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Abstract— In this paper, a class of discrete-time system
modeling a network with two neurons is considered. Its flip
bifurcations (also called period-doubling bifurcations for map)
are demonstrated by deriving the equation describing the flow
on the center manifold. In particular, the explicit formula for
determining the direction and the stability of flip bifurcations
are obtained. The theoretical analysis is verified by numerical
simulations.

I. INTRODUCTION

In the past few decades, neural networks have received
intensive interest due to their wide applications, such as,
pattern recognition, associative memory and combinational
optimization, and its dynamical behavior plays an important
role. Many works [1-13] have been published to investigate the
dynamics of neural networks since Hopfield [10] constructed
a simplified neural network model. Neural networks with one
or two neurons are prototypes to understand the dynamics of
large-scale networks, many results have been made for such
simplified networks [3,4,6-9,11,12].

In 2003, Yuan and Huang [13] studied the asymptotical
behavior of the following difference system:

x1(n + 1) = βx1(n) + a11f(x1(n)) + a12f(x2(n)),
x2(n + 1) = βx2(n) + a21f(x1(n)) + a22f(x2(n)),

n = 0, 1, 2, ...,

where β ∈ (0, 1) is a constant and f : R → R is the activation
function given by the piecewise constant McCulloch-Pitts
nonlinearity

f(u) =

{
−1, u > σ,

+1, u ≤ σ,

where σ ∈ R is a constant, and acts as the threshold. In 2004,
Yuan et al. [6] considered the following system:

x1(n + 1) =βx1(n) + (1 − β)f(αx1(n))
+ (1 − β)f(γ1x2(n)),

x2(n + 1) =βx2(n) − (1 − β)f(γ2x1(n))
+ (1 − β)f(αx2(n)), n = 0, 1, 2, ...,

where β ∈ (0, 1) is internal decay of the neurons, the constant
α > 0 and γi(i = 1, 2) denote the gain parameters, f : R → R

is a continuous transfer function and f(0) = 0. They discussed
the global and local stability of the equilibrium, which gave

some sufficient conditions to guarantee the existence of bifur-
cation, meanwhile got a formula to determine the direction and
stability of bifurcation. In 2005, Yuan et al. [7] introduced a
more general model based on [6]. They studied the following
discrete-time neural network model with self-connection in the
following form

x1(n + 1) = βx1(n) + a11f1(x1(n))+a12f2(x2(n)),
x2(n + 1) = βx2(n) + a21f1(x1(n))+a22f2(x2(n)),

n = 0, 1, 2, ...,

where β ∈ (0, 1) is internal decays of the neurons. Some
sufficient conditions were given to guarantee the stability of the
equilibrium and the existence of Neimark-Sacker bifurcation.
The direction and the stability of Neimark-Sacker bifurcation
were discussed. In 2007, He et al. [14] further studied the
following neural networks with different internal decay of the
neurons

x1(n + 1) = αx1(n) + a11f1(x1(n))+a12f2(x2(n)),
x2(n + 1) = βx2(n) + a21f1(x1(n))+a22f2(x2(n)),

n = 0, 1, 2, ...,

(1)

where xi(i = 1, 2) denotes the state of the i-th neuron,
α ∈ (0, 1), β ∈ (0, 1) are internal decays of the neurons,
the constants aij(i, j = 1, 2) denotes the connection weights,
fi : R → R (i = 1, 2) are continuous transfer functions and
fi(0) = 0(i = 1, 2). Not only the stability of equilibrium
and the existence of Neimark-Sacker bifurcation but also the
direction of the Neimark-Sacker bifurcation and the stability of
the bifurcating periodic solution of system (1) are investigated.

However, in addition to Neimark-Sacker bifurcation, system
(1) may exhibit more plentiful behaviors of dynamics such
as saddle-node bifurcation, transcritical bifurcation, pitchfork
bifurcation, flip bifurcation, and even chaos([14,15]). In this
paper, all of our effort will be concentrated on the flip
bifurcations at equilibrium (0, 0) of system (1). In fact, the
direction and stability of the flip bifurcations at equilibrium
(0, 0) are determined by approximately computing a center
manifold.

The organization of this paper is as follows. In next section,
we devote to the direction and stability of the flip bifurcations.
In section 3, some simulations are made to demonstrate our
results.
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II. DIRECTION AND STABILITY OF THE FLIP BIFURCATION

In this section, the formulas for determining the direction
and the stability of flip bifurcations of system (1) at the
equilibrium (0,0) will be presented by employing the center
manifold theory. we assume that the transfer functions in (1)
satisfy

(H1) fi ∈ C3(R, R), fi(0) = 0, f ′
i(0) �= 0, i = 1, 2.

For the sake of simplicity and the need of discussion, the
following parameters are defined:

T1 =
1
2
(α + a11f

′
1(0)), T2 =

1
2
(β + a22f

′
2(0)),

D = −a12a21f
′
1(0)f ′

2(0).

Further, we assume that

(H2) a12a21 �= 0, T1 + T2 �= 0, (T1 − T2)2 > D.

Now system (1) can be rewritten as a mapping F : R
2 → R

2:

[
x1(n)
x2(n)

]
�→

[
α + a11f

′
1(0) a12f

′
2(0)

a21f
′
1(0) β + a22f

′
2(0)

]

×
[

x1(n)
x2(n)

]
+

[
F1(x(n))
F2(x(n))

]
, (2)

where x(n) = (x1(n), x2(n))T ∈ R
2. From assumption (H1),

we know that Fi(i = 1, 2) in (2) can be expanded as

F1(x) =
a11

2
f ′′
1 (0)x2

1 +
a12

2
f ′′
2 (0)x2

2 +
a11

6
f ′′′
1 (0)x3

1

+
a12

6
f ′′′
2 (0)x3

2 + O(4),

F2(x) =
a21

2
f ′′
1 (0)x2

1 +
a22

2
f ′′
2 (0)x2

2 +
a21

6
f ′′′
1 (0)x3

1

+
a22

6
f ′′′
2 (0)x3

2 + O(4),

where O(4) means terms of order≥ 4. Then the Jacobian
matrix of (2) at (0, 0) is

DF (0, 0) =
[

α + a11f
′
1(0) a12f

′
2(0)

a21f
′
1(0) β + a22f

′
2(0)

]

and its eigenvalues are

λ1,2 = T1 + T2 ±
√

(T1 − T2)2 − D.

Lemma 2.1: Suppose that (H1) and (H2) hold and (2T1 +
1)(2T2 + 1) = −D. If T1 + T2 < −1, then λ1 = −1 and
λ2 < −1; if T1 + T2 > −1, then λ2 = −1, λ1 > −1 and
λ1 �= 1.

The proof of Lemma 2.1 is trivial and will be omitted.

We first consider the case T1 + T2 < −1. For convenience,

we let

A :=
1

(λ1 − λ2)a12f ′
2(0)

,

A1 :=
A

2(λ2
1 − λ2)

[
(a12f

′
2(0))2f ′′

1 (0)(a21a12f
′
2(0)

− λ1a11) + λ2
1f

′′
2 (0)(a22a12f

′
2(0) − λ1a12)

]
,

A2 := −A

2
[
(a11(2T1 − λ2) + a21a12f

′
2(0))f ′′

1 (0)

× (a12f
′
2(0))2 + (a12(2T1 − λ2)

+ a22a12f
′
2(0))f ′′

2 (0)(2T1 − λ1)2
]
,

A3 := −AA1

[
(a11(2T1 − λ2) + a21a12f

′
2(0))f ′′

1 (0)

× (a12f
′
2(0))2 + (a12(2T1 − λ2)

+ a22a12f
′
2(0))f ′′

2 (0)(2T1 − λ1)(2T1 − λ2)
]

+
A

6
[(

a11(2T1 − λ2) + a21a12f
′
2(0)

)
× (a12f

′
2(0))3f ′′′

1 (0) − (
a12(2T1 − λ2)

+ a22a12f
′
2(0)

)
(2T1 − λ1)3f ′′′

2 (0)
]
,

A∗ := A2
2 + A3.

Then we have the following theorem.

Theorem 2.1: Suppose that (H1) and (H2) hold. If (2T1 +
1)(2T2 + 1) = −D, T1 + T2 < −1 and A∗ �= 0, then a flip
bifurcation occurs at the equilibrium (0, 0). More concretely,
for A∗ > 0, a 2-periodic orbit of system (1) emerges near
the (0, 0) when T1 < − 1

2 − D
2(2T2+1) , which is actually

attractive, but the 2-periodic orbit does not exist when T1 ≥
− 1

2 − D
2(2T2+1) ; for A∗ < 0, a repellent 2-periodic orbit of

system (1) emerges near (0, 0) when T1 > − 1
2 − D

2(2T2+1) , but
the 2-periodic orbit does not exist when T1 ≤ − 1

2 − D
2(2T2+1) .

Proof: We can easily see that the matrix DF (0, 0) has
eigenvectors (−a12f

′
2(0), 2T1 − λ1)T and (−a12f

′
2(0), 2T1 −

λ2)T corresponding to λ1 and λ2 respectively. Hence the ma-
trix DF (0, 0) can be diagonalized by the change of variables
(x1, x2)T = H(u, v)T , where

H =
[ −a12f

′
2(0) −a12f

′
2(0)

2T1 − λ1 2T1 − λ2

]
,

and therefore the mapping F can be changed into ΦT1 : R
2 →

R
2,

[
u
v

]
�→

[
λ1u
λ2v

]
+

1
(λ1 − λ2)a12f ′

2(0)

×
[−(2T1 − λ2)F̃1(u, v) − a12f

′
2(0)F̃2(u, v)

(2T1 − λ1)F̃1(u, v) + a12f
′
2(0)F̃2(u, v)

]
+O(4) (3)



where

F̃1(u, v) =
a11

2
f ′′
1 (0)(a12f

′
2(0))2(u + v)2

+
a12

2
f ′′
2 (0)[(2T1(u + v) − (λ1u + λ2v)]2

+
a11

6
f ′′′
1 (0)(a12f

′
2(0))3(u + v)3

+
a12

6
f ′′′
2 (0)[(2T1(u + v) − (λ1u + λ2v)]3,

F̃2(u, v) =
a21

2
f ′′
1 (0)(a12f

′
2(0))2(u + v)2

+
a22

2
f ′′
2 (0)[(2T1(u + v) − (λ1u + λ2v)]2

+
a21

6
f ′′′
1 (0)(a12f

′
2(0))3(u + v)3

+
a22

6
f ′′′
2 (0)[(2T1(u + v) − (λ1u + λ2v)]3.

We now want to compute the center manifold and derive the
mapping on the center manifold. We assume

v = h(u, T1) = au2 + buT1 + cT 2
1 + O(3) (4)

near the origin. By Theorem 2.1.4 in [15], those coefficients
a, b and c can be determined by the equation

N (h(u, T1))
:= h

(
λ1u − A(2T1 − λ2)F̃1(u, h(u, T1))

−Aa12f
′
2(0)F̃2(u, h(u, T1)), T1

)
−λ2h(u, T1) − A(2T1 − λ1)F̃1(u, h(u, T1))
−Aa12f

′
2(0)F̃2(u, h(u, T1))

= 0. (5)

where

F̃1(u, h) =
a11

2
f ′′
1 (0)(a12f

′
2(0))2

(
u + au2 + buT1 + cT 2

1

)2

+
a12

2
f ′′
2 (0)

(
(2T1(u + au2 + buT1 + cT 2

1 )

− λ1u − λ2(au2 + buT1 + cT 2
1 )

)2

+ O(4),

F̃2(u, h) =
a21

2
f ′′
1 (0)(a12f

′
2(0))2

(
u + au2 + buT1 + cT 2

1

)2

+
a22

2
f ′′
2 (0)

(
(2T1(u + au2 + buT1 + cT 2

1 )

− λ1u − λ2(au2 + buT1 + cT 2
1 )

)2

+ O(4).

Comparing coefficients of u2, uT1 and T 2
1 in (5), we get

aλ2
1 − aλ2 = −A

2

[
a11f

′′
1 (0)(a12f

′
2(0))2λ1

+ a12f
′′
2 (0)λ3

1

+ a21a12f
′
2(0)f ′′

1 (0)(a12f
′
2(0))2

− a22a12f
′
2(0)f ′′

2 (0)λ2
1

]
,

bλ1 − bλ2 = 0,

c − cλ2 = 0,

from which we solve

a =
A

2(λ2
1 − λ2)

[
(a12f

′
2(0))2f ′′

1 (0)(a21a12f
′
2(0)

− λ1a11) + λ2
1f

′′
2 (0)(a22a12f

′
2(0) − λ1a12)

]
= A1,

b = 0,
c = 0.

Thus the expression of (4) is determined and

v = h(u, s) = A1u
2 + O(3). (6)

Substituting (6) into the first equation in (3), we obtain a one-
dimensional mapping u �→ φT1(u), where

φT1(u)

= λ1u − 1
(λ1 − λ2)a12f ′

2(0)

[
(2T1 − λ2)F̃1(u, v)

+ a12f
′
2(0)F̃2(u, v)

]
+ O(‖u‖4)

= λ1u − A

2

[(
a11(2T1 − λ2) + a21a12f

′
2(0)

)
f ′′
1 (0)

× (
a12f

′
2(0)

)2 +
(
a12(2T1 − λ2) + a22a12f

′
2(0)

)
× f ′′

2 (0)λ2
1(2T1 − λ1)2

]
u2 − Aa

[
(a11(2T1 − λ2)

+ a21a12f
′
2(0))f ′′

1 (0)(a12f
′
2(0))2 +

(
a12(2T1 − λ2)

+ a22a12f
′
2(0)

)
f ′′
2 (0)(2T1 − λ1)(2T1 − λ2)

]
u3

+
A

6

[(
a11(2T1 − λ2) + a21a12f

′
2(0)

)
× (a12f

′
2(0))3f ′′′

1 (0) −
(
a12(2T1 − λ2)

+ a22a12f
′
2(0)

)
(2T1 − λ1)3f ′′′

2 (0)
]
u3 + O(‖u‖4)

=λ1u + A2u
2 + A3u

3 + O(‖u‖4).

Here we note the dependence of λ1, λ2 on T1. Further, by
directly computing and in view of the assumptions, we get
that

[∂φT1

∂T1

∂2φT1

∂u2
+ 2

∂2φT1

∂u∂T1

]∣∣∣
(u,T1)=(0,T1)

=
2T2 + 1

T1 + T2 + 1
�= 0, (7)

[1
2

(∂2φT1

∂u2

)2

+
1
3

∂3φT1

∂u3

]∣∣∣
(u,T1)=(0,T1)

= 2(A2
2 + A3) �= 0. (8)

Thus, the conditions (F1) and (F2) of Theorem 3.5.1 in [14]
are checked by (7) and (8) respectively, implying that a flip
bifurcation occurs at (u, T1) = (0,− 1

2 − D
2(2T2+1) ) and a 2-

periodic orbit arises as stated in the theorem. �



Next, we consider the case T1 + T2 > −1. Let

B :=
1

(λ2 − λ1)a12f ′
2(0)

,

B1 :=
B

2(λ2
2 − λ1)

[
(a12f

′
2(0))2f ′′

1 (0)(a21a12f
′
2(0)

− λ2a11) + λ2
2f

′′
2 (0)(a22a12f

′
2(0) − λ2a12)

]
,

B2 := −B

2
[
(a11(2T1 − λ1) + a21a12f

′
2(0))f ′′

1 (0)

× (a12f
′
2(0))2 + (a12(2T1 − λ1)

+ a22a12f
′
2(0))f ′′

2 (0)(2T1 − λ2)2
]
,

B3 := −BB1

[
(a11(2T1 − λ1) + a21a12f

′
2(0))f ′′

1 (0)

× (a12f
′
2(0))2 + (a12(2T1 − λ1)

+ a22a12f
′
2(0))f ′′

2 (0)(2T1 − λ1)(2T1 − λ2)
]

+
B

6
[(

a11(2T1 − λ1) + a21a12f
′
2(0)

)
× (a12f

′
2(0))3f ′′′

1 (0) − (
a12(2T1 − λ1)

+ a22a12f
′
2(0)

)
(2T1 − λ2)3f ′′′

2 (0)
]
,

B∗ := B2
2 + B3.

Then we have the following theorem.
Theorem 2.2: Suppose that (H1) and (H2) hold. If (2T1 +

1)(2T2 + 1) = −D, T1 + T2 > −1 and B∗ �= 0, then a flip
bifurcation occurs at the equilibrium (0, 0). More concretely,
for B∗ > 0, a 2-periodic orbit of system (1) emerges near
the (0, 0) when T1 < − 1

2 − D
2(2T2+1) , which is actually

attractive, but the 2-periodic orbit does not exist when T1 ≥
− 1

2 − D
2(2T2+1) ; for B∗ < 0, a repellent 2-periodic orbit of

system (1) emerges near (0, 0) when T1 > − 1
2 − D

2(2T2+1) , but
the 2-periodic orbit does not exist when T1 ≤ − 1

2 − D
2(2T2+1) .

The proof of Theorem 2.2 is similar to that of Theorem 2.1
and because of limited space it will be omitted.

III. NUMERICAL SIMULATIONS

In this section, we give numerical simulations to support
our theoretical analysis.

Example: Let α = 1
4 , β = 3

4 , f1(u) = sin(u), f2(u) =
arctan(u/2) in the system (1). By the simple calculation, we
obtain

f ′
1(0) = 1, f ′′

1 (0) = f ′′
2 (0) = 0 f ′

2(0) = 0.5,

f ′′′
1 (0) = −1, f ′′′

2 (0) = −0.25.

(I) If a12 = −2, a21 = 2, a22 = −1, then T2 = 0.125, D =
2. When a11 = −2.8, we get T1 + T2 = −1.175 < −1, (T1 −
T2)2 = 2.031 > D and A∗ = A3 = 1.985 > 0. By Theorem
2.1, we know that a flip bifurcation occurs at the equilibrium
(0, 0). A 2-periodic orbit of system (1) emerges near the (0, 0)
when T1 < − 1

2 − D
2(2T2+1) = −1.3(i.e., a11 < −2.8), but the

2-periodic orbit does not exist when T1 ≥ −1.3(i.e., a11 >
−2.8). The corresponding bifurcation plot is shown in Fig.1.
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Fig.1. Period-two orbit bifurcates from (0,0) for a11 < −2.8.

(II) If a12 = −1, a21 = 2, a22 = −1, then T2 = 0.125, D =
1. When a11 = −2, we get T1 + T2 = −0.775 > −1, (T1 −
T2)2 = 1.051 > D and B∗ = B3 = 0.085 > 0. By Theorem
2.2, we know that a flip bifurcation occurs at the equilibrium
(0, 0). A 2-periodic orbit of system (1) emerges near the (0, 0)
when T1 < − 1

2 − D
2(2T2+1) = −0.9(i.e., a11 < −2), but the 2-

periodic orbit does not exist when T1 ≥ −0.9(i.e., a11 > −2).
The corresponding bifurcation plot is shown in Fig.2.
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Fig. 2. Period-two orbit bifurcates from (0,0) for a11 < −2.
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