some parameters. Then, we can define the corresponding 
potential function as follows: 
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Where λ   represents clique parameter. 

B. A blur parmeter model based MRF 
Let X denotes the random fields corresponding to the blur 

parameter iρ , X can be modeled by MRF. Namely, it shows as 
in (8) 
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If 1Y , 2Y  denote the random fields corresponding to the 
two observed images, the posterior  probability can be 
expressed as (9) 
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Where 1 2( , )P Y Y  is a constant and ( )P X   is the previous 

probability of the blur parameter. 1 2( | , )P X Y Y  is the 
posterior probability of the initial image, with knowing Y 
value .So, according to Bayes rules, the depth restoration of the 
defocus image can be converted into the problem that seeks the 
estimation of the original image when the posterior probability 
is maximization. Surely, There are two main problems we have 
deal with. (1) computes the previous probability; (2) computes 



 

         

the maximization posteriori probability (MAP). Now, we give 
the implementation above two problems, respectively. 

IV. IMPLEMENTATION 

A. The previous probability computation 
Given X as the blur parameter of the defocus image, Let 

thinks X as a MRF, the previous probability ( )P X can be used 
Gibbs distribution to descript. 
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For given the observed images y1, y2, 

1 2( 1, 2)P Y y Y y= =  is a constant. Considering the 
observation model given by (11) 

                 ( , ) ( , )* ( , )k k ky i j h i j f i j w= +   κ=1,2        (11) 

Where ( , )f i j  is the clear focus image, ( , )ky i j  is the 
blur defocus image, ( , )h i j  is the point spread function (PSF), 

kw is the observed noise. ( , )h i j has a relation corresponding 
to the blur radius. Following, we assume the observations of 
the MRF image sy  obeys the model in (12) 

                                  ( )s s sy f x w= +                               (12) 

Where ( )sf x  is a function that maps sx to
sxµ and sw  

are independently distributed Guassian random vectors with 
zero mean and unknown covariance matrix 

sxΘ . The 

PSF ( , )h i j is Gaussian with blur parameter. Hence, the 

probability 1 2( 1, 2 | )P Y y Y y X= =  can be descript as 
Gaussian distribution and be shown as (13) 
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Then, formula (9) can be converted into (14) 
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Based on the observed image y1, y2, the problem of depth 

estimation is to find the estimation x
Λ

 of X, which can 
computes the depth indirectly. 

B. Improved ICM algorithm implementation 
Base on discussion above, the posterior probability 

1 2( | , )P X Y Y about the original image can be converted into 
the optimization problem as shown in formula (15) 
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Now we employ Besag’s Iterated Conditional Modes 
algorithm to complete the optimization problem. ICM 
algorithm has a highest efficiency and reliable 
performance[10][14]. Compared with simulation annealing[17] 
algorithm applying condition distribution to extract X, ICM 
algorithm searches condition distribution X when it is 
maximization. Note that, when each pixel has a few 
neighbours, this class is highly restricted by unobvious 
consistency conditions, it is necessary to preserve symmetry in 
naming neighbours: that is, if j is a neighbour of i then i must 
be a neighbour of j. As a result, we meet the conditions which 
ignores the large scale deficiencies of p(x) and selects a 
reasonable initial point to achieve a satisfactory result. 

Besag’s suggestion for initial parameter estimation adopts 
Maximum Likelihood Estimation (MLE). The MLE method 
has many large sample properties that make it attractive for use. 
It is asymptotically consistent, which means that as the sample 
size gets larger, the estimates converge to the right values. It is 
asymptotically efficient, which means that for large samples, it 
produces the most precise estimates. It is asymptotically 
unbiased, which means that for large samples one expects to 
get the right value on average. Unfortunately, the size of the 
sample necessary to achieve these properties can be quite large: 
thirty to fifty to more than a hundred exact failure times, 
depending on the application. With fewer points, the methods 
can be badly biased. 

The least squares estimation method is quite good for 
functions that can be linearized. The calculations are relatively 
easy and straightforward, having closed-form solutions which 
can readily yield an answer without having to resort to 
numerical techniques or tables. Further, this technique provides 
a good measure of the goodness-of-fit of the chosen 
distribution in the correlation coefficient. Least squares is 
generally best used with data sets containing complete data, 
that is, data consisting only of single times-to-failure with no 
censored or interval data. Therefore, The choice of initial point 
is employed Least squares estimate (LSE) to complete. 

1) Least squares estimate of initial parameters 
The conditional distribution is given in (14) and the 

observations of the MRF obeys the model in (12). Choose 
parameter estimates to minimize sum of squared errors 
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Differential with respect to parameter and set to 0 to get 
least squares estimates 
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Then, the LSE are 
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Where Ω  is the complete set of 2M  pixels. We use (18) 
and (19) as the initial point of the ICM algorithm. 

2) Steps of improved ICM algorithm 
The steps of improved ICM algorithm as follows: 

Step one: Obtain an initial estimate x
Λ

 of the true x, with 
guesses for δ . 

Step two: Estimate δ  by the value δ
Λ

which maximizes 

1 2( , | ; )P y y x δ
Λ

. 

Step three: Carry out a single cycle of ICM (Step five to 

Step seven) based on the current x
Λ

 ,and δ
Λ

, to obtain a new 

x
Λ

. 

Step four: return to 2 for a fixed number of cycles or  until 
computes repeat up to convergence. 

Step five:( a single cycle of ICM) Given x
Λ

 denotes a 
estimate of the true scene x∗ . 

Step six: obtain a new ix
Λ

 and use it to maximizes 

1 2( , | )i i iP y y x  at each i. 

Step seven: judge if the number of cycles is arrived or not. 

V. EXPERIMENTS AND SIMULATIONS 
Microscopic visual servoing is the sensor-based control 

strategy in micro-assembly. The microscopic vision feedback 
has been identified as one of the more promising approaches to 
improve the precision and efficiency of micromanipulation 
tasks. Micromanipulation robotic system includes 3D micro-
move platform(three micro manipulation hands.),micro-gripper 
driven by piezoelectricity, micro-adsorption hand driven by 
vacuum, microscope vision and so on, which microscope 
vision includes stereo microscope with variable times 
panasonic CCD camera, Tianmin SDK2000 image capture 
board.  The captured image in visual system is 640X480 pixels. 

Firstly, we construct the restoration model of the 
microscope vision defocus image based on MRF the same as 
(14). Presumes that the observed images are y1, y2 and defines 
Y as  the restoration image. Y is thought as a MRF. Then, we 
can restore the defocus image similarly as (14). During 
micromanipulation experiments, presumes the microscope 
work distances (the distances from object lens to clear imaging 
plane.) u0 = 80mm, and gives that micro-move platform zero 
point corresponding micro-effector tip position as original 
point in coordinate. Then, we revise microscope vision system 
in order to locate original point in clear imaging plane. 

Fig.2 and Fig.3 show the initial defocus image of micro-
gripper driven by piezoelectricity with different camera setting. 
Fig.4 gives the restoration image of micro-gripper driven by 
piezoelectricity. 

Figure 2. The initial image of defocus image micro-gripper driven by 
piezoelectricity  

Figure 3. The initial image of defocus image micro-gripper driven by 
piezoelectricity with different camera parameters settings 

Figure 4.  the restoration image of defocus image of micro-gripper driven by 
piezoelectricity 

Secondly, We give the performance of estimation of depth 
method. The image is magnified using the Taike XSZ 
monocular optics microscope (0.7-4.5x) and is captured by 



 

         

Panasonic WV-CP450 CCD camera with focus length of 
2.5cm. The lens aperture was kept constant at an f-number of 6. 
Two defocused images of the scene are taken for two different 
focusing ranges of 80cm and 105cm, which the nearest and the 
farthest points were at a distance of 90cm and 105cm from the 
camera to the object.  

We demonstrate the performance of the method in 
estimating blur parameter and recovering the depth. The 
method of Subbarao[8] is employed to obtain initial estimates 
of ρ . We choose 2 1

, ,0.6i j i jρ ρ= and the number of level for 
the blur parameter is 30. Figs. 5,6,7,8 show the experiment 

results. The original defocus image with blur 1ρ and blur 2ρ  
is shown in Fig5 and Fig6, respectively. Fig7 shows the 
estimated value of depth obtained using DFD, which the initial 
point is given randomly(according to equation of the blur 
parameter.). Correspondingly, the estimated value of the depth 
employed the proposed method that the initial point is chose 
using LSE is shown in Fig8. Fig.9 shows the estimated value of 
the blur parameter using the proposed method. From this 
figures, Compared with DFD that the initial point is given 
randomly, we note that the planar nature of the variation in the 
depth of the scene is better brought by the proposed method. 

 
Figure 5. the original defocus image of micro-gripper and vacuum micro-

adsorption with the blur 
1ρ  

 
Figure 6. the original defocus image of micro-gripper and vacuum micro-

adsorption with the blur 
2ρ  

 
Figure 7. estimated value of the depth obtained using DFD with random the 

initial point 

 
Figure 8. estimated value of the depth obtained using proposed method  

 
Figure 9. estimated values of the blur parameter using proposed method  

VI. CONCLUSION 
The depth estimation in micromanipulation tasks is a key 

technology in microscope vision system. For the depth 
estimation of microscope vision image, This paper presents a 
blur parameter model of the defocus image based on MRF. It 
converts problem of depth estimation into optimization 
problem. An improved Iterated Conditional Modes Algorithm 
has been applied to complete optimization problem, which 
prevents that performance result gets into local optimization. 
The experiments and simulations prove that the model and 
algorithm is efficiency. It provides the probability that finishes 
visual servoing control in 3D space.  
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