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Abstract—This paper proposes a new approach to learn the
low dimensional manifold from high dimensional data space.
The proposed approach deals with two problems in the previous
algorithms. The first problem is local manifold distortion caused
by the cost averaging of the global cost optimization during the
manifold learning. The second problem results from the unit
variance constraint generally used in those spectral embedding
methods where global metric information is lost. The formulation
of the proposed method is described in details. Experiments on
both low dimensional data and real image data are performed to
illustrate the theory.

I. INTRODUCTION

Many high-dimensional data in real-world applications can
be modelled as data points lying close to a low-dimensional
nonlinear manifold. Discovering the structure of the manifold
from a set of data points sampled from the manifold with
noise is very challenging in the unsupervised learning. The
key difficulty is that the data points are unorganized, i.e.,
no adjacency relationship among them are known beforehand.
Otherwise, the learning problem becomes the well-researched
nonlinear regression problem. Traditional dimension reduction
techniques such as Principal Component Analysis (PCA) and
Factor Analysis usually work well when the data points lie
close to a linear (affine) subspace in the input space, while
tend to fail to detect nonlinear structures of the data set.

Recently, many algorithms have been developed to deal with
the nonlinear low-dimensional manifolds in high-dimensional
noisy data samples. These algorithms vary in both moti-
vations and final results. For example, nonlinear dimension
reduction and manifold learning, which can respectively be
traced back to Self-Organizing Maps (SOM) [1] and Principal
Curves/Surfaces [2]. To ease the following discussion, we call
the original high dimensional data space the input space, and
the underling low dimensional space the feature space.

Nonlinear dimension reduction aims to project/embed the
high dimensional data to their low (usually as low as possible)
dimensional counterparts while preserves the certain geomet-
ric properties among neighboring data points. The geometric
properties include the pairwise geodesic distances (ISOMAP
[3] and MDS [4]), the local convexity (e.g. LLE [5][6]),
local distances (e.g. MVU [7]) and angles between nearby
points (e.g. Conformal Eigenmaps [8]). Many algorithms are
formulated as convex optimization problems and provide ways

to estimate the manifold dimension. However, it is generally
assumed in these models that the low dimensional manifold is
isometric to a convex subset of Euclidean space. These models
may have difficulties with high curvature of the manifold
and Out-of-sample extension for non-isometric manifold. For
example, image sequence of the same 3-D object rotating
through 360 degrees. On the other hand, the Local Manifold
Learning tries to parameterize the underlying low-dimensional
manifold based on locally linear approximation. In LTSA [9],
Non-Local Manifold Tangent Learning [10] and LSML [11],
the nonlinear (possibly non-Isometric) manifold of the input
data set are modelled as a set of overlapping local tangent
planes. The Local Manifold Learning is especially suitable for
recovering the structure of the manifold in sparsely populated
regions and beyond the support of the provided data. These
methods provide no ways to estimate manifold dimension
(except LSTA) and compute the explicit embedding. Besides,
these models prone to local minima since their optimization
involve Alternating Least Squares solution for more than one
separated variables.

Our approach draws inspiration from and improves upon
the pioneering work. Instead of considering the dimension
reduction and manifold learning in isolation, the proposed
method construct a nonlinear mapping that avoiding the local
minima in optimization problems. The nonlinear mapping
is realized by modelling the Local Geometry and a Global
Affine transformation in the input space. The proposed method,
referred to as LGGA, features on two aspects. One of them
is avoiding the local manifold distortion caused by the cost
averaging of the global cost optimization during the manifold
learning. The other is recovering the global metric information
lost in those spectral embedding methods using the unit vari-
ance constraints. Moreover, the proposed method can estimate
the underlying dimension and is robust to the number of
neighbors.

The rest of this paper is organized as follows. In section II,
the proposed method are formulated in two steps: modelling
the local manifold and recovering the global metric informa-
tion. Section III presents the simulation results and discussions.
Finally, the paper is concluded in Section IV.
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II. FORMULATION OF THE LGGA MANIFOLD LEARNING

Assume that a smooth m-dimensional manifold F lying in
the d-dimensional input data space (d À m). The input data set
X = {xj ∈ Rd, j = 1, · · · , N} is sampled possibly with noise
from the manifold. We seek to learn the nonlinear function F
that transform a point on the manifold into its neighboring
points on the manifold, capturing all the modes of variation
of the data. Manifold learning is conducted by constructing a
global coordinate system τ ∈ Rm, i.e. the feature space.

Denote F (x, ε) the transformation of x, with ε ∈ Rm acting
on the degrees of freedom of the transformation according to
the formula M : F (x, ε) = M(τ + ε), where τ = M−1(x).
Taking the first order approximation of in the neighborhood of
τ given small enough ε: F (x, ε) ≈ x + H(x)ε, where each
column of the matrix H(x) is the partial derivative of M w.r.t.
τk : Hk(x) = ∂

∂τ M(τ). Thus our goal can be restated as
learning a function H(·) : Rd → Rd×m and εtj for each data
points xt with a neighbor xj sampled from the manifold. In this
case, F (xt, εtj) ≈ xj in the least square sense, or equivalently
speaking: H(xt)εtj ≈ xj − xt.

Following this idea we can estimate an embedding of the
unknown lower dimensional feature vectors τjs from the xjs
preserving the nonlinear transformations in the input space.
Noting the manifold learning results in dimension reduction
and denoising of the data points.

A. Modelling the Local Manifold

Let X(t) = [x(t)
1 , · · · , x

(t)
k ] ∈ Rd×k be the k neighbors

of the data point xt ∈ X (t = 1, · · · , N). One nature way
to learn the nonlinearity is to construct local unit around each
data point and minimize the global cost functions. For example,
LLE is based on linear combination, LSTA fits the local unit by
the tangent plane. However, since the global cost optimization
tends to average the cost among local units, both methods yield
incorrect overlapping in the areas of large deformation or low
sampling rate. In the proposed method, the relative scale of
each local unit is removed from the global optimization.

We begin modelling the manifold variations in the local
region. The local unit in the neighborhood of xt is modelled
as

X(t) = (X(t) − xt) ≈ U (t)Σ(t)(V (t))T ,

where U (t) ∈ Rd×m and V (t) ∈ Rk×m are composed of
eigenvectors, and Σ(t) ∈ Rm×m is the diagonal matrix of
singular values. The underlying assumption is that the numbers
of neighbors is no less than the dimension of the underlying
manifold, i.e. k > m. Then the local eigen-space at xt can be
approximate by the local subspace spanned by the eigenvectors
of the centered matrix. It follows that

U (t)Σ(t)(V (t)
j· )T = H(xt)εtj ≈ x

(t)
j − xt, (j = 1, · · · , k)

or equivalently

U (t)Σ(t)(V (t))T ≈ (X(t) − xt),

where V
(t)
j· is the jth row of V (t). Thus for the tth data point

xt, the error function in the input space is

E
(I)
t = ‖U (t)Σ(t)(V (t))T − (X(t) − xt)‖2. (1)

We then try to find the global coordinates τt ∈ Rm, (t =
1, · · · , N ) in the feature space can be constructed using the
local information learned in the input space. Minimizing the
reconstruction error in the feature space:

E
(F )
t = ‖W (t)Σ(t)(V (t))T − (T (t) − τt)‖2

F , (2)

where T = [τ1, · · · , τN ] ∈ Rm×N . Let the matrix S(t) and
St be the 0-1 selection matrix such that TS(t) = T (t) and
TSt = τt. The optimal alignment matrix W (t) ∈ Rm×m that
minimizes the reconstruction error E

(F )
t can be computed as

W (t) = T (S(t) − St)
(
Σ(t)(V (t))T

)+

. (3)

Thus, the overall reconstruction error E(F ) is given by

E(F ) =
N∑

t=1

E
(F )
t

=
N∑

t=1

‖W (t)Σ(t)(V (t))T − (T (t) − τt)‖2
F

=
N∑

t=1

∥∥∥T (S(t) − St)Θt

∥∥∥2

F

= ‖TSΘ‖2
F ,

where

S =
[
(S(1) − S1), (S(2) − S2), · · · , (S(N) − SN )

]
,

Θt =
(

I −
(
Σ(t)(V (t))T

)+ (
Σ(t)(V (t))T

))
=

(
I − V (t)(V (t))T

)
, (4)

Θ = diag {Θ1, · · · , ΘN} .

Here, the unit variance constrain TTT = I is imposed on T ,
where I ∈ Rm×m is the unitary matrix. It follows that T can
be computed as the eigenvectors corresponding to the 2nd to
(m + 1)th smallest eigenvalues of the matrix

B = SΘΘT ST ,

Note in (4), the relative scale of each local unit is lost. The
distortion resulted from the global cost optimization can be
reduced for areas of sparse distribution or large curvature.

Also note that Σ(t)(V (t))T in the input space are obtained
with respect to an orthonormal basis (1), therefore it seems
quite natural to preserve the orthogonality of W (t) in the
low-dimensional feature space as well. This idea may lead to
additional alternating least square problem [9]. In our method,
this is amended using a global affine transformation in the
sense of least square solution.



B. Recovering The Global Metric Information

In the spectral embedding methods, i.e. LTSA, LLE, the
global metric information is totally lost due to the unit variance
constrain. We want to find a global affine transformation zt =
Lτt, L ∈ Rk×k, such that xt and zt have similar local Gram
matrix:

(X(t) − xt)T (X(t) − xt) ≈ (Z(t) − zt)T (Z(t) − zt),

where Z = [z1, · · · , zN ] ∈ Rk×N . Denote Z(t) = Z(t) − zt

and T (t) = T (t) − τt. It follows that

Z(t)
T
Z(t) = T (t)

T
LT LT (t)

Therefore, the cost function to be minimized is given by

E
(F )
t

=
∥∥∥(X(t) − xt)T (X(t) − xt) − Z(t)

T
Z(t)

∥∥∥2

F

=
∥∥∥(X(t) − xt)T (X(t) − xt) − T (t)

T
LT LT (t)

∥∥∥2

F
.

Let P = LT L, then P is a positive semi-definite matrix,
i.e. P º 0. The above problem is then formulated as

min
N∑

t=1

∥∥∥(X(t) − xt)T (X(t) − xt) − T (t)
T
PT (t)

∥∥∥2

F

s.t. P º 0

Let

Yt

∣∣∣
ij

=
{

1
2
[(τi − τt)(τj − τt)T + (τj − τt)(τi − τt)T ]

}
,

and

gt

∣∣∣
ij

= (xi − xt)T (xj − xt),

where Yt

∣∣∣
ij
∈ Rm×m and gt

∣∣∣
ij

is a scaler, we have

N∑
t=1

E
(F )
t

=
N∑

t=1

∥∥∥(X(t) − xt)T (X(t) − xt) − T (t)
T
PT (t)

∥∥∥2

F

=
N∑

t=1

∑
i,j

[
vec(P )T vec

(
Yt

∣∣∣
ij

)
− gt

∣∣∣
ij

]2

= vec(P )T
N∑

t=1

∑
i,j

vec

(
Yt

∣∣∣
ij

)
vec

(
Yt

∣∣∣
ij

)T

vec(P )

−2vec(P )T
N∑

t=1

∑
i,j

(
gt

∣∣∣
ij

)
· vec

(
Yt

∣∣∣
ij

)

+
N∑

t=1

∑
i,j

(
gt

∣∣∣
ij

)2

It follows that, the above problem can be transformed into

Min ‖A · vec(P ) − B‖2

s.t. P º 0,

where

A =

 N∑
t=1

∑
i,j

vec

(
Yt

∣∣∣
ij

)
vec

(
Yt

∣∣∣
ij

)T
1/2

∈ Rm2×m2

B = (AT )+
N∑

t=1

∑
i,j

(
gt

∣∣∣
ij

)
· vec

(
Yt

∣∣∣
ij

)
∈ Rm2

.

Using Schur complement, the problem above can be solved
as a Semi-Definite Programming (SDP) problem

Min h

s.t.

(
I (A · vec(P ) − B)

(A · vec(P ) − B)T h

)
º 0,

P º 0.

The left-hand side of the first constrain depends on the vector
vec(P ). It can be expressed as

F (vec(P )) = F0 + vec(P )1 · F1 + · · · + vec(P )m2 · Fm2 º 0

where

F0 =
(

I −B
−BT h

)
, Fi =

(
0 Ai

AT
i 0

)
, i = 1, · · · ,m2

This problem can be easily solved using YALMIP [12] and
CSDP [13]. Finally the global affine transformation matrix is
obtained by L = P 1/2. The affine transformation zt = Lτt

recovers both the absolute and relative scales in each direction
of the underling manifold.

To this end, the nonlinear mapping we construct for man-
ifold learning can be explicitly summarized as follows. Ap-
proximating data point xj by the local unit it belongs to (at
xt), we have

(
U (t)

)T
(x(t)

j − xt) ≈ W (t)(τ (t)
j − τt). Then the

nonlinear mapping from the input space to the feature space
can be represented as:

M−1(x) : LW (t)
(
U (t)

)T

(x(t)
j − xt) → z

(t)
j − zt. (5)

Finally, we call the proposed manifold learning method as
LGGA considering its Local Geometry preserving and Global
Affine transformation.

One advantage of LGGA is that we can potentially detect
the intrinsic dimension of the underlying manifold by analyz-
ing the local subspace structure. In particular, we can examine
the distribution of singular values of the centered data matrix
X(t)(t = 1, · · · , N) for the neighborhood of each data point
xt. Let the vector σ(t) ∈ Rk contains the singular values of the

centered matrix X(t). Define the summation ρ =
N∑

t=1

(
σ(t)

)2

.

In Fig.5 it is clearly that the underlying dimension of the
feature space can be easily inferred from ρ.



III. RESULTS AND DISCUSSION

We tested the proposed framework on four synthetic data
sets (Swiss roll, Swiss hole, punctured sphere and twin peaks)
and real image data set (the Columbia Object Image Library
(COIL-20) [14]). All experiments are conducted by running
uncompiled Matlab codes on a 2.8GHz Pentium IV PC.

A. synthetic data sets

To evaluate the performance of the proposed algorithm,
several competing algorithms, i.e. linear PCA, ISOMAP, LLE
and LTSA are compared on the four sets of synthetic data. The
objective is to map each data set, originally in 3D space, onto a
2D plane. These synthetic data provide a standard benchmark
to evaluate the embedding performance, because both input
and output data are low-dimensional and thus can be easily
visualized. We set the neighbor number k = 8 throughout the
experiments. In the following, we compare the results of each
data set (Fig. 1-4) in detail:

1. Punctured sphere data in Fig. 1. This data set is sampled
from a punctured sphere, rather than a complete sphere. The
reason is that a sphere is not homeomorphic to a 2D patch. To
embed a sphere onto a 2D space, the sphere must be segmented
into multiple patches or be punctured. The Linear PCA and
ISOMAP produce incorrect mixed point clouds. LTSA pro-
duces satisfactory results in the central area, but the boundary
area shrinks and overlaps. The proposed algorithm LGGA
yields good result, even in the boundary area that undergoes
large deformation. In addition, the anisotropic distribution is
preserved.

2. Twin peaks data in Fig. 2. Most algorithms produce
satisfactory results, except that Linear PCA and diffusion maps
yield incorrect mixed point clouds.

3. Swiss roll data in Fig. 3. LGGA produces an ideal output,
showing that both local geodesic distances and global scale
are preserved almost perfectly. Linear PCA fails since linear
projection methods cannot unfold curved structures. ISOMAP
attempts to preserve all shortest path distances, but its output
is far from satisfactory. LLE yield irregular 2D embedding. In
contrast, LTSA yield more faithful results than ISOMAP does.
However, as the outputs of LTSA are compressed into a square
region, both scale information and aspect ratio are lost.

4. Swiss hole data in Fig. 4. LGGA also works perfectly
by preserving the geometry around the hole. Linear PCA
produces an incorrect mixed point cloud. ISOMAP and LLE
yield distorted shapes around the hole. LTSA can maintain the
shape around the hole that is close to LGGA while loses the
relative scale information.

B. Image data sets

To evaluate the proposed LGGA algorithm on real world
data, the Columbia Object Image Library (COIL-20) are used
to perform dimensionality reduction. This database contains
128 × 128 gray-scale images of 20 objects. For each object,
72 views at the intervals of 5 degrees are sequentially obtained
by rotating through 360 degrees. The images is then clipped
out from the black background using a rectangular bounding

 
Fig. 1. Comparison on the Punctured Sphere data set.

box. The bounding box is resized (zoomed) to 128 × 128
using interpolation decimation filters to minimize aliasing.
These settings result in very complex features in the under-
ling manifold. See Fig. 5 and Fig. 6 for the results on the
72 “Duck” images. According to the dimensional estimation
method in the previous section, the original high-dimensional
(128 × 128 = 16384) data set can be embedded into the 2D
space (See Fig. 5). Here we still set the neighbor number
k = 5, 8.

In the 2D representation (Fig. 6), data point distribution
clearly reveals the image variations of both zooming and view
angles. This can be easily visualized by the image sequence
(A)-(D) correspond to the circled points on the chain (A)-(D) in
the 2D embedding. According to the directions notion in Fig.
6, the 2-D points on the chain (B) and (D) are around the 0
and 180 degree in view angles, and are nearly symmetrically
distributed with respect to the axis along view angle 90 or
270 degrees. Meanwhile, because of the beak of the duck, the
drastic variation of images on (C) are clearly distinguished
from that of (A). This difference is also revealed by the 2-D
embedding. In addition, due to the extra strong zooming effects
of the fixed bounding box, the embedded points between the
chains (A)-(D) tend to be more spare than those points on (A)-
(D). In sum, the proposed methods produce embeddings that
are easy to understand and interpret.



 
Fig. 2. Comparison on the Twin Peaks data set.

IV. CONCLUSION

This paper proposes a new manifold learning algorithm, i.e.
LGGA. The proposed method deals with both local manifold
distortion and the global metric information lost problem
generally existed in those spectral embedding methods. Ex-
periments on synthesis data sets and real images show that
our model give better performance than closely related models
(Linear PCA, ISOMAP, LLE and LSTA) on these problems. In
addition, it is not our intention to convince the reader that the
proposed algorithm offers an optimal solution to any dimen-
sionality reduction problem. In fact, all existing algorithms are
derived from different motivations, and have their own strength
and weakness. This leads to interesting directions of our future
works, which include automatic parameter estimation, out-of-
sample extension and applications to classification problems.
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Fig. 4. Comparison on the Swiss Roll with Hole data set.
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Fig. 5. Dimension estimation of Duck images with neighbor number k=5, 8.
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Fig. 6. Image manifold extracted from 72 “Duck” images with neighbor
number k=5, 8. The first row shows the results of LSTA. The second row
shows the results of LGGA. The image sequence (A)-(D) correspond to the
circled points on the chain (A)-(D) in the 2D embedding.


