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Abstract— This paper considers the problem of robust 
guaranteed cost control for uncertain two-dimensional (2-D) 
discrete shift-delayed systems in Fornasini-Marchesini model the 
second class (FMMⅡ). The parameter uncertainty is assumed to 
be norm-bounded. The problem to be addressed is the design of 
state feedback controllers such that the closed-loop system is 
quadratic stable and an adequate level of performance can be 
guaranteed for all admissible uncertainties. In terms of a linear 
matrix inequality (LMI), a sufficient condition for the solvability 
of the problem is obtained. A desired state feedback controller 
can be constructed by solving a certain LMI. A numerical 
example is provided to demonstrate the application of the 
proposed method.   

Keywords—2-D discrete systems; guaranteed cost control; 
quadratic stable; shift-delays. 

I.  INTRODUCTION  
In recent years, two-dimensional (2-D) discrete systems 

have received considerable attention since 2-D systems have 
extensive applications in many areas such as image date 
processing, seismographic date processing, thermal processes, 
gas absorption, water stream heating [1]. Many important 
results have been reported in the literatures. The stability of 2-
D discrete systems has been investigated extensively [2-15]. 
The controller and filter design problems have been considered 
in [5-15]. Time delays frequently occur in practical systems 
and are often the source of instability. There are many 
examples containing inherent delays in practical 2-D discrete 
systems, the stability of 2-D discrete systems with time delay 
have been also studied in [16-21]. 

On the other hand, the guaranteed cost control is first 
reported in [22]. To this end, robust guaranteed cost control of 
1-D systems has been widely considered [23-26]. The 
guaranteed cost control technique for the 2-D discrete system 

has been considered and a robust control design method has 
been established in [11]. In [12], some technical errors in the 
derivation of Theorem 4 in [11] have been pointed out and 
corrected. LMI-based criterion for the robust optimal 
guaranteed cost control for 2-D systems described by the 
Fornasini-Marchesini second model [13] has been investigated. 
An LMI approach of optimal guaranteed cost control for 2-D 
discrete uncertain systems [14] was considered. All of these 
results that guaranteed cost control for 2-D discrete are not 
involved with delays. For convenience, here we call the delays 
described by the 2-D indices (i, j) the shift-delay.  

In this paper, we discuss the problem of robust guaranteed 
cost of 2-D discrete systems in the FMM Ⅱ setting with shift-
delays. The parameter uncertainty is assumed to be unknown 
but norm-bounded. 

The paper is organized as follows: Firstly, we provide the 
conditions for 2-D discrete systems with shift-delays and give 
the cost function. Next, robust guaranteed cost performance 
analysis is done and robust guaranteed cost control via static-
state feedback is discussed. A numerical example is provided to 
illustrate the presented techniques. Finally, concluding remarks 
are given.  

Notations: Throughout the paper, the superscript “T” and 
“ 1− ” stands for matrix transposition and inversion, 
respectively; nR  denotes the n-dimensional Euclidean space, 

mnR ×
is the set of all real matrices of dimension mn× ; An 

asterisk “*” represents  a term that is induced by symmetry and 
diag{…} stands for a block-diagonal matrix. 



         

II. PROBLEM FORMULATION 
This paper deals with the problem of robust guaranteed cost 

control of a class of 2-D discrete uncertain systems in the 
FMM Ⅱ  setting with shift-delays. The system under 
consideration is given by 
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          [ ]kd AAAAA 2121= , [ ]21 BBB =                              

Here nRjix ∈),(  is the state.  ( , ) mu i j R∈ is the control 

input, respectively. The matrices ,1A ,2A ,1dA
nn

k RA ×∈2  

and mnRBB ×∈21,  are known constant matrices. kd ,  are 
constant positive scalars representing delays along vertical 
direction and horizontal direction respectively. The 
matrices ,1A∆ ,2A∆ ,1dA∆ ,2kA∆ ,1B∆ 2B∆  represent 
norm-bounded parameter uncertainties, which are assumed to 
be of the form 
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In the above, 1,ML   and 2M   can be regarded as known 
structural matrices of uncertainty and ),( jiF  is an unknown 
matrix satisfying that 

1),( ≤jiF
 

The initial conditions are that there exist two positive integers 

1r and 2r such that 

       
0,1,1,,

;0,1,1,,,0),(

2

1

+−−=≥
+−−=≥=

kkjrior
ddirjjix

      （1b） 
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The main objective of this paper is to derive a sufficient 

condition for the existence of static-state feedback robust 
controller for system (1a) with the cost function (2) such that 
the closed-loop system is asymptotically stable and the cost 
function of closed-loop system is lower than a specified upper 
bound. 

III. MAIN RESULTS  

A. Robust guaranteed cost performance analysis  
Consider the 2-D discrete system with zero input 
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where 

111111 ),( MjiLFAAAA +=∆+=∆  , 

122222 ),( MjiLFAAAA +=∆+=∆ , 

131111 ),( MjiLFAAAA dddd +=∆+=∆ , 

142222 ),( MjiLFAAAA kkkk +=∆+=∆ . 
The associated cost function is  
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Lemma 1 The uncertain system (3) is asymptotically stable 
for all admissible uncertainties if there exist n n×   positive 
definite symmetric matrices 0P > , 0Q > , 1 0Q > , 2 0Q >  
satisfying                  
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where           [ ]kd AAAAH 2121 ∆∆∆∆=  

for all ( , ) 1F i j ≤ . 

Remark 1 Lemma 1 shows that (5) is a sufficient condition of 
the robust asymptotical stability for system (3). Note that the 
left of (5) is of quadratic form. We therefore call the systems 
that satisfies (5), for convenience, the quadratic stable systems. 
When 02121 =∆=∆=∆=∆ kd AAAA , Lemma 1 is 
Theorem 3 in [16]. 

Remark 2 If there are matrices 0>P , ,0>Q ,01 >Q  
02 >Q satisfying 

                                   0<+Γ=Ω W                                  (6) 



         

for all 1),( ≤jiF , 
Then, the uncertain system (3) is said to be quadratic stable 
with a guaranteed cost. 

    In the following, we consider the bound of the cost function. 

Lemma 2 If there exist matrices 0>P , ,0>Q ,01 >Q  

02 >Q satisfying (6) for system (3) with initial conditions (1b) 
and cost function (4), then system (3) is quadratic stable with a 
guaranteed cost and for all admissible uncertainties. The cost 
function satisfies the bound 
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(7) 
Proof. If there exist matrices 0>P , ,0>Q ,01 >Q  

02 >Q satisfying (6), the system (3) is quadratic stable with 
a guaranteed cost. In this case, we have that 

                        0<+Γ=Ω ij
T
ijij

T
ijij

T
ij Wξξξξξξ          (8)                          

Hence 

     
∑∑∑∑

∞

=

∞

=

∞

=

∞

=

Γ−<=
0 00 0

0
i

ij
j

T
ij

i
ij

j

T
ij WJ ξξξξ

                
Substituting Γ  

∑∑
∞

=

∞

=

Γ−<
0 0

0
i j

ij
T
ijJ ξξ

 

)1,1()1,1([
0 0

++++−= ∑∑
∞

=

∞

=

jiPxjix
i j

T  

),1())(,1( 21 jixQQQPjixT +−−−+−  

),1(),1( 2 kjixQkjixT −+−+−  

                    
)]1,()1,(

)1,()1,(

1 +−+−−

++−

jdixQjdix

jiQxjix
T

T

 

0 0

1 2

[ ( 1, 1)(

) ( 1, 1)

T

i j
x i j P Q

Q Q x i j

∞ ∞

= =
= − + + −

− − + +

∑∑  

           )],1())(,1( 21 jixQQQPjixT +−−−+−    

         

)]1,()1,(

)1,1()1,1([
0 0

++−

++++−∑∑
∞

=

∞

=

jiQxjix

jiQxjix

T

i j

T

 

           

)],1(),1(

)1,1()1,1([

2

2
0 0

kjixQkjix

jixQjix

T

i j

T

−+−+−

++++−∑∑
∞

=

∞

=  

        

)]1,()1,(

)1,1()1,1([

1

1
0 0

+−+−−

++++−∑∑
∞

=

∞

=

jdixQjdix

jixQjix

T

i j

T

. 

when ∞→ji, , obtain the upper bound (7).  This completes 
the proof. 

Remark 3 The bound of the cost function obtained in the 
Lemma 3 depends on the initial conditions. 

Now we are in the position to give a LMI-based sufficient 
condition for system (3) with the initial conditions（1b）and 
the cost function (4) is robust quadratic stable with a 
guaranteed cost. 

    Next, we have the following result. 

Theorem 1 If there exist a scalar 0>ε   and positive definite 
symmetric matrices P , 1

1
−= PP ε , and 321 ,, YYY , such that 

the following LMI is feasible, 
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where 321122 YYYP +++−=Ζ , then system (3) with initial 
condition （1b） and cost function (4) is robust quadratic 
stable with a guaranteed cost. Moreover the cost function 
satisfies the bound 
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where 1

2 1P P −= . 
Proof. Using [11, Lemma 2], (6) can be rearranged as 
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(11)                      
Substituting (11) for (7), we can obtain (10). This completes 
the proof. 

B. Robust guaranteed cost control via static-state feedback  
In this section, we will design a static-state feedback 

),(),( jiKxjiu =  for system (1) and cost function (2) such 
that the closed-loop system is quadratic stable and the cost 
function of closed-loop system is lower than a specified upper 
bound. 

The closed-loop system (1a) with ),(),( jiKxjiu =  can 
be expressed as 
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where 
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The cost function (2) can be  reduced 
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Lemma 3 If there exist matrices 0>P , 01 >W , ,0>Q  

,01 >Q 02 >Q satisfying  
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where 
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for all 1),( ≤jiF , 
then there will exist a state feedback controller 

),(),( jiKxjiu = such that system (12) is quadratic stable 
with a guaranteed cost and for all admissible uncertainties the 
cost function satisfies the bound 
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Remark 4 Lemma3 can be obtained directly by applying 
lemma 2 to closed-loop system (12). 

Applying Theorem 1 to the closed-loop system (12) we 
have the following result: 

Theorem 2 If there exist a positive scalar 0>ε  and positive 
definite symmetric matrices P , 1

1
−= PP ε , ,1Y  ,2Y  3Y , and 

U such that the following LMI is feasible 
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where 
UBPAA 1111 += ,   

TTT MUMPM 2111111 += , 
UBPAA 2122 += ,

TTT MUMPM 2212112 += ,
YYYP +++−=Τ 21122 ,   
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then, there exists a static-state feedback controller 

),(),( jiKxjiu = such that system (1) is quadratic stable 
with a guaranteed cost and for all admissible uncertainties the 
cost function satisfies the bound 
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where 1

2 1P P−= . 

The proof of this theorem is similar to that of Theorem 1 
and, hence is omitted here for simplicity.  

Remark 5 In Theorem 2, we constructed a static-state 
feedback controller and guaranteed cost upper bound can be 
obtained. The bound is dependent on the cost controller and 
the initial conditions.  

IV. NUMERICAL EXAMPLE 
In this section, we shall illustrate the results via an example. 

All simulations were performed with LMI control toolbox. 
Consider the following 2-D system (1) 
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In this case, LMI (16) is feasible and the matrices are 
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And 35.3571=ε which yields closed-loop matrix K  and 
guaranteed cost upper bound equal to 
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The resulting system is quadratic stable with a guaranteed cost 
by Theorem 2. 



         

V. CONCLUSION   
In this paper, we have considered the problem of robust 

guaranteed cost control for 2-D discrete systems with shift-
delays by static-state feedback. A desired robust guaranteed 
cost controller can be constructed by solving a given LMI. The 
approach can also be applied to obtain dynamic output 
feedback controller. Further, the results presented in this paper 
can also be extended for uncertain m-D (m>2) systems. Further 
development on robust control involving performance 
specification will be required to reduce conservative for 2-D 
systems to be stable and obtain more relaxed criteria for the 
existence of a guaranteed cost controller. 
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