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Abstract—In this paper, a stochastic observer is proposed, 
which can make the estimation error dynamics to be 
stochastically asymptotical stable and impulse-free. Moreover, an 
integrated estimation and feedback control mechanism is 
presented, which can make both the state and error dynamics 
stochastically asymptotical stable and impulse-free. Simulated 
results demonstrate the efficiency of the proposed approach. 
Finally, this technique is extended to fuzzy stochastic systems.  
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I.  INTRODUCTION 
State and signal estimation and reconstruction are always 

hot in signal processing and control community. There have 
been huge results reported [1-3].  

Stochastic descriptor system is a more complex system 
compared with the conventional deterministic or stochastic 
models. This is because those stochastic descriptor systems 
possess singular nature and stochastic behaviors. Therefore, 
investigation on signal estimation and control for stochastic 
systems is of significance, but challenging. However, there are 
few results for stochastic descriptor systems, except for some 
limited work in Kalman filtering [4-5]. 

In this study, we consider a descriptor system model with 
Itô formula. A descriptor stochastic estimator is proposed. 
Moreover, an integrated estimation and control mechanism is 
developed. 

 

II. PROBLEM STATEMENT 
Consider the following stochastic system 
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where nRtx ∈)(  is the state vector, mRtu ∈)(  is the control 
input, pRty ∈)(  is the output vector, and w  is the one-
dimension Brownian motion. 

Now we give the following definitions: 

Definition 1.  Stochastic system (1) is called stochastic stable, 
if for any )1,0(∈ε  and 0>r ， there is always a positive 
number 0),,( 0 >= trεδδ  such that 

ε−≥≥< 1}),;({ 000 ttallforrxttxP  

where δ<0x .  

Definition 2. Stochastic system (1) is stochastic asymptotically 
stable, if system (1) is stochastic stable, and for any )1,0(∈ε , 
there is 0),( 000 >= tεδδ  such that 

 

 

where 00 δ<x . 

Definition 3.  Stochastic system (1) is admissible if the system 
is stochastic asymptotically stable and impulse-free. 
Lemma 1 [6]. Stochastic system (1) is admissible if there is 
matrix X  such that the following inequalities hold: 

0≥= EXXE TT    
 0)( <++ ++ JXEEEJAXXA TTTTT   
   

where +E  is the Moore-Penrose inverse of E . 

The goal of the study is to design an estimator such that the 
estimation error is admissible. 
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III. ESTIMATOR DESIGN FOR STOCHASTIC SYSTEMS 

A. Estimator Design 
Design the following estimator: 
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Subtracting (2) from (1), and letting )(ˆ)()( txtxte −= , the 
error dynamics are governed by the following equation: 

dwtJxdtteGCAtEde )()()()( ++=   (3) 

Let 
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augmented system 
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It is obvious that )~~(~ JErankErank = , which means that 
the noise term does not change the system structure. 

Theorem 1. There is a stochastic observer in the form (2) for 
system (1), if there is matrix X  such that  

0~~ ≥= EXXE TT     (6a) 

0~~~)~(~~~ <++ ++ JEXEEJAXXA TTTTT   (6b) 

where E~ , A~  and J~  are defined as (5). 

Proof: This result can be obtained directly by using Lemma 
1. 

Remark 1. Theorem 1 indicates that 0)( →tξ ， and then 
means 0)( →te  and 0)( →tx  equivalently. This means that 
the proposed observer above requires system (1) is admissible. 
However, this condition does not hold always in practical 
cases. Therefore, this motivates us to make some improving for 
the estimator design. 

 

B. Estimator-Based Controller 
Next, we will design a mechanism to make both the 

observed system and estimation error to be admissible.  

Applying the following feedback 

)(ˆ)( txKtu =       (7) 

to system (1), one has 
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dttBKedwtJxdttxBKA )()()()( −++=    (8) 

Denote by 
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where 
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The following theorem is given. 

Theorem 2.  System (9) is admissible if there is matrix Z  such 
that 

0≥= EZZE TT      (11a) 

0)( <++ ++ JEZEEJAZZA TTTTT     (11b) 

where E , A  and J  are defined as (10). 

Proof: The result can be obtained directly in terms of 
Lemma 1. 

 

Theorem 3. Consider system (1), state estimator (2), and state 
feedback (7). If there are matrices X  and Y  such that 

  0≥= EXXE TT    (12a) 
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then the closed-loop system is admissible.  

Proof: For X  and Y  satisfying (12a)-(12d), let 
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In addition, according to
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where 

JXEEEJBKAXXBKA TTTTT ++++++=Π )()()(1  

)()(2 GCAYYGCA TT +++=Π  

Using the Schur complement, one has 
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For 01 <Π  and 02 <Π ，one can find a sufficient large 
positive number α  ( 1−α  sufficient small) such that 
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That is, for X  and Y  satisfying (12b) and (12d), one can 

choose a sufficient large α  such that 
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In the meanwhile, when X  and Y  satisfy (12a) and (12c), 

the matrix 
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 make the following hold 

0≥= EZZE TT  

This completes the proof.  

 

Remark 2. Theorem 3 has shown that the separation principle 
of estimator and state feedback controller. That is, one can 
design the estimator gain G  and state feedback gain K , 

respectively. In this case, we do not need the system dynamics 
to be admissible. 

 

IV. ESTIMATOR-BASED CONTROLLER FOR FUZZY 
STOCHASTIC SYSTEMS 

Fuzzy model is an effective tool for handling nonlinear 
systems [7-9]. In this section, we will discuss the estimator-
based design problem for stochastic fuzzy systems. 

Consider the following system described by IF-THEN 
rules: 

Rules i : IF 1z  is iM1  and … and pz  is piM , THEN 
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dttuBdwtxJdttxAtEdx
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                  (13) 

wher nRtx ∈)( is the state, mRtu ∈)( is the input, 
[ ]pzzz …1= are premise variables, pii MM …1 are fuzzy 

sets. li ,,2,1 …= ， l is the number of the fuzzy rules.  

The whole systems is obtained by taking the weighted 
average of all subsystems： 
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A state estimator is given as: 

Rules i : IF 1z  is iM1  and … and pz  is piM , THEN 
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The whole estimator is express as: 
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The estimator-based controller can be given as: 

Rules i : IF 1z  is iM1  and … and pz  is piM , THEN 

)(ˆ)( txKtu =                      (17) 

The control for the whole system is the following: 
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Subtracting (15) from (14), and using (18), and letting 
)(ˆ)()( txtxte −= , one can get the following error dynamic 

equation: 
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Let 
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Lemma 2.  A fuzzy stochastic system (14) can be admissible 
by using the estimator-based controller (16)-(17), if there exists 
a matrix Z such that 

0≥= EZZE TT    (22) 
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where E , ijA  and iJ are defined by (21). 

Proof.  The result can be obtained directly by using Lemma1. 

 

Now we discuss the separation property of the design for the 
state-feedback gain and the observer gain. 

 Theorem 4. A fuzzy stochastic system (14) can be admissible 
by using the estimator-based controller (16)-(17), if there exist 
matrices X  and Y  such that 
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Proof. Suppose there are matrices X  and Y  to satisfy 

(24a)-(24d). Let 
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, and α be any positive number. 

Therefore, one has 
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Denote by
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From the inequalities, one can conclude that for 0<Θij and 

0<Π ij , one can find a sufficiently large positive number 
α such that  
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In other words, for X  and Y  satisfying (24b) and (24d), one 
can always find a sufficiently large positive number α such 
that 
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Moreover, for X  and Y  satisfying (24a) and (24c), one can 
obtain: 
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where 
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As a result, the fuzzy stochastic system (14) can be stabilized 
by the estimator-based controller (16)-(17) by Lemma 2.  

 

Remark 3. Theorem 4 has illustrated the separation principle 
of fuzzy estimator and fuzzy state feedback controller. 
Therefore, we can design the fuzzy estimator-based controller 
conveniently.  

 

V. EXAMPLE AND SIMULATION 
Consider a stochastic system in the form of (1), where 
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Design the following state estimator-based controller 

)(ˆ)(
)(ˆ)(ˆ

))()(ˆ()()(ˆ)(ˆ

txKtu
txCty

dttytyGdttBudttxAtxEd

=
=

−++=
 

From Theorem 3, one can obtain the gains 
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Let Tx )115.0()0( −= . From the simulated curves, the 
estimation and control performance are desired. 

 

 
Figure 1. State )(1 tx : estimator-based control 

 

 
Figure 2. State )(2 tx : estimator-based control 

 

 
Figure 3. State )(3 tx : estimator-based control. 



         

 

VI. CONCLUSION 
In this study, a descriptor stochastic estimator has been 

proposed. Moreover, an integrated estimation and control 
mechanism has also been developed. The fuzzy stochastic case 
has been also investigated. The proposed estimation and 
control techniques will find many applications in signal 
processing and control issues, such as robust signal estimation, 
signal change detection and signal compensations. 
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