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Abstract—Some multi-sensor fusion systems are not 
asymptotic stable like target tracking system. When using 
classical H∞ filtering theory to design the fusion filter for these 
systems, there are no feasible solutions to the problem. Applying 
H∞ theory and LMI methods to design the H∞ fusion filter for 
those kind of fusion systems, in which the process and 
measurement noise have unknown statistic characteristic but 
bounded power, a new approach is presented in this paper. 
Finally, an example is given to illustrate the effectiveness of our 
method. 
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I. INTRODUCTION 
In recent years, the multi-sensor data fusion has received 

great attention due to extensive application backgrounds. The 
data fusion Kalman filter has been widely applied in many 
fields including guidance, defence, robotics, integrated 
navigation, target tracking, and GPS positioning, see [1-3] and 
the references therein. Generally speaking, there are two 
methods of fusion filtering estimation, i.e. state vector fusion 
estimation and measurement fusion estimation. When 
information of process and measurement are accurate, the latter 
will develop an optimal global estimation. However, in 
practice, the states in multi-sensor data fusion system have to 
be estimated from noisy measurement, and in some special 
cases, the characteristics of the noise were unknown. 
Therefore, classical Kalman filter has difficult in solving these 
problems. 

The H∞ filtering technique has been widely studied for the 
benefit of different time and frequency domain properties to the 
H2 filtering technique. In the H∞ setting, the exogenous input 
signal is assumed to be energy bounded rather than Gaussian. 
An H∞ filter is designed such that the H∞ norm of the system, 
which reflects the worst-case “gain” of the system, is 
minimized. It has been widely used to cope with disturbances 
of partially unknown statistics but with an upper bound of the 
signal power, see [4-9]). In particular, [4] gave a very useful 
lemma, which is called “stochastic bounded real lemma 
(SBRL)” on discrete-time system. [7] applied the SBRL to 
design robust filter for stochastic uncertainty system. In [9] and 
[7], linear stochastic H∞ filtering was studied based on linear 
matrix inequality (LMI) technique. [8] presented a nonlinear 
stochastic H∞ filtering design by means of Hamilton-Jacobi 
inequality (HJI). When we construct the H∞ filter for different 

systems, all the works above are base on the premise that the 
systems we studied are asymptotic stable. Otherwise, there are 
no feasible solutions to the filter design problems, especially 
for some multi-sensor fusion systems like target tracking 
system. So, we should change the classical H∞ filter design 
methods to satisfy for multi-sensor  H∞  fusion filtering. 

This paper considers fusion filtering problems of the multi-
sensor fusion system, and the process and measurement noise 
in the system have unknown statistic characteristic but bounded 
power. Applying H∞ theory and LMI methods, a new approach 
to design the filter is presented. And, in the fourth section of 
this paper, an example is given to illustrate the effectiveness of 
our theory. 

For convenience, we adopt the following traditional 
notations: A′ : transpose of the matrix A . )0(0 >≥ AA : A  
is a positive semidefinite (positive definite) matrix. nS  : the set 
of all real symmetric matrices. nR : n -dimensional Euclidean 
Space. nn×Ι : nn×   identity matrix. 

II. PROBLEM FORMULATION 
We consider the following stochastic discrete time fusion 

system  
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where n
k Rx ∈ is the system state, 

lR∈pk2k1k y,...y,y  are the measurement outputs , v1, v2, … 
, vp are measurement noise which belongs to 

),0[2 ∞l , mRwk ∈  is stochastic process noise which belongs 

to ),0[2 ∞l , and m
k Rz ∈  is the state combination to be 

estimated and }{ kr  is the standard random scalar sequences 

with zero mean that satisfy: ,},{ kjjk rrE δ=  0jk ≥∀ , . A, B, 



         

C1, C2,…, Cp, , D1, D2, … , Dp and L are constant matrices of 
the appropriate dimensions. 

For centralized fusion system, the measurement model can 
be denoted as the following augmented measurement 
equations: 

kkk DvCxy +=                                          (2) 
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So, system (1) can be simply expressed as: 
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where 

[ ]0BB =1 , [ ]D0D =1 , 

[ ]0GG =1 [ ]′′′= kkk vwς . 

According to classical H∞ filtering theory (set G=0), the 
centralized fusion filter can be constructed as the following 
form: 
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where the constant matrices { }fff LBA ,,  are filter 
parameters to be determined to meet certain performance 
criteria, kx̂ and kẑ denote the estimates of  kx  and kz , 
respectively. It follows from (1) and (2) that the extended state 
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For a given scalar 0>γ , we define the following 
performance index: 
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According to theorem 10.1.1 and 10.1.2 in [10] we can 
easily obtain the centralized H∞ fusion filter where for all 
nonzero kς , the above performance index 0<J . However, a 
sufficient condition should be satisfied for above theorems, that 
is, the system we considered must be asymptotically stable. It 
means the classical H∞ filtering deign methods are not fit for 
those unstable system, such as radar tracking fusion system. 

In order to settle this problem, we re-investigate the design 
of a linear estimator for kz of  the following form 
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where rn RkzRkx ∈∈ )(ˆ,)(ˆ are the estimated state and 
output, respectively, and K is well known as the Kalman gain, 

kx̂ and kẑ denote the estimates of  kx  and kz , respectively. 

Let kkk xxx ˆ~ −= , denote the state error vector. It follows from 
(3) and (7) that satisfy 
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where 

  KCAA −= , 11 KDBB −=                              (8’) 

For centralized H∞ fusion filter, we look for an estimator of 
the form (7) such that for all nonzero kς , the above 
performance index 0<J , and the system (8) is asymptotically 
stable when 0=kζ . 

We first put forward to the following lemma which is very 
useful for the proof of our main theorems. 

Lemma 2.1 (Schur’s complement): 

For real matrices ,N ,MM ′= 0RR >′= , the 
following two conditions are equivalent. 

0)1 1 >′− − NNRM . 
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III. ASYMPTOTIC STABILITY 
We firstly consider the internal stability of the system (8) in 

the absence of disturbance kζ , i.e. the asymptotic stability of 



         

kk Aξξ =+1                                         (9) 

Assuming there exists ,0>P  we shall seek a Lyapunov 
functional of the following form: 

( ) kkk PV ξξη ′=                                    (10) 

Note that 

)()( 1 kk VV ηη −Ε + [ ] kkkk PP ξξξξ ′−′Ε= ++ 11  

( ) ( ) kkkkk PAPA ξξξξ ′−
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We can see that if 

0<−′ PAPA                                            (12) 

Then 

0)()( 1 <−Ε + kk VV ηη  

which implies the system (8) is asymptotically stable. 

By Lemma 2.1, (12) is equivalent to 
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Now, we substitute A  into (13), and it yields (14) 
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So, if there exist matrices KP ,0>  to matrix inequality (14), 
the system (8) will be asymptotically stable. 

IV. CENTRALIZED H∞ FUSION FILTER DESIGN 
We firstly bring the lemma that derived in [4] for the 

system (15) 
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where the exogenous disturbance { }kw is assumed to be of 
finite energy and may depend only on current and past values 
of the state-vector,{ }kr  is defined as in (1). Considering the 
performance index 
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and using the arguments of [4], the following holds: 

Lemma 4.1 (The discrete-time bounded real lemma): 

Consider the system of (15), Given 0>γ , a necessary and 

sufficient condition for Ĵ  to be negative for all nonzero { }kw  

where { } ),[ ∞∈ 0lw 2k  is that there exists a solution 
0>′= PP  to 

0LLPABPBAPAAP <′+′Θ′+′+− −1           (17) 

Which satisfies 0>Θ , where PGGPBBI2 ′−′−=Θ γ . 

Considering the system of (8) and applying Lemma 4.1, we 
arrive at the following result: 

Theorem 4.1: If there exist feasible solutions Q0PP ,>′=  
to LMIs (18) and (19), then the system (8) will be 
asymptotically stable and have H∞ performance level of γ . 
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Proof. Applying Lemma 3.1 on system (8), and Lemma 2.1 
on (17), then (17) is equivalent to (20) 
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And, (20) can be rewrote as 
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Applying Lemma2.1, (21) can be readily put in the 
following matrix inequality form 
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Then, take (8’) into (20), define PKQ '= , and after 
series of computation, we can see (22) is equivalent to (18), 
(16) is equivalent to (19), respectively. So the proof is ended. 

In Theorem 4.1, if we let γγ =2 , and the matrix 
inequalities (18) and (19) can be wrote down as 



         

0),,(1 <γψ QP                                       (23a) 

0),(2 <QPψ                                           (23b) 

Then the inequalities (23) are linear respect to 
{ }γ,,, LQP , and we can obtain the optional H∞ fusion filter 
by solving the following optimization problem  in using of 
Matlab software. 

LMIs(23) osubject  t

min
,,

γ
γQ0P>                            (24) 

And the system (8) is asymptotically stable and have a least 
H∞ performance level of γ , furthermore, the desired 
parameter K  of the filter is given by 

)( 1 ′= −QPK                                          (25) 

V. EXAMPLE 
Consider certain tracking system with two sensors, the 

system model is as follows: 
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where T is the sampling period. The state is 
′= ])k(s)k(s[xk ,where )k(s),k(s  are the position and  

velocity of the target at time Tk × . 2,1i,yik =  are the 

measurement signals, 2,1i,vik =  are the measurement noises 

of the two sensors, with mean zero and variance are 2
v1σ  and 

2
v2σ . w(t) is the system noises with mean zero and variance 
2
wσ . Our aim is to find the optimal H∞  fusion filter of  form 

(7). 

In fusion system (26), we set 
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120,90,30,1.0T v2v1w ==== σσσ . 

the initial velocity is 300m/s, initial position is 8000m. 

According to Theorem 4.1, (24) and (25), we obtain the 
following results: 
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K , 1.5553=γ                           

The simulation outputs are showed in figure 1 and figure 2. 
The mean error square of H∞ fusion filter outputs for 1x̂  and 

2x̂  are 5101.5007 × m and 4107.4381×  m2/s2, 
respectively. 

 

Figure 1. The trajectories of 1x and 1x̂ . 

 

 

Figure.2. The trajectories of 2x and 2x̂ . 

 

Changing the parameters of fusion system as 
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the initial velocity as 500m/s, initial position as 8000m, the 
variance of measurement noise and system noise as 

220,190,10 v2v1w === σσσ , we obtain 
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And  the simulation results showed in figure 3 and figure 4. 
The mean error square 1x̂  and 2x̂  are 5101.0695× m and 

4102566.1 ×  m2/s2, respectively. 

 

Figure 3. The trajectories of 1x and 1x̂ when the system parameters are 
changed. 

 

 

Figure 4. The trajectories of 2x and 2x̂  when the system parameters are 
changed. 

From the simulation results, we can see that the tracking 
performance of the H∞ fusion filter for system (26) is in an 
acceptable precision, and the filter can still work well when the 
system parameters and the characteristics of measurement 
noise and system noise are changed. 

VI. CONCLUSIONS 
In above sections, we have discussed fusion filter design 

problem of the multi-sensor fusion system, which is not 
asymptotic stable. We changed the classical H∞ filter’s structure 
and presented a new approach to realize it by applying H∞ 
theory and LMI methods.  The H∞ fusion filter is quite fit for 
coping with disturbances of partially unknown statistics but 
with an upper bound of the signal power in multi-sensor fusion 
systems. Obviously, it is very valuable in the study of this field, 
while many other problems merit further study. 
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