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Abstract—In this paper, we propose a novel particle filter (PF), 
which uses a bank of singular-value-decomposition based 
sampling Kalman filters (SVDSKF) to obtain the importance 
proposal distribution. This proposal has two properties. Firstly, it 
allows the particle filter to incorporate the latest observations 
into a prior updating routine and, secondly it inherits advantage 
of having good numerical stability from the singular-value-
decomposition (SVD). The convergence results of the numerical 
simulations we made confirm that the proposed PF method 
outperforms the standard bootstrap PF as well as other local 
linearization based PFs.   
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I.  INTRODUCTION  
To solve the problem of nonlinear problems, the best 

known filtering algorithms are EKF (extended Kalman 
filter)[1,2] and UKF (unscented Kalman filter) [1,3~8]. 
Furthermore, particle filters (PFs) are proposed to solve the 
problem of non-Gaussian[8~12]. PFs rely on importance 
sampling techniques which lead to the requirement for the 
design of proposal distributions in order to approximate the 
posterior distribution reasonably well. In general, it is hard to 
design such proposals. The most common strategy is to sample 
from the probabilistic model of the states evolution (transition 
prior) which results in the generation of standard bootstrap PF. 
However, this strategy is easy to fail if the new measurements 
appear in the tail of the prior or if the likelihood is too peaked 
in comparison to the prior. These situations do indeed arise in 
several areas of engineering and finance, where one can 
encounter sensors that are very accurate (peaked likelihoods) 
or data that undergoes sudden changes (nonstationarities) [12]. 
To overcome this problem, researchers proposed to use local 
linearization techniques, such as EKF or UKF, to generate the 
proposal distribution of PFs[12]. However, EKF has its inherent 
drawbacks due to its first-order linearization and UKF and its 
basis unscented transform (UT) often encounter the ill-
conditioned problem of covariance matrix in practice (though 
it is theoretically positive semi-definite) [8].  

The singular-value-decomposition (SVD) concerns the 
factorization of an arbitrary matrix A into a product UDV’ of 
orthogonal matrices U and V and a “diagonal” matrix D. It’s 
applied frequently in numerical linear algebra and proved to be 
a robust method for solving  ill-conditioned least squares 

problems[13~15]. Youmin Zhang proposed a SVD based EKF 
with a good numerical stability in application to aircraft flight 
state and parameter estimation[2]. Z.Chen presented a SVD 
sampling Kalman filter (SVDSKF) in [8] which is similar as 
UKF but can avoid the ill-condition problems that may be 
encountered when using UKF.  

In this paper, we use the SVDSKF to obtain the importance 
proposal distribution of the PF. Then we get a novel PF 
method. 

II. DYNAMIC STATE SPACE MODEL 
Since we are interested in nonlinear, non-Gaussian 

regression, the state space model can be expressed as follows 
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where xn
t ∈x denotes the unobserved states (or parameters) 

of the model, yy n
t ∈ the observations, vv n

t ∈ the process 
noise and nn n

t ∈ the measurement noise. To complete the 
specification of the model, the prior distribution (at 0t = ) is 
denoted by ( )0p x . Our goal will be to approximate the 
posterior distribution ( )0: 1:| yt tp x and one of its marginals, the 
filtering density ( )1:| yt tp x , where { }1: 1 2y y , y , , yt t= . By 
computing the filtering density recursively, we do not need to 
keep track of the complete history of the states. 

III. GENERIC PARTICLE FILTER 
For completeness, we present a generic PF algorithm here, 

which involves the following steps as in table I. PFs allow us 
to approximate the posterior distribution ( )0: 1:| yt tp x  using a 
set of N weighted samples (particles) ( ){ }0:x ; 1, ,i

t i N= ,which 
are drawn from an importance proposal distribution 

( )0: 1:| yt tq x .  In framework of the PF algorithm, we can 
restrict ourselves to importance functions of the form  . 
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to obtain a recursive formula to evaluate the importance 
weights[9] 
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TABLE I . GENERIC PF 

 
There are infinitely many possible choices for ( )0: 1:| yt tq x , 

the only condition being that its support must include that of 
( )0: 1:| yt tp x . The simplest choice is to just sample from the 

prior, ( )1|t tp −x x , in which case the importance weights is 
equal to  the likelihood, ( )1: 1 0:y | y , xt t tp − . This is the most 
widely used distribution and it leads to the most general 
bootstrap PF[9]. This proposal is simple to compute but also can 
be inefficient since it ignores the most recent evidence, y t .The 
selection (resampling) step in Table I is used to eliminate the 
particles having low importance weights and to multiply 
particles having high importance weights[9,12]. 

IV. SRUKF BASED PF 
Compared with the original formulation of the UKF, the 

SRUKF has added benefit of numerical stability[7]. A PF using 
SRUKF as its proposal distributions has been proposed in [16]. 
The SRUKF based PF is a candidate algorithm for performance 
comparison with the proposed SVDSKF based PF. 

V. SVDSKF BASED PF 
The SVDSKF is close in spirit to UKF[8]. Similarly to the 

implementations of PFs based on EKF or UKF[12], we propose 
the SVDSKF based PF as follows in table II. 

TABLE II . SVDSKF-BASED PF 

 

1. Initialization: 0t =  
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where Q =process noise cov, R =measurement 
noise cov 

2. For 1, 2,t =  
(a) Importance sampling step 
•   For 1, , :i N=  

-   Update the particles with the SVD-based KF: 
*  Compute the SVD and eigen-point covariance 

matrix 
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where js is the jth diagonal element of S . 
    *   Propagate particles into future (time update) 
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TO BE CONTINUED

1.Sequential importance sampling step 

 For 1, , ,i N= sample ( )( )( )

0: -1 1:x x | x , y
i i
t t t tq∼  

and update the trajectories  ( )( ) ( ) ( )
0: 0: 1x x , x
i i i
t t t−  

 For 1, , ,i N= evaluate the importance weights up 
to a normalizing constant: 
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 For 1, , ,i N= normalize the weights: 
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2.Selection step 

 Multiply/suppress samples 
( )( )0:x
i

t with high/low 

importance weights 
( )i
tw , respectively, to obtain 

N random samples ( )( )
0:x i
t approximately 

distributed according to ( )( )
0: 1:x | yi
t tp  

 For  1, , ,i N= set ( ) 1i
t Nw =  

3. Output:  
The output of the algorithm is a set of samples that 
can be used to approximate the posterior distribution 
as follows 
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VI. SIMULATION 
For this experiment, a time-series is generated by the 

following process model 1 11 sin( )t t tx w t x vπ φ+ = + + + , where 
tv is a Gamma(3,2) random variable modeling the process 

noise, and 4 2w e= − and 1 0.5φ = are scalar parameters. A 
non-stationary observation model, 
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is used, with 2 0.2φ = and 3 0.5φ = .The observation noise, 
tn ,is draw from a Gaussian distribution ( )0,1 5N e − .Given 

only the noise observations, ty , different filters are used to 
estimate the underlying clean state sequence tx for 1 60t = … . 
The experiment is repeated 100 times with random re-
initialization for each run. Each of the PFs used in the 
experiment, that is the generic bootstrap PF, EKF based PF, 
SRUKF based PF and the SVDSKF based PF, uses 200 
particles and residual re-sampling strategy[12]. The SRUKF 
module  parameters are set to 1, 0α β= = and 2κ = which are 
optimal for the scalar case. We run each of the PFs 100 times 
respectively to get the means and variances of the mean-
square-error (MSE) of the state estimates shown in Table III. 
An example of the estimation results is shown in Figure 1, and 
a comparison of computing burdens of each PF is illustrated in 
Figure 2. 

TABLE III . The mean and variance of the MSE calculated over 100 
independent runs 

MSE 
Algorithm 

mean variance 

Bootstrap PF 

EKF based PF 

SRUKF based PF 

SVDSKF based PF (proposed) 

0.357 

0.315 

0.320 

0.167 

0.055 

0.018 

0.069 

0.015 

 
 

 
 

VII. CONCLUSIONS 
This paper proposes a new PF algorithm. It incorporates a 

robust numerical method, i.e. SVD, into the framework of PF. 
Meanwhile it incorporates the latest observations into a prior 
updating routine of PF. Both of the two characters guarantee 
this method’s superiority to the generic bootstrap PF algorithm. 
Furthermore, simulation results show that the proposed 
algorithm also has better estimation performance than other 
existing similar PF algorithms that are based on local 
linearization techniques such as the EKF and SRUKF. 
However, the proposed method needs some more computing 
costs than the others mentioned above. 

* Incorporate new observation (measurement update)
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 For 1, , ,i N= normalize the importance  
 weights. 

(b) Selection step 

Multiply/Suppress particles 
( ) ( )( )0: 0:x ,
i i

t tP with  

high/low importance weights 
( )i
tW ,respectively, to 

obtain N random particles 
( ) ( )( )0: 0:x ,
i i

t tP . 

(c) Output:  
The output is generated in the same manner as for the 
generic particle filter. 

 
Parameter and weights of the SVD-based KF module:  
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where κ is a small tuning parameter. ρ is a scaling parameter 
(a good choice is 1 1.414ρ≤ ≤ ) for controlling the extent of 
covariance. 

 
Figure 1.  Filter estimates (posterior means) vs. True state 
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Figure 2.  Comparison of computing burdens indexed by average 
computing time in a simulation including 100 independent runs of 

each PF algorithm respectively 


