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Abstract—This paper investigated the formation control of
multi-mobile robots under the environment without obstacles,
the feedback linearization is used for the robot, a nonlinear
sliding mode controller is proposed in accordance with multi-
robot system to coordinate a group of nonholonomic mobile
robots so that a desired formation can be achieved. A prescribed
trajectory is followed by using sliding mode control approaches,
We prove theoretically that under certain reasonable assumptions
the formation is asymptotically stable, that is, the proposed sliding
mode controller can asymptotically stabilize the formation. The
simulation results verify the effectiveness of the control laws.

Index Terms—Formation Control, Feedback Linearization,
Nonholonomic Mobile Robot, Sliding Mode Controller

I. INTRODUCTION

With the development of computer technique, micro-electric
technique and wireless communication technique, it becomes
probable that multi-agent intelligent systems work in co-
ordination with each other, and it is being used in many
fields. Multi-agent intelligent systems work in coordination can
achieve the task which a single system couldn’t accomplish.
In artificial intelligence and robot research, people focus on
how to organize and coordinate multi-agent intelligent systems,
so that they can achieve complex missions under unstructured
environment effectively[1][2].

Nowadays, formation control is widely used in fields such as
geologic detecting, search-rescue, mining, space exploration,
and aeroplane formation without man. In the research about
multi-robot formation problem, the methods for coordina-
tion control mainly contain leader-follower schemes[3][4],
behavior-based methods[5][6], virtual structure technique[7],
artificial potential function methods[8][9], kinetic energy shap-
ing method[10], decentralization control-based method[11],
and so on.

This paper studies the problem about coordination for-
mation control of multi-mobile robots, that is, path tracking
problem about a team of mobile robots. A sliding mode con-
troller is proposed to realize the formation of multi-robot. The
simulation result shows that the sliding mode control method
is a feasible scheme, which overcomes some limitations of the
feedback linearization method[12].

II. DYNAMICS AND KINEMATICS MODEL OF MOBILE

ROBOT

A nonholonomic constraint mobile robot in n dimension
space can be described by Euler-Lagrange formulation[13]:

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)τ + AT (q)λ (1)

where q ∈ Rn is the coordinate vector, τ ∈ Rr is the
torque control input vector, λ ∈ Rm is the constraint force
vector, H(q) ∈ Rn×n is the symmetric positive definite matrix.
G(q) ∈ Rn corresponds to gravity and C(q, q̇) ∈ Rn×n to
the centrifugal and Coriolis forces, B(q) ∈ Rn×r is the input
transform matrix. A(q) ∈ Rm×n is the matrix corresponding
to nonholonomic constraint. Let r = n − m in the following
text.

Nonholonomic dynamic constraint is described by the fol-
lowing equation:

A(q)q̇ = 0 (2)

Set q = (rx, ry, θ)T in (2), then the robot’s nonholonomic
constraint can be denoted as:

ṙx sin θ − ṙy cos θ = 0 (3)

As shown in Fig. 1, the dynamics and kinematics model

Fig. 1. Model of mobile robot

of mobile robot is given by:
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ṙyi

θ̇i

v̇i

ω̇i


 =




viCi

viSi

ωi

0
0


 +




0 0
0 0
0 0

1/mi 0
0 1/Ji




[
Fi

Mi

]
(4)

Where ri = (rxi, ryi)T are the coordinates of the center of the
robot in inertia coordinates system, θi is the heading angle of
the robot, vi and ωi are the linear and angular velocities of the
robot, respectively. mi is the mass of the robot, and Ji is the
moment of inertia, Fi is control force, Mi is control torque,
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here, Fi and Mi are denoted as control inputs. Let Ci = cos θi,
Si = sin θi, ui = [Fi, Mi]T , the subscript i represents the ith
robot.

The heading position coordinates of the robot can be
described as:

hi = ri + Li

[
Ci

Si

]
(5)

Where Li is the distance from the heading position to the
center of the robot.

III. CONTROLLER DESIGN

Take

ui =
[

Ci/mi −LiSi/Ji

Si/mi LiCi/Ji

]−1

·

(
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[ −viωiSi − Liω
2
i Ci
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2
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]) (6)

νi is to design. After the feedback linearization of the robot,
then

ḧi = νi (7)

The problem of formation control proposed in the paper
[14] is comprised of two task:

1) Geometric task: Force the output hi to converge to the
desired path εi(β)

lim
t→∞ |hi(t) − εi(β(t))| = 0 (8)

for any continuous function β(t).
2) Dynamic task: Satisfy one or more of the following

assignments:
a) Time assignment: Force the path variable β(t) to

converge to a desired time signal vs(t),

lim
t→∞ |β(t) − vs(t)| = 0 (9)

b) Speed assignment: Force the path speed β̇(t) to
converge to a desired speed vs(β, t),

lim
t→∞ |β̇(t) − vs(β, t)| = 0 (10)

c) Acceleration assignment: Force the path acceler-
ation β̈(t) to converge to a desired acceleration
vs(β̇, β, t),

lim
t→∞ |β̈(t) − vs(β̇, β, t)| = 0 (11)

Throughout this paper, the dynamic task is specified as a
speed assignment.

Disassembling the system (7) as:

ẋ1i = x2i (12)

ẋ2i = νi (13)

hi = x1i (14)

Set the error variations as

z1i = x1i − εi(β) (15)

z2i = x2i − α1i (16)

ωs = vs(β, t) − β̇ (17)

Where α1i is virtual control variation, it will be given in the
following text. For the ith robot , its sliding plane is designed
as

s =


 s1

s2

s3


 =


 c1z1

c2z2

k0ωs


 (18)

Where s1 = (s11, s12)T , s2 = (s21, s22)T , c1 =
diag(c11, c12) > 0, c2 = diag(c21, c22) > 0, k0 > 0.

First, it will be proved that the formation control is stable
on the sliding plane.

Theorem 1: If it reaches the sliding plane within finite time,
then z1, z2, ωs converge to zero asymptotically.

Proof : On the sliding plane s = 0, since s1 = c1z1, s2 =
c2z2, s3 = k0ωs, and |c1| > 0, |c2| > 0, k0 > 0, it is easily to
see that z1, z2, ωs converge to zero asymptotically.

Next, it will be proved that it definitely reaches the sliding
plane within finite time.

Theorem 2: For the ith robot, given the control laws ν =
σ1 + ρ2vs − (cT

2 c2)−1cT
1 s1 − sgn(s2), α1 = z1 + ε̇(β)vs, and

set ω̇s = − τ
k2
0
− λsgn(ωs), where σ1 = x2 + ε̇(β)v̇s, ρ2 =

−ε̇(β) + ε̈(β)vs, τ = zT
1 cT

1 c1ε̇(β) + zT
2 cT

2 c2ρ2, λ > 0, sgn(·)
is sign function. Then the control laws satisfy the reachability
condition.

Proof: Take the differential of the equations (15) and (16)

ż1 = z2 + α1 − ε̇(β)β̇ (19)

ż2 = ν − (x2 − ε̇(β)β̇

+ ε̈(β)β̇vs + ε̇(β)v̇s)

= ν − σ1 − ρ2β̇

(20)

Then



sT ṡ = (c1z1)T c1ż1 + (c2z2)T c2ż2 + k2
0ωsω̇s

= zT
1 cT

1 c1[z2 + ε̇(β)ωs + (α1 − ε̇(β)vs)]

+ zT
2 cT

2 c2[ρ2ωs + (ν − σ1 − ρ2vs)] + k2
0ωsω̇s

= −zT
1 cT

1 c1z1 − zT
2 cT

2 c2sgn(s2) + (τ + k2
0ω̇s)ωs

= −zT
1 cT

1 c1z1 − c21|s21| − c22|s22| − λk0|s3|

= −sT
1 s1 − c21|s21| − c22|s22| − λk0|s3| < 0

So the reachability is satisfied.
It guarantees that when t → ∞, z1i → 0, z2i → 0, ωs → 0,

thereby hi(t) → εi(β(t)), β̇(t) → vs(β(t), t), so the formation
control is satisfied.

IV. SIMULATION

Three robots are chose for the experiment, the first
robot is defined as the leader, its desired path is ε1(β) =
(β, sin(0.5β))T , where β = t, the desired path of the second
robot is ε2(β) = (β, sin(0.5β) + 0.8)T , and the third desired
path is ε3(β) = (β, sin(0.5β) − 0.8)T . In the experiment,
the initial position of the three robots are r1 = (−0.1, 0.4)T ,
r2 = (−0.8, 1)T , r3 = (−0.6, − 0.6)T , the initial heading
angle are θ1 = π/4, θ2 = π/2, θ3 = π/3.

To avoid vibrating severely, function g(·) is used to replace
the sign function sgn(·), function g(·) is defined as

g(·) =
2

1 + e−5x
− 1 (21)

The results of simulation are shown in Fig. 2 to Fig. 7
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Fig. 2 Formation path of the robots
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Fig. 3 Position error of the robots
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Fig. 4 Virtual error of the robots
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Fig. 5 Dynamic tracking error of the formation
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Fig. 6 Control force curve of the robots
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Fig. 7 Control torque curve of the robots

Fig. 2 shows the formation path of the robots, three robots
are denoted with rectangles, from the top to the bottom are
the paths of robots R2, R1, R3, from the figures, it is easy to
see three robots converging to the desired path soon. Fig. 3
shows the position error of them, after seven seconds, the
errors almost converge to zero. Fig. 4 shows the indirect virtual
errors of the three robots, they get stable rapidly. Fig. 5 shows



the dynamic velocity error, it makes the three robots keep in
regular formation. Fig. 6 and Fig. 7 show the control inputs
curves of the three robots, making the formation going stably.

V. CONCLUSION

In this paper, a sliding control method is proposed to control
the formation of mobile robots, which is an extension of
tracking control. The results of simulation shows the robots
can formate stably, the sliding model is simple but effective.
Though the experiment in this paper is just for three robots, it
is also available when it extends to n robots.
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