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Abstract—In this paper a new approach, utilizing a new
paradigm built on the fusion of both Bayesian occupancy grid
(BOG) and fuzzy logic controller (FLC), is presented. The aim of
this work is to integrate a probabilistic approach based on the
Bayesian Occupancy grids together with the fuzzy logical-based
approach. The advantages of this method are several: first of all
we can model the behaviours of the obstacles, instant by instant,
with a probabilistic model, even if detected from different families
of sensors, in order to achieve sensor fusion and robustness to
uncertainty of data. On the other hand, the fuzzy logic control
helps the algorithm to converge faster to the optimum value of
speed override when the obstacle is distant enough, taking also
into account the position of the obstacles with respect to the
heading of the robot Tool Center Point (TCP). Furthermore the
FLC has behavioural features, in the sense that it takes into
account the behaviours of obstacles: this makes the control system
more accurate. Another important aspect of the presented method
is that it merges BOG environmental approach to FLC robot-
centric one. This gives to the system a more complete vision, since
from one side BOG has an “external” view of the scene (utilizing
a map of the working area) and the FLC has an “internal” view
(utilizing a robot-centric framework). Simulation results show
that the robot override speed is adapted constantly to avoid
collision with the obstacles, adapting its behaviours to the level of
available knowledge with a smooth control law which merges the
stochastic approach to the deterministic one. Extensions to control
of acceleration of the TCP, integration of the algorithm with the
management of robot restricted areas and to the prediction of
the trajectories of obstacles are proposed as future development.

I. INTRODUCTION

Occupancy grids [1], [2] are a tool of widespread use in
robotics. They are used in order to tessellate the space (i.e.
the operating area of the robot) in a regular cells, and to
store in each cell a fine grained, quantitative information. With
Bayesian occupancy grids [3], the idea is to extend the meaning
of the value contained in each cell to the probability of that cell
being “occupied” by an object. The nature of the decomposed
space may be Euclidean space or a higher dimension state-
space which could take into account velocities, accelerations,
orientations, etc.

Such maps are extremely useful for robotic applications,
such as obstacle avoidance or collision avoidance. In this kind
of applications, the problem of the uncertainty of the informa-
tion given by the sensors (proprioceptive or exteroceptive) is
one of the biggest in this field. Such a paradigm, utilizing the

Bayesian occupancy grids, face the problem in an very efficient
way, as it models the unreliability of the measurements with
probability. Another advantage of the use of occupancy grids
is that they allow sensor fusion to be performed in a flexible
way even if the system presents different typologies of sensor
(even with very heterogeneous sensor models).

Fuzzy logic [4], [5], [6] is widely used in several sectors:
from control systems to database, modeling to computer pro-
gramming in order to realize reliable and desirable products.
Of particular interest are controls based on fuzzy logic (FLCs)
which are used into Antilock Braking Systems (ABS) [7], in
camera applications and where robots or automatic systems
have to carry out behavioural tasks, such as collision avoidance
and path planning [8].

Our system is based on the decisional and behavioural com-
ponent on a fully reactive system based on FLCs. The informa-
tion about obstacle position around the working area (related
to the pose of robot TCP), are computed in order to establish
which kind of behaviour has to be taken and how. It is therefore
possible, adjusting the control properly, to synthesize a system
capable of acting with complex strategies, based on a simple
set of behaviours such as decelerate, accelerate,
stop, turn,.... The result of this paradigm is a con-
trol, which expresses precisely qualitative concepts, defined
formally, in terms of mathematical functions between functions
(membership functions) [9].

In this paper a new approach to deal with collision avoid-
ance is proposed. In the industry sphere the problem of
collision and obstacle avoidance is relevant as the interactions
between humans and machines are closer and closer. This is
an important aspect which is matter of studies in the field
of robotics and automation. In this context the basis idea of
this work is to give a first step towards integration between
the work of humans and robots; this integration can’t be set
aside of security which is the most relevant aspect of the
problem. This work takes into account this aspect as the first
requirement.

The obstacle avoidance paradigm proposed on this paper
is based both on a probabilistic framework, such to make the
connection between the sensorial perception and the control
of the robot, and on a polyvalent logic framework. There are
no particular restrictions to the exteroceptive sensorial input
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model to the system, as the uncertainty of position of the
obstacles given from the sensors is modeled in a probabilistic
way, and different typologies of sensor can coexist in the
same system, as the probabilistic framework also gives a good
instrument to obtain sensor fusion. We combined this method,
which is efficient for medium-low distances obstacles, with a
fuzzy logic engine, which is very efficient for medium-high
distances obstacles and it’s well adaptable to define politics to
decide the reference override speed in function of heading. The
advantages of utilizing a combination of the two approaches is
that we can control the robot’s override speed, acting with both
the controls in a continuous and smooth way. This control law
takes into account both the trajectory of the obstacles moving
around the robot area and the behaviour of the obstacles. This
means that if for example there is an obstacle closer to the
robot’s TCP, this will have more probability to collide than
the others objects moving around, the second object closer to
the robot’s TCP will have less probability, and so on up to the
last objects.

Simulation results show how the developed algorithm face
the problem of collision avoidance in a robust way, even with
several obstacles moving around it apart from the typology of
trajectory of the obstacles.

The paper is structured as follows: in Section II the
Bayesian occupancy grid and fuzzy logic frameworks are
described: in Section III the developed solution is described
in detail. In Section IV simulation results are shown and
discussed. Section V closes the document with remarks and
purposes for future activities.

II. RELATED WORKS

The developed method combines two existing frameworks:
the Bayesian occupancy grid [10], [11], [12] and the fuzzy
logic filter [13], [14], [15]. The Bayesian occupancy grid is a
tessellated 2D grid in which each cell stores the probability
of occupation. Sensor observations are processed from both
the BOG algorithm and the fuzzy filter and the results of
the computation are given as input to the collision avoidance
algorithm.

A. Bayesian occupancy grid

The occupancy grid is based on the division of space
(Cartesian or multidimensional) into cells. The probabilistic
approach applied to the occupancy grid paradigm gives the
possibility to extend the concept of cell value: if applied to
obstacle/collision avoidance this value can fit well with the
probability that the cell is occupied by an obstacle. Given
as input for the algorithm the position X = [x, y]T of each
obstacle, or likewise (ρ, θ), Bayes’ theorem states:

Pc(Occ|X) ∝ Pc(X|Occ) · P̂ (Occ) (1)

Where Pc(Occ|X) is the probability that the cell is occupied
by an obstacle, given the measurement, and the right side
member of (1) is a distribution of probability, and it is shaped
as a Gaussian multimodal distribution as shown in (2):

Pc(X|Occ) · P̂ (Occ) ∝ N (µ,Σ) (2)

Where µ = [µ1, . . . , µN ]T and Σ is the covariance matrix
(positive-definite real N ×N matrix). The probability density
function is:

fX(x1, . . . , xN ) =
1

(2π)N/2|Σ|1/2
·

· exp
(
−1

2
(x − µ)�Σ−1(x − µ)

)
(3)

The formula in (3) describes the probability density of an
obstacle, in each point of the space R

N (where N = 2).
In order to extend the Bayes’ theorem to more than one

obstacle, assuming that all the events (obstacles) are indepen-
dents, we can use the generalized union probability theorem:
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This theorem states that if the probability that an obstacle
is occupying a cell is independent from the others (which
is reasonable for the problem), we can express the union
probability in a closed form. Under this point of view, this
method is a good approach to the obstacle avoidance since,
besides the possibility to solve the problem of modeling multi-
object space occupancy, it also faces the problem of sensor
fusion, as the structure of Bayesian occupancy grid is well
suited for the integration of different typologies of sensor
measurements. The algorithm is structured as follows:
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Fig. 1. Bayesian Occupancy Grid: red is high, blue is low probability of
occupation.

1) At the beginning, the occupancy grid is initialized with
a 0.5 probability of occupation;

2) As a new measurement is available, the grid is updated
following the Bayes’ rule described in (1);

3) The grid is further updated using the generalized union
probability theorem, in order to merge together all the
obstacles in the robot area;

4) Back to step 2.



For further details, the interested reader may refer to [16]. Fig.
1 shows an example taken from a simulation of a Bayesian
occupancy grid, where 5 obstacles are moving around the robot
area.

B. Fuzzy logic

A pure reactive system could be a good solution for “Col-
lision Avoidance” task, requires few computational resources.
Other advantages of purely reactive systems are:

• emphasis on the importance of a tight relationship be-
tween perception and action;

• vertical decomposition of the problem into subproblem to
be executed in parallel;

• modularity of the software.

Following the classis outline [17], we can say that FLC has two
components: a functional module and a behavioural module.
The functional component (Fig. 2) acquires information to

Fig. 2. Functional view.

be used as input to the engine. As these data have been
computed, the functional component blends resulting actions
and transmits values to actuators. the functional component is
composed of:

• translation block: it is an interface between information
about the environment surrounding the robot and data
processed inside the engine;

• conversion layer: information acquired from translation
layer are here transformed into fuzzy values (fuzzifica-
tion) and, after computation, output fuzzy values are re-
transformed into crisp values (defuzzification);

• calculus layer: it is composed by three sub-modules, each
one managing a sub-tree: predicates sub-tree, behaviour
triggering conditions sub-tree and behaviour evaluation
sub-tree;

• decision layer: decides actions to be carried out on the
basis of environment information that are provided by
previous layer.

The information about obstacles distance and heading should
be generated by the BOG subsystem; fuzzy rules are the basis
where the operative knowledge of the robot can be built from
a human heuristic knowledge. A Fuzzy rules template is the
following:

IF <antecedent> THEN <conseguent>

where the antecedent could consist of an arbitrary large number
of precondition combined through logic operators OR, AND
and NOT; for example:

IF ((obstacle /∈ North) AND (obstacle ∈ Far))
THEN (speed ∈ Fast)

In natural language this fuzzy rule states that if an obstacle
is Far and not on the North of the robot, than the robot
must advance Fast. In other words, Far, North and Fast
are the membership functions of different sets (respectively
distance, heading and speed) and the antecedents and conse-
quents represent the credibility values of membership degrees.
Obviously, while in the antecedent all the aforementioned
logic operation can be used, in the consequent only the AND
operator is acceptable. Moreover, credibility value (i.e. the
membership degree of a variable to the membership function)
range between “0” and “1”. The fuzzification, blending and
defuzzification blocks in the functional engine scheme are
depicted in Fig. 3. The effective engine component is the

Fig. 3. Fuzzy inferential engine scheme.

one labeled Inference. This is the scheme we have chosen
for FLC component, in which the block that evaluates the
triggering condition is scanned before the behavioural sub-tree
(in order to avoid wasting computational resources) and there is
a blending block for each behaviour. The purpose of activation
threshold is to state the effective possibility that the robot
behaviour will not change. In this way the computational load
is decreased because the engine is not forced to scan all the
rules. Another important component is the blending block that
fuses the outputs of the basic behaviours: this block allows the
coexistence of behaviours even if there are conflicting tasks to
be performed. Blending rules are contained in the component
labeled meta-rules base (Fig. 3), the interested reader can refer
to [18].

III. THE PROPOSED INTEGRATED SOLUTION

In this section we explain in detail the developed algorithm
and the proposed solution. The Bayesian occupancy grid ex-
plained in Section (II-A) is a probabilistic method that models
the space occupied by obstacles on an environment. The input
to the occupancy grid, as stated in the previous Section, is the



position of each object (given either as a Cartesian position or
as a ρ, θ representation).

The grid is relative to the space around the robot, as we
are modeling an algorithm for an industrial manipulator which
is always in a fixed position. The grid is then mapped on the
real working area of the robot, and it is possible to choose a
different resolution of thickness of the grid, in order to achieve
more accuracy on the possibility to have an obstacle in a cell.
As we suppose that the obstacles are humans (i.e. operators that
can interact with the manipulator around its working area) and
that they are seen as input from cameras (as positions on a
plane) or from laser scanners (as distances and angles) to the
BOG algorithm, we have to extend the 2D occupancy grid to a
3D Bayesian occupancy grid, since the robot TCP is given each
instant as a position and orientation in the space. In order to
extend the 2D Bayesian occupancy grid to 3D, we assume that
each obstacle can be modeled as a cylinder of probabilities,
where the center is given by the mean value of the Gaussian
distribution of the obstacle.

At the same time, the BOG override speed is computed
by the algorithm. This is quite simple, as the BOG gives a
probability framework which is well suited for the problem of
controlling override speed of the robot TCP.

OBOG = 1 − Pc(Occ|X) · Ks (5)

The BOG override speed OBOG is computed as the inverse of
the probability that a cell is occupied given the measurement,
multiplied by a constant Ks, which is the weight given to
the probability that an obstacle is occupying the cell. The
algorithm also gives as input for the FLC, the distance and
angle of the nearest obstacle to the robot.

The FLC takes the distance and angle computed from
the BOG algorithm and, taking into account the behaviours
of the obstacles, computes the override speed according to
the defuzzification process. The OFLC is computed taking
advantage of the behavioural nature of fuzzy logic filter. This
override speed is then used by the control in order to compute
the override value which has to be assigned to the robot. This
value is computed considering the general override at time
t− 1, which is the value we use to weight the BOG and FLC
overrides.

Ogen(t) = Ogen(t − 1) · OFLC(t) +
+(1 − Ogen(t − 1)) · OBOG(t) (6)

The meaning of utilizing the past general override Ogen(t−1)
as shown in (6) as a weight is that we try to give more
importance to the FLC algorithm when the general override
speed is high (i.e. the obstacle is far), and more importance
to the BOG algorithm when the general override speed is low
(i.e. the obstacle is near). This typology of control has two
main behaviours: when the obstacle is far, and the general
speed override is high, the FLC acts as the main control,
since it allows a behaviour based on the heading of the robot
TCP towards the obstacle. In this state the decisional policy
is submitted to the FLC as the distance from the obstacle is
high: for example while the TCP is moving and an obstacle

is moving away, behind the heading of the TCP, the FLC
override speed will be fixed to the maximum speed, if there is
no obstacle in front of the TCP.

On the other hand when the obstacle is near, and the general
speed override is low, the BOG algorithm acts as the main
control, as it allows a behaviour based on the probability of
encountering an obstacle in a portion of space, and adjusting
the BOG override with an appropriate control law. In this state
the decisional policy is submitted to the BOG algorithm as
the distance from the obstacle is low, and a good accuracy is
needed by the control constraints.

It is important to emphasize the way the control behaves, as
the switch between the two typologies of control techniques is
entirely smooth. This means that the BOG and FLC controls
act simultaneously in every condition; the advantages of this
technique is that it fuses together the advantages of each
control law and that, taking advantage of feedback on general
speed override, the control is fast, robust and ready. A system
scheme is depicted in Figure 4.

Fig. 4. System layout: robot is controlled by the feedback controller from
the output (general speed override).

The proposed algorithm is structured as follows:
1) At the beginning, BOG and FLC variables are initialized;
2) As a new measurement is available, the occupancy grid

is updated;
3) The grid is further updated using the generalized union

probability theorem, in order to merge together all the
obstacles in the robot area;

4) The BOG override, the distance and angle of the nearest
obstacle is then computed and passed to the FLC;

5) The FLC computes the speed override according to the
defuzzification process;

6) The BOG and FLC partial speed override are used to
compute the general speed override as in (6);

7) Back to step 2.

IV. SIMULATION RESULTS

In this section we present some results from the simulation
framework. The experimental tests are divided into three
sessions:

1) One obstacle;
2) three obstacles;
3) five obstacles;



moving around the robot working area. The control system
produces a controlled speed override value in order to control
robot movements, taking into account the real override of
the robot as a feedback for the control system. The TCP
and obstacles are represented as points in space and the
relative trajectories are defined a priori inside the simulator.
The obstacles speed are constant, while TCP speed value
is modified by the feedback control system output (override
controlled speed).

In order to describe in detail our system, we produced a
general overview of the computed outputs, depicted in Figure 5
for the case of five obstacles moving around the robot area.

Fig. 5. General overview of simulation results for five obstacles moving
around the robot working area.

The Figure shows the distribution of probabilities of the
obstacles produced by the BOG filter in the upper left side.
In the bottom left side the trajectories of the TCP (in white
circles) in 2D representation of the BOG are depicted. The
FLC is also showed in the upper right side, with the behaviour
related to the closest obstacle. In the last subplot it is depicted
the obstacles and TCP 3D trajectories.

The Figure 6 shows the three simulation test-beds. The first
one is related to the presence of one obstacle in the robot
working area. As we can see from the picture the general
override follows the trend of the FLC override, since in this
control technique the FLC is more sensible to the far obstacles
(as stated in Section III), and the BOG algorithm does not in-
fluence the general behaviour of the control paradigm because
the obstacles are too far from the robot. The second one is
related to the presence of three obstacles. In this case, the
BOG filter reacts after about six seconds with the presence of
obstacles near to the TCP as expected; the FLC has a general
behaviour and acts constantly during all the experiment. In the
last subplot the behaviour of control system is depicted for
five obstacles. The trends shows clearly the general behaviour
of our system. The FLC reacts taking into account all the
obstacles in the robot environment, and this can be seen

Fig. 6. Override representation for different setups computed by: BOG filter,
FLC and controlled override.

considering the slow dynamics, drawn in the subplot. On the
other hand BOG filter is more sensible to the close obstacles
and influences the general override in a significant way (when
general override is low).

The general behaviour produces a control override which
is sensible to the environmental dynamical configuration, in a
convenient way, as the first plot (one obstacle) shows a general
mean override of about 95% while the others shows lower and
lower general control override values.

V. CONCLUSIONS

We presented a new algorithm, that utilizes an innovative
control technique in order to face the problem of collision
avoidance. The new paradigm is based on both the Bayesian
occupancy grid and fuzzy logic controller. With the presented
work we focused our attention on the integration of a proba-
bilistic approach, based on the Bayesian occupancy grids, and
a fuzzy logical-based approach.

In this paper we showed several advantages given by the
presented method. On the one hand we can model the be-
haviours of the obstacles, instant by instant, with a probabilistic
model, even if detected from different families of sensors. On
the other hand, the fuzzy logic control helps the algorithm to
converge faster and to take into account obstacle behaviours as
well. The combination of the two paradigms gives the benefits
of each approach. Furthermore the control is structured as a
feedback system from the output (i.e. general speed override):
this gives the system a quicker response and makes it more
ready. Another important aspect of the presented method is
that it merges BOG environmental approach to FLC robot-
centric one. This gives to the system a more complete vision,
since from one side BOG has an “external” view of the scene
(utilizing a map of the working area) and the FLC has an
“internal” view (utilizing a robot-centric framework).



Simulation results show that the robot override speed is
adapted constantly to avoid collision with the obstacles while
adapting its behaviours to the level of available knowledge
with a smooth control law. The present system will be soon
implemented into an industrial manipulator with a hard real
time system in order to confirm the effective feasibility.

The aim of this work is to provide the robotized cells with
more and more safety, as the interaction between robots and
humans is becoming significant: the support of a dynamic
collision avoidance algorithm provides a rough artificial intel-
ligence to the robotized cell which gives the basis to a stronger
and safer cooperation between operators and machines.

VI. FUTURE WORK

In order to achieve a better performance and to improve the
accuracy of the algorithm on the one hand, we are studying
solutions to extend BOG to BOF (Bayesian Occupancy Fil-
ters), as suggested in [11] and to adapt this methodology to
our system. With this innovative technique the concept of 2-
dimensional occupancy grid is extended to a 4-dimensional
probabilistic occupancy grid, in order to take into account
velocity besides space. This approach generates a dynamic
occupancy grid, and considering obstacles velocity allows
to reach more accuracy, a quicker response and allows to
consider new behaviours for the movement of the obstacles.
Another matter of study is about utilizing neural networks (self
organizing networks as in [12]) in order to extract objects
from the grid and to synthesize a system capable of learning
obstacles trajectories (similarly to the one described in [19])
and to use this knowledge in order to improve the readiness
of the presented system and to provide the system with a
prediction engine for objects which are able to decide their
trajectory on the basis of decision process (e.g. humans and
robots).

On the FLC side, the future developments are the integration
into the system of more behaviours (such as speed, acceleration
and the termination point of a move). At the same time it
is possible to define obstacles ID in order to classify them
as more or less important; this will give the system more
behaviours and therefore a better accuracy.

Another improvement to the system is the integration of
a trajectory planner, to avoid obstacles and to replan the
trajectory in order to continue the task without stopping the
motion of the robot.
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