
The Reuse Policy in Developing Multi-agent System

Xue Xiao
Lab of Intelligence Science

Henan Polytechnic University

Jiaozuo,Henan, P.R.China

Email: jzxuexiao@126.com

Sun Zhi
The College of Tourism and Management

Zhe Jiang Forestry University

Lin an, Zhejiang,P.R.China

Email: curelandscaper@tom.com

Luo JunWei
Lab of Intelligence Science

Henan Polytechnic University

Jiaozuo,Henan, P.R.China

Email: ljwonly@yahoo.com.cn

Abstract—The agent-oriented (AO) methodology is an effective
means for constructing distributed systems. Despite a great deal
of research, a number of challenges still exist before making
agent-based computing a widely accepted paradigm in software
engineering practice. In order to solve the problem of “a variety
in number, difficult to apply”, the paper presents a hierarchical
development architecture (HDA) for customizing a new AO
methodology according to the given project. Through applying
the HDA-based meta models and design patterns, developers
can build applications from third party off-the-shelf solution
components. To exemplify its feasibility and effectiveness, the
construction of C4I system is presented as a case study.

Index Terms—design pattern, customization, HDA

I. INTRODUCTION

Agents and multi-agent systems (MASs) have recently

emerged as a powerful technology to face the complexity

of a variety of today’s ICT (information and communication

technology) scenarios, such as distributed system, web service

and so on. What’s more, the emergent general understanding

is that MASs, more than an effective technology, represent

indeed a novel general-purpose paradigm for software devel-

opment [1]: agent-based computing can promote designing and

developing applications in terms of agents, that are situated

in an environment and can flexibly achieve their goals by

interacting with one another in terms of high-level protocols

and languages.

In this sense, MASs offer a new and often more appropriate

route to the development of complex computational systems,

especially in open and dynamic environments. Therefore, in the

last few years, there has been a great deal of research related

to the identification and definition of suitable models and

techniques to support the development of distributed systems

in terms of MASs [2], such as formal modeling approaches,

development methodologies and modeling techniques, specifi-

cally suited to the agent-oriented paradigm. However, despite

the great deal of research in the area, agent oriented software

engineering (AOSE) is still a relative young area. Currently,

there are, as yet, not standard methodologies, development

tools, or software architectures. There still exist a number

of challenges before making agent-based computing a widely

accepted paradigm in software engineering practice [3]. The

problem of “a variety in number, difficult to apply” has become

an obstacle in turning agent-oriented software abstractions into

practical tools for facing the complexity of modern application

areas.

In order to handle the challenge, we propose a hierarchical

development architecture(HDA) in the paper. Based on

the HDA, developers can combine different meta models

originated from various AO methods to customize a best

suited development methodology for the given project.

The HDA-based design patterns bridge the gap between

design abstraction and software implementation, which help

developers to build MASs efficiently. The rest of the paper

is organized as follow: Section 2 introduces the hierarchical

development architecture in detail. In section 3, a research

project on the construction of C4I system exemplifies the

effectiveness of HDA as a case. Some conclusions are

presented in section 4.

II. HIERARCHICAL DEVELOPMENT ARCHITECTURE(HDA)

A. Current problems in AOSE

At the moment, a lot of attempts have been made in

AOSE, such as the building of MASs and the definition of

suitable models, methodologies and tools for these systems.

In AOSE, the notion of an autonomous agent is used as the

fundamental modeling abstractions to map real-world items

to computational model. Thus, abstract problem solutions can

be effectively implemented, and software complexity can be

decreased. Nevertheless, the research of AOSE is still in its

early stages, and a lot of challenges need to be handled

before AOSE can deliver its promises, becoming a widely

accepted and practically usable paradigm for the development

of complex software systems. There is a current lack of

mature agent-based software development methodologies. This

deficiency has been pointed out as one of the main barriers to

the large-scale uptake of agent technology[3].

In the area of AO methodologies, researchers from different

fields give emphasis to the different aspects of the process. In

order to pursue generality, some AO methods take agent as

a modeling unit and only emphasize agents’ external char-

acteristics and their relationships between each other, e.g. the

Gaia methodology [20]. On the contrary, the other AO methods

are bound to some type of concrete agent architecture to

facilitate software implementation, e.g. the AAII methodology

[4]. Some research works (e.g. [5],[6]) provide comparison

studies between different AO methodologies, showing that

each AO method has its own weaknesses and strengths. Many

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

users had trouble in finding a method that would satisfy their

needs completely.

It’s often infeasible or inefficient to use a single kind of

AO method to solve all the problems in the construction of

MASs. As a matter of fact the need for systematic principles

to develop situation- specific methods, perceived almost from

the beginning by the object-oriented community, has led to

the emergence of the method engineering approach. In the last

years, the method engineering approach is proved successful

in developing object oriented information systems [7]. Its

importance in the object-oriented context should be evaluated

considering not only the direct influence (not so many com-

panies and individuals work in this specific way) but mainly

the indirect consequence. The most important and diffused

development process (e.g., the Rational Unified Process [8])

is in fact not rigid, instead being a kind of framework within

which the designer can choose his/her own path.

We believe that the agent-oriented community should follow

a similar path, trying to adapt the method engineering for using

it in agent-oriented design[9]. Some researchers [10, 11, 12]

have proposed that the AOSE methodologies should be created

and customized in a modular way, which enables developers

to build project-specific methodologies from meta models, just

like applications built from reusable off-the-shelf components.

Our aim is to propose an open architecture, which can

guide developer to assemble a new methodology tailored to

the given project by fitting AOSE meta models in appropriate

position. Thus, each new project has its own methodology, built

up from components of other methodologies. As a result, the

advantages of different AO methods can be taken of and their

drawbacks can be overcome. Furthermore, such exploitation

speeds up development, avoids reinventing the wheel, and

enables sufficient time to be devoted to the value added by

the multi-agent paradigm.

B. The definition of HDA

Against the background, a hierarchical development archi-

tecture (HDA) for customizing AO methodology is proposed

in figure 1. The architecture consists of five phases, covering

the whole development lifecycle to establish a systematic

development method. The requirement analysis phase defines

development goal, which lays foundation for the following

development. The MAS architecture phase represents the out-

line of the system configuration and organizational behaviors

and is not dependent on any specific agent platforms. The

agent modeling phase depicts all components of each agent

specialized in agent structure. The software implementation

phase gives the detail of the system configuration and the

program codes implemented according to the design of the

above phases. Finally, the verification phase is used to ensure

that the software to be constructed can meet the demand of

users.

In the architecture, each phase is categorized into a layered

model structure further. Based on the goal and the task of

each layer, user can fill meta models into the appropriate

layers to handle different kinds of quality attributes. Instead

Fig. 1. The Hierarchical Development Architecture(HDA)

of creating incompatible techniques, models and CASE tools

for each methodology, modular and reusable meta models can

be created once, and shared within different methodologies. It

represents significant savings in development cost and learning

cost. In application of HDA, developers need to follow these

steps:

(1) Factor the overall problem and identify what layers

should be selected in HDA for a specific application. Based

on this, developers can select existing AO methodologies to

extract appropriate meta models.

(2) Fill corresponding meta models into appropriate layers

and form a new AO method through tailoring and combination

on particular project. The meta model which belongs to

some layer should facilitate achieving the goal of the layer.

Otherwise, it’s not appropriate to put it into the layer.

(3) In order to meet the demand of customizing a new

approach, developers need to enforce and modify the extracted

meta models.

(4) The increasing details of a new approach to be con-

structed are developed step by step. Together, the layers enable

the configuration of a new AO approach that can be appropriate

for specific application.

(5) Once the methodology is composed, the designers will

perform the established process obtaining a model of the

system - an instantiation of the MAS meta-model - that solves

their problem.

The layered model accords with the pay-as-you-go philos-

ophy : programmers do not need to use all the layers provided

by the architecture. Layers that are not used do not require

programmers to know anything about them, neither add any

computational overhead. Thus, developers can quickly grasp

the most important concepts in the development of MASs.

For example, if the system needs to run in open environment,

then a methodology that incorporates “open system layer” can

be adopted in “MAS architecture phase”. If some specific

agent platform need to be adopted in another part, choose

a methodology that supports it in “Software implementation

phase”. The details of each layer are given below:

- The requirement analysis phase : i)Requirement Gath-

ering Layer: gather, identify and define requirements accord-

ing to practical application, including functional and non-

functional. ii) Requirement Specification Layer: the require-

ment statements will be mapped to a MAS, i.e. the require-

ments are specified in terms of agent, role and organization.

- The MAS architecture phase : i) Organization Layer:

define how multi-agents construct the whole system and realize

the required functions. The whole system is conceived in terms

of an organized society in which each agent plays specific

role and interacts with other agents according to protocols

determined by the roles of the involved agents. ii) Coordi-

nation Layer: Based on the interaction among the constitute

agents, the component agents can be explicitly designed to

cooperatively achieve a given goal. iii) Open System Layer:

As a more general case, agents might not be co-designed to

share a common goal, and have been possibly developed by

different people to achieve different objectives. Moreover, the

composition of the system can dynamically vary as agents enter

and leave the system.

- The agent modeling phase : i) Definition Layer: make

clear some basic aspects of each agent: what to think of? what

resources to own? what task to shoulder? What acquaintance

to interact? ii) Action Layer: how to think and form a plan? iii)

Cognitive Layer: how to enforce the plan and react outside?

- The software implementation phase : i) Agent Society

Layer: the layer can be reused, meaning that it is indepen-

dent of underlying mechanism. ii) MAS Infrastructure Layer:

provides some fundamental services. In MAS infrastructure

layer, if we apply JADE or other AO infrastructure, we must

use other models that comply with the products provided

by this specific infrastructure. iii) Development Framework

Layer: depends on the implementation platform of our choice,

including development tools and programming language. If

we use Java, we may use UML Class Diagrams for this last

abstraction level in agent society layer.

- The verification and Testing phase : i) Functional

level: ensure that system is stable, reliable, effective and meet

functional requirements. ii) Knowledge Level: single agent can

reason, learn and be adaptive to environment. iii) Sociality

Level: multi-agent system can meet the demand for macro-

level performance.

C. The pattern-driven development policy

In the application of HDA, each successive pass will add

additional detail and a series of system design artifacts is

produced eventually, i.e. an ordered sequence of steps, an

identifiable set of models, and an indication of the interrelation-

ships between the models, showing how and when to exploit

which models and abstractions in the development of a MAS.

The HDA accords with a “top-down” development policy,

which focuses on design structure of the whole multi-agent

system. However, the implementation details of each model

are disregarded in HDA, which may lead developers without

background in agent technology to be confused about how

to turn design model into software implementation. What’s

more, this results in rediscovering solutions to common design

problems without benefiting from how they were resolved in

the past.

Therefore, we need to introduce a kind of “bottom-up”

development mechanism to complement the defects of goal-

driven development process. A suited choice is to build

an agent system incrementally from well-documented agent

patterns. Recently, design patterns are attracting attention in

usual software development represented by object-oriented

software. Design patterns are explicit formulations of good

past software development experiences consisting of proven

solutions to recurring problems that arise within some contexts

and systems of forces. The patterns realize easy reuse of good

software design. These concepts are becoming indispensable

in developing practical large-scale software in a low cost

by promoting reuse. Individual patterns can, furthermore, be

linked to each other in the form of pattern languages, which

guide the designer through the design process.

Fig. 2. The Pattern Driven Development

Against this background, we describe a pattern-driven

design process that complements goal-driven design ap-

proaches in figure 2. As fundamental element of constructing

method[13, 14, 15, 16], each meta model occupies a position

in the HDA and plays a key role in relating macro design to

micro detail. Generally speaking, after determining the scope

and the purpose of the existing methodologies, the meta model

is created by isolating general-purpose common features from

them. Based on the development tasks and quality goals, the

methodology is partitioned into multiple meta models and the

dependencies between the new models and any existing models

are determined. The remaining parts of the methodology

are then componentized into special purpose ”value-adding”

features.

An interaction meta model extracted from Gaia is shown

as an example in figure 3, a comprehensive list of potential

elements included in meta model are shown:

D. The HDA-based design pattern

Currently, some researchers have begun to apply design

patterns to MASs development. Generally speaking, there are

Fig. 3. The Interaction Meta Model

four kind of sources : (i) existing excellent AO methodologies,

which can guide us which kind of pattern is demanded. (ii)

some excellent agent-based practices and agent platform, such

as JADE, ZEUS and so on. (iii) OO design pattern experience,

including design, coding and analysis.

However, only a coarse-grain development route (analysis

- design - implementation - testing - release) is provided to

integrate all meta models. To a large degree, whether the ap-

plication of patterns is effective lies on developer’s experience.

With the number of the patterns increasing, it’s becoming

more and more difficult to select and apply appropriate design

pattern.

As a platform for sorting and managing those design

patterns, the HDA gives an explicit guide about how to

apply those patterns and an order of examination of pattern

application. Each pattern occupies a position in the HDA, in

which each pattern contributes to the completion of patterns

“preceding” it in the architecture, and is completed by patterns

“succeeding” it.

As shown in figure 2, according to the HDA phases and

specific agent platforms, the patterns are classified into four

categories:

Organization Level Pattern : This kind of pattern is

applied in the development of the MAS architecture, which

consists of inter-organization pattern(the relationship between

organizations) and inner-organization pattern(the relationship

between agents). Two types of patterns are only different in

basic unit: one is an organization, and the other is an agent.

The type of pattern is not dependent on any specific agent

platforms and can be easily reused.

Agent Level Pattern : This kind of pattern is applied in

the development of an agent unit. A set of patterns is used

to describe building blocks from which an agent can be built.

The patterns should be selected as they are specialized in the

individual agent platforms and make good use of the advantage

of the platforms.

Object-Oriented Design Pattern : This kind of pattern is

the usual ones for implementation using OO languages such

as Java and C++. One of the representative groups of such

patterns was investigated by the Gang of Four (GOF).

Others : Many patterns cut across all boundaries.

Patterns need to capture hidden structure and decisions:

deep components of architecture and design which are larger

than any architectural building block such as procedures and

objects. The task of extracting design pattern is a long-term

and tough work, which needs to summarize expert experience

and iterate according to feedback over and again. In order to

make pattern easy to read and understand, it’s important to

determine your own style/way of documenting your pattern.

Here gives an example of coordination-layer pattern in figure

4 to explain the referenced format of agent design pattern :

MarketPlace

requestBids()
ReadRequests()
MakeBid()
TakeBid()
AcceptBid()
ReadAcceptedBid()

Profile

attributes

match()

B:

S:

S:

B:
S:

B:

1. requests

2. bids

3. acceptedBids

B=Buyer S=Seller

Both requests and bids are represented as Profile objects that can be

matched up against each other

Requests (bids) expire after a duration set by the buyer (seller).

Fig. 4. The market design pattern

III. APPLICATION OF HDA

A. Project description

The C4I (command, control, communication, computer and

Information) system is the core of the whole naval warship,

which is used as information process (including collection,

transformation, process and transmission), fighting support

and weapon control. C4I system integrates different kinds

of weapons together to ensure that the integral performance

can be improved to a high degree. In order to achieve the

goal, three main problems need to be considered during the

construction of C4I system: i) how to harmonize a number

of components which may have been developed by teams

having worked separately on different portions of the system;

ii) how to adopt new technology to deal with multiple, hetero-

geneous and even dynamic application environments; iii) how

to integrate many different technologies, languages, paradigms

and legacy systems together in an effective and fruitful way.

Apart from the (problem-solving) functionality, the C4I system

must also satisfy properties such as reliability, fault-tolerance,

maintainability, scalability etc.

As an example of the distributed problem solving system,

the components of C4I system are devoted to controlling and

directing different phases of the physical process: information

collection - information process - fighting support - command

- weapon control. It leads to a conception of the whole system

as a number of different MAS organizations, one for each

phase of the process. Each organization can be viewed as being

made up of agents being involved in the process. Different

agents are delegated different task which contribute to the

accomplishment of system goal.

Therefore, we apply agent technology as an original and

more effective way to solve highly-complex problems in the

construction of C4I system. Through analysis and verification

over and again, we decided to derive a new AO approach from

HDA to solve the problems in the construction of C4I system

on naval warship. We hope that the new approach can take the

best of the different approaches and overcome their respective

shortcomings. What’s more, it should take advantage of the

existing agent platforms and resources as more as possible,

such as JADE.

B. Methodology customization

The C4I system is closed, all component agents are sup-

posed to be innately cooperative to each other and they can

trust one another during interactions. The internal structure

of agent should support the external performance. The usual

agent system development methods cannot give guidelines that

are easy to understand. In order to facilitate the engineering

change in AOSE, the new approach needs to be associated

with patterns closely. The whole design step can be effectively

implemented, which provides the analyst and designer with

a way of how to go from theoretical definitions to practical

implementation elements.

Fig. 5. The New Methodology from HDA

Aimed at those characteristics, we merged several represen-

tative AO methodologies: RoadMap[17], Gaia[18], MaSE[19],

and Xiaoyuan’s fish model[20], which is shown in figure

5. In selecting appropriate AO methods for customization,

specifically we consider: i) Agent structure: this means how

each of the meta-models represents the agent and its most

common elements. ii) Agent interactions: agents of different

meta-models are supposed to interact using communications

or the environment. Communications are sometimes specified

by attributes like interaction protocols, content language and

so on. iii) Agent society and organizational structure: the goal

of some of these meta models is to model a specific society

or an organizational infrastructure constrained by rules that

enforce agents to some collective or individual behavior. iv)

Agent implementation: the code-level structure of the agent

system.

The Gaia meta models are mostly devoted to represent

a MAS system as a social organization. In RoadMap meta

models, a great effort is made on requirement phase in order

to complement the defects of the Gaia. The MaSE meta

models aim to conciliate classical OO software engineering

concepts with the potentiality of the agent-based approach

while pursuing the goal of a traceability of the solution from

requirements to the related code implementation. Xiaoyuan’s

fish model focuses on displaying the cognitive and behavior

issues. Because of limited space, we will have to diffusely

discuss the details about combination in other papers: how to

extract appropriate meta models from each method, how to

attach design patterns to meta model, how to fill meta models

into the HDA, and how to derive a new approach from the

HDA.

Through applying the method, a large-scale complex C4I

system is decomposed and reconstructed successfully. Consid-

ering physical deployment and communication overload, the

whole C4I system is decomposed into five agent organizations.

Each of them bears different responsibility: monitoring en-

emy(Information Collection Organization, ICO); filtering and

processing the collected information(Information Process Or-

ganization, IPO); advising(Decision Supporting Organization,

DSO) and making decision(Decision Making Organization,

DMO); attacking enemy and returning feedback informa-

tion(Weapon Control Organization, WCO). In each organiza-

tion, a number of agents need to be defined to interact toward

the achievement of a specific application goal.

C. Pattern-driven development

The HDA-based design pattern serves to fill this gap be-

tween design models and software implementation and guides

designer to build a multi-agent system efficiently. Because the

whole C4I system is too complex, only IPO(a single agent

organization) is taken as an example to explain how to apply

design pattern to facilitate development.

In the organization(figure 6), when coordinate agent re-

ceives requests from filter agent, it will assign the task to

worker agent. It is our focus about how to choose the worker

agent that “best” meets the attributes we care most about(e.g.

worker1 Agent worker2 Agent Worker3 Agent

Results Integration

Worker4 Agent

Filter Agent Coordinator Agent

Fig. 6. The Information Process Organization

least expensive, highest quality). Market design pattern(as

shown in figure 4) provides us a appropriate choice to im-

plement the coordination mechanism of IPO. First coordinate

agent requests worker agents to bid for the task. The coordinate

agent selects the bidding whose cost is the least among

the received bidding. Then the coordinate agent requests the

worker agent with the successful bidding to perform the task.

The application of market design pattern can ensure that the

task can be executed the most effectively.

In a research project for C4I system development, the

experimental results are satisfactory: on the one hand, the sys-

tem meets the functional and non-functional demands(robust,

reliable, scalable and so on); on the other hand, development

efficiency have been improved greatly than before at a low

cost.

IV. CONCLUSIONS

The definition of agent-specific methodologies is definitely

one of the most explored topics in AOSE. Because of the

defects of current AO methodologies (a variety in number,

difficult to apply), it’s difficult to turn AO software abstractions

into practical tools for facing the complexity of constructing

distributed systems. The paper presents a hierarchical develop-

ment architecture (HDA) to enable developer to customize his

own methodology to meet the demand of different domains.

Through applying the HDA-based meta models and design

patterns, developers can build applications from third party off-

the-shelf solution components conveniently. In the case study

of constructing C4I system, an agent-oriented new approach

derived from HDA is applied and the experimental result is

satisfactory.

In order to make full use of HDA, users have to understand

and grasp more than one kinds of AO methodologies, which

will become an obstacle in applying HDA. In future, we will

carry on more research and studies on how to help users to

overcome the difficulty. The idea was to create a relatively

general purpose agent building toolkit that could be used

by software engineers with only basic competence in agent

technology to create functional MASs.

REFERENCES

[1] N.R.Jennings. An agent-based approach for building complex software
system. Commun, ACM, vol.44, no.4, 35-41.

[2] M.Gervais, J.Gomez and G.Weiss. A survey on agent-oriented software
engineering researches. Methodologies and Software Engineering for
Agent Systems, Kluwer: NewYork(NY) (2004).

[3] F.Zambonelli, A.Omicini. Challenges and research directions in agent-
oriented software engineering. Autonomous Agents and Multi-Agent
System (2004) 253-283.

[4] David kimny.et al. A Methodology and Modeling Technique for Systems
of BDI Agents. In Proc of MAAMAW (1996).

[5] Khanh Hoa Dam and Michael Winikoff. Comparing Agent-Oriented
Methodologies. In Proc of 5nd International Workshop on Agent Ori-
ented Software Engineering (2003).

[6] O.Shehory, A.Sturm. Evaluation of modeling techniques for agent-
based systems. In Proceedings of the 5th International Conference on
Autonomous Agents, ACM Press:Montreal(2001).

[7] M.Saeki. Software Specification & Design Methods and Method Engi-
neering. International Journal of Software Engineering and Knowledge
Engineering, (1994).

[8] A.Kleppe, J.Warmer, and W.Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley, Object Technology
Series, ISBN 032119442-X, (2003).

[9] Henderson-Sellers, B., Debenham, J. Towards open methodological sup-
port for agent-oriented systems development. In Far, B., Rochefort, S.,
Moussavi, M., eds. Proceedings of the First International Conference on
Agent-Based Technologies and Systems, University of Calgary, Canada,
14–24 (2003).

[10] T.Juan, L.Sterling, M.Martelli, V.Mascardi. Customizing AOSE Method-
ologies by Reusing AOSE Features. In Proc. of 2nd Int. Conference
on Autonomous Agents and Multi-Agent Systems, Melbourne Australia
(July, 2003).

[11] R.S.S.Guizzardi, V.Dignum, A.Perini, G.Wagner. Towards an Integrated
Methodology to Develop KM Solutions with the Support of Agents.
In Proc. of the International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, Waltham, Massachusetts (2005).

[12] Tom De Wolf and Tom Holvoet. Towards a Full Life-cycle Method-
ology for Engineering Decentralised Multi-Agent Systems. In Proc of
the Fourth International Workshop on Agent-Oriented Methodologies
(OOPSLA 2005), San Diego, USA (2005).

[13] T.Juan, L.Sterling, M.Martelli, V.Mascardi. Creating and Reusing AOSE
Features. http://www.cs.mu.oz.au/ tlj/ CreatingAOSEFeatures.pdf.

[14] T.Juan, S.Leon. The ROADMAP Meta-Model for Intelligent Adaptive
Multi-Agent Systems in Open Environments. In AOSE, P53-68 (2003).

[15] Carole Bernon, Massimo Cossentino, Marie-Pierre Gleizes, etc. A study
of some multi-agent meta-models. In Proc. of the Fifth International
Workshop on Agent-Oriented Software Engineering, (2004).

[16] Thomas Juan. Leon Sterling. Michael Winikoff. Assembling Agent
Oriented Software Engineering Methodologies from Features. In AOSE
,P198-209 (2002).

[17] T. Juan, A.Pearce and L.Sterling. ROADMAP: Extending the Gaia
Methodology for Complex Open Systems. In Proc. of the First Interna-
tional Joint Conference on AAMAS, p3-10, Bologna, Italy (July 2002).

[18] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multia-
gent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol,
12(3):317–370 (2003).

[19] S.A.Deloach, M.F.Wood, C.H.Sparkman. Multiagent System Engineer-
ing. Software Engineering and Knowledge Engineering, 11(3):231–258
(2003).

[20] X.Tu, D.Terzopoulos. Artificial fished: physics, locomotion, perception,
behavior. In Proc. of ACM Computer Graphics,Annual Conference
Series, Proceedings of SIGGRAPH’94, pp.43-50 (1994).

