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Abstract—This paper considers the problem of the guaranteed 

cost control for a class of two-dimensional (2-D) discrete systems 
described by the Roesser model with norm-bounded 
uncertainties. A linear matrix inequality (LMI)-based criterion 
for the existence of robust guaranteed cost controller is 
established .Such controller render the closed-loop system 
asymptotically stable for all admissible uncertainties and 
guarantee an adequate level of performance. 
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I. Introduction 
Two-dimensional (2-D) discrete systems exist in many 

areas such as image data processing and transmission, 
seismographic data processing, thermal processes, gas 
absorption, water stream heating, etc[1-4].So far, many 
important results have been reported in the literature. For 
example, the stability analysis problem for 2-D systems has 
been investigated in [5, 6], H∞ control and positive real 
control problems have been considered in [7, 8, 22]. 

On the other hand, the guaranteed cost control problem 
has recently drawn a great deal of research interests. The aim 
of the guaranteed cost control problem is to design a robust 
controller such that the associated closed-loop system satisfies 
the asymptotic stability and a specified level of the 
performance index for all the uncertainties. Based on this idea, 
many significant results have been obtained for the 
continuous-time case [9-11] and for the discrete-time case 
[12-14].Those results are only concerned with 
one-dimensional (1-D) systems. Recently, the guaranteed cost 
control problem for 2-D discrete uncertain systems in the 
FMSLSS model has been also considered [15-17]. Further, the 
stability properties of 2-D discrete systems described by the 
Roesser model have been investigated extensively [1], where 
the Roesser model [18-19] is well known to be important as         
well as the FMSLSS(Fornasini-Marchesini second local 
state-space) model. The Roesser model has wide applications 
and special structure. With the special structure, better results  
can be achieved. 
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This paper, therefore, deals with the problem of robust 
guaranteed cost control for a class of 2-D discrete uncertain 
systems described by the Roesser model with norm-bounded 
uncertainties. A criterion for the existence of robust controller 
of the uncertain Roesser model is developed. The presented 
approach enables the formulation of the criterion based on the 
true LMI which is beneficial in terms of numerical complexity. 
The paper is organized as follows. The description of the 
system under consideration is given in Section 2. Section 3 
presents robust guaranteed cost performance analysis of the 
uncertain 2-D systems described by the Roesser model, In 
Section 4, an LMI-based sufficient condition for the existence 
of static-state feedback controller is established. Finally, some 
concluding remarks are given in section 5.  

II. System description 
The paper deals with the problem of robust guaranteed 

cost control of a class of 2-D discrete uncertain system in the 
Roesser model. Specifically, the system under consideration is 
given by 

h h

v v

x (i +1, j) x (i, j)
= (A + A) + (B + B)u(i, j)

x (i, j+1) x (i, j)
   

∆ ∆   
   

    (1a)  

Where h nx (i, j) R∈ and v mx (i, j) R∈ represent the 

horizontal and vertical states, respectively, qu(i, j) R∈  is 

the control input. The matrices (n+m) (n+m)A R ×∈  and 
(n+m) qB R ×∈  are known constant matrices representing the 

nominal plant. The matrices A∆  and B∆  represent 
parameter uncertainties, which are assumed to be of the form 

[ ] [ ]1 2A B = LF(i, j) M M∆ ∆             (1b) 

In the above L, M1, M2 can be regarded as known 
structural matrices of uncertainty and F(i, j)  is an unknown 
matrix representing parameter uncertainty which satisfies  

|| F(i, j) || 1≤                                (1c) 

Note that the uncertainty of (1b) satisfying (1c) has been 
widely adopted in robust control and filtering for uncertain 
systems. 

It is assumed that the system (1a) has a finite set of initial 



     

condition. i.e., there exist two positive integer r1 and r2 such 
that  

h
1x (i,0) = 0,i r≥ ; v

2x (0, j) = 0,i r≥           (1d) 

And the initial conditions are arbitrary, but belong to the 
set [15-17]: 

h v h
1

v T
2 k k

S={x (i,0),x (0, j) : x (i,0) = MN ,

x (0, j) = MN ,N N <1,k =1,2}
            (1e) 

Equation (1) may be used to describe a class of uncertain 
2-D discrete dynamical systems which include digital filters, 
digital control systems and so on.. 

Associated with the uncertain system (1a) is the cost 
function [16-17]: 

T

i=0 j=0

T
1

i=0 j=0

J = u (i, j)Ru(i, j)

+ x (i, j)W x(i, j)

∞ ∞

∞ ∞

∑∑

∑∑
                     (2) 

Where T denotes the transpose and 

TR = R > 0, TW = W > 0 ,
h

v

x (i, j)
x =

x (i, j)
 
 
 

. 

 The main objective of this paper is to derive LMI-based 
sufficient condition for the existence of static-state feedback 
robust controller for system (1) with the cost function (2) such 
that the closed-loop system is asymptotically stable and the 
closed-loop cost function is not more than a specified upper 
bound. In the next section, we will first carry out robust 
guaranteed cost performance analysis for the uncertain 2-D 
free system. 

III. Robust guaranteed cost performance analysis 
Consider the 2-D free system (setting u 0≡ ): 

h h

v v

x (i +1, j) x (i, j)
= (A + A)

x (i, j+1) x (i, j)
   

∆   
   

            (3)                       

and the associated cost function  

T
0 1

i=0 j=0

J = x (i, j)W x(i, j)
∞ ∞

∑∑                    (4)                               

The uncertainties A∆  are said to be admissible if (1b)-(1c) 
hold true. Sufficient condition for the asymptotic stability of 
system (3) with A∆ =0 have been established in [20].It is 
obvious that system (3) is quadratically stable if it satisfies the 
condition of asymptotic stability for all admissible 
uncertainties. As an extension of the result for the asymptotic 
stability condition of 2-D discrete the Roesser model given in 
[1], one can easily arrive at the following definitions. 

Definition 1.The uncertain system (3) is said to be 

quadratically stable if there exist a block-diagonal matrix 

h vP = diag{P , P } > 0 , where n n
hP R ×∈ and m m

vP R ×∈ , 
such that 

T= (A + A) P(A + A) P < 0Γ ∆ ∆ −              (5)          

Definition2. The uncertain system (3) with cost function 
(4) is said to be robustly stable with a quadratic guaranteed 
cost matrix (QGCM) h vP = diag{P , P } > 0 ,if it satisfy: 

T
1= (A + A) P(A + A) P + W 0Ω ∆ ∆ − ≤        (6) 

for all || F(i, j) || 1≤                              

Where W1=W1
T is a positive definite matrix. 

In the following, we introduce an important Lemma1. 

Lemma1[21].Let n n n k nA R ,H R , E R l× × ×∈ ∈ ∈  and 
T n nQ = Q R ×∈  be given matrices. Then there exist a 

positive definite matrix P such that  
T[A + HFE] P[A + HFE] Q < 0−               (7)          

for all F satisfying TF F I≤ ,if and only if there exists a 
scalar > 0ε  such that  

1 T

T 1 T

P + HH A
< 0

A E E Q

−

−

 − ε
 ε − 

            (8)           

Next, we aim to solve the connection between the 
existence of the QGCM and the quadratic stability of the 
system. 

Lemma2. Suppose there exists a QGCM 
h vP = diag{P ,P } > 0  for system (3) with initial conditions 

(1d) and cost function (4) .Then (i) system (3) is quadratically 
stable and (ii) for all admissible uncertainties the cost function 
satisfies the bound  

T T
0 1 max h 2 max vJ < [(r 1) (M P M) + (r 1) (M P M)]− λ − λ      

(9)  

Where max ( )λ •  denote the maximum eigenvalue. 

Proof : Proof of (i) directly follows from definition 1 and 2 

To prove (ii) .consider a quadratic 2-D Lyapunov function  

     TV(x) = x Px  

Let V(x)∆ be defined as  

'V(x) = V(x ) - V(x)∆                        (10)          

h
'

v

x (i +1, j)
x =

x (i, j+1)
 
 
 

,
h

v

x (i, j)
x =

x (i, j)
 
 
 

 

Equation (10) .in view of (3), take the form: 



     

TV(x) = x (i, j) x(i, j)∆ Γ                      (11)                 

Where Γ  are defined in (5) respectively .Since P is a 
QGCM, it follows from definition 2 that  

T
1x (i, j)( + W )x(i, j) < 0Γ                    (12)                   

From (11) and (12), we obtain  
T

1V(i, j) + x (i, j)W x(i, j) < 0∆                (13) 

Summing up (13) over i, j = 0 → ∞  yields 

0
i=0 j=0

J < V(i, j)
∞ ∞

− ∆∑∑                         (14) 

On the other hand, for any integers 1 2P > 0, P > 0 , we have  

1 2P P

i=0 j=0
V(i, j) =∆∑∑  

2P
h T h h T h

1 h 1 h
j=0

[(x ) (P +1, j)P x (P +1, j) (x ) (0, j)P x (0, j)]−∑
1

2 2
0

+ [( ) ( , 1) ( , 1) ( ) ( ,0) ( ,0)]
P

v T v v T v
v v

i
x i P P x i P x i P x i

=

+ + −∑  

and  

1 2P P

i=0 j=0

V(i, j) =− ∆∑∑
2P

h T h h T h
1 h 1 h

j=0

[(x ) (P +1, j)P x (P +1, j) (x ) (0, j)P x (0, j)]− −∑  

                    
1P

v T v v T v
2 v 2 v

i=0
[(x ) (i, P +1)P x (i,P +1) (x ) (i,0)P x (i,0)]− −∑

2 1P P
h T h v T v

h v
j=0 i=0

< (x ) (0, j)P x (0, j) + (x ) (i,0)P x (i,0)∑ ∑  

                     
1 2r 1 r 1

h T h v T v
h v

j=0 i=0
(x ) (0, j)P x (0, j) + (x ) (i,0)P x (i,0)

− −

≤∑ ∑  

                     
T T

1 max h 2 max v< (r 1) (M P M) + (r 1) (M P M)− λ − λ       (15) 

From (14) and (15) we have  
T T

0 1 max h 2 max vJ < [(r 1) (M P M) + (r 1) (M P M)]− λ − λ  

Where use has been made of (4), (1c) and (1d) and the 
relation 

i+ j
lim x(i, j) = 0

→∞
.This completes the proof . 

 Lemma3.(Schur complements) Let M(t),N(t) and P(t) are 

matrices with appropriate dimension, M(t)= M(t)T, N(t)= N(t)T, 

then for any t∈R such that 0
)()(
)()(

<







tNtP
tPtM

T  if and 

only if N(t)<0 and 0)()()()( 1 <− − tPtNtPtM T . 

The following theorem provides a sufficient condition for 
the QGCM. 

Theorem1. A block-diagonal matrix 

h vP = diag{P , P } > 0  is a QGCM for system (3) with 
initial conditions (1d) and cost function (4) if there exist a 
scalar > 0ε and a block-diagonal matrix 

1
h vS = P = diag{S ,S } > 0−ε , such that the following LMI 

is feasible  

1
2

T
2

T T
1 1

T

1

1

S AS L 0 0

SA S 0 SM SW
< 0L 0 I 0 0

0 M S 0 I 0

0 W S 0 0 I

− 
 − 
 −
 

− 
 −ε 

      (16) 

Where I is the identity matrix of appropriate dimension. 
Moreover, the cost function satisfies the bound  

1 2r 1 r 1
h T h v T v

0 h v
j=0 i=0

J < (x ) (0, j)P x (0, j) + (x ) (i,0)P x (i, 0)
− −

∑ ∑   

                                              
(17)          

Proof: Using (1b), lemma 1 and (6) can be rearranged as  

1 1 T

T T
1 1 1

P + LL A
< 0

A M M P + W

− − − ε
 ε − 

      (18) 

Premultiplying and postmultiplying (18) by the matrix 
1

2

1
2 1

I 0

0 P−

 ε
 

ε  
 

One obtains 

T

T T 1
1 1 1

S AS LL 0
+ < 0

SA S 0 SM M S + SWS−

−   
  − ε   

          

                                          (19) 

Where 1S = P−ε                              (20)  

The equivalence of (19) and (16) follows trivially from the 
Schur complements. 

Using (20), the bound of the cost function can be easily 
obtained from (9).                                



     

Remark1. It should be observed that the matrix inequality 
(16) is linear in the variables S  and ε . Hence, it can be 
solved efficiently by employing the Matlab LMI Toolbox. 

IV. Robust guaranteed cost control via static-state feedback 
In this section, we are interested in finding a static-state 

feedback u(i, j) = Kx(i, j)  for system (1) and cost 
function (2) such that the closed-loop system is asymptotically 
stable and the closed-loop cost function is not more than s 
specified upper bound. 

The closed-loop system (1a) with u(i, j) = Kx(i, j)  can 
be expressed as  

h h

v v

x (i +1, j) x (i, j)
= (A + A + KB + K B)

x (i, j+1) x (i, j)
   

∆ ∆   
   

  

                                       (21)                                        

                                                 

and the cost function (2) reduces to  

T
0 2

i=0 j=0

J = x (i, j)W x(i, j)
∞ ∞

∑∑     

Where T
2 1W = W + K RK                   (22)   

Definition 3.A state feedback controller u(i, j)  is said to 
define a quadratic guaranteed cost control associated with cost 
matrix P=PT>0,for system (21) and cost function (22) if there 
exist a n n×  positive-definite symmetric matrix W2 given 
by (22) such that  

T[A + A + KB + K B] P[A + A + KB + K B]∆ ∆ ∆ ∆   

2P + W < 0−               for all ||F(i, j)|| 1≤  

Now, as an extension of the result presented in section 
3 .the following theorem is easily arrived at 

Theorem2. Consider system (20) with initial condition (1d) 
subject to (1e) and cost function (22) ,then there exist a 
static-state feedback controller u(i, j) = Kx(i, j) that solves 
the addressed robust cost control problem .if there exist a 
positive scalar ε ,an m n×  matrix U, a  block-diagonal 
matrix 1

h vS = P = diag{S ,S } > 0−ε ,such that  

1 1
2 2

T
2

T
2

T T
1 1

T

T
1

T
1

S A L 0 0 0

A S 0 M SW U R
L 0 I 0 0 0

< 0
0 M 0 I 0 0

0 W S 0 0 I 0

0 R U 0 0 0 I

 −
 
 −
 − 
 − 
 −ε
 
 −ε 

   

(23) 

Where  

A = AS+ BU , T T T
1 1 2M = SM + U M . 

In this situation, a suitable control law is given by 
1K = US− . Moreover, cost function (22) satisfies the bound  

T 1 T 1
0 1 max h 2 max vJ < [(r 1) (M S M) + (r 1) (M S M)]− −ε − λ − λ

                                              (24)          

Remark 2.Matrix inequality (23) is linear in the variables 
U,S  and ε .Thus, the Matlab LMI Toolbox [18] can be 
applied to ascertain the existence of static-state feedback 
controller can be constructed and guaranteed cost upper bound 
can be obtained. It is clear that the upper bound on the 
closed-loop cost function is dependent on the choice of the 
guaranteed cost controllers. 

V. Numerical example 
In this section, we shall illustrate the robust guaranteed 

cost control problem via an example. 

 Consider the following 2-D systems described by the 
Roesser model 

0.8 1
A =

0 0.1
 
 
 

,
0.01

B =
0

− 
 
 

,

[ ]1M = 0.0005 0.0005− , 2M = 0 , 

1

0.0064 0
W =

0 0.0064
 
 
 

, R = 0.25 . 

Using the Matlab LMI Control Toolbox, one can find that 
LMI (23) is feasible for this example, we obtain the solution 
as  

26.8356 0
S =

0 5.6105
 
 
 

, [ ]U = 0.4913 0.1329 ,

= 15.9774ε  

and the guaranteed cost controller for this system is  

[ ]u(i, j) = 0.0183 0.0237 x(i, j)  

VI. Conclusion 
   This paper has presented solutions for the robust 

guaranteed cost control for a class of 2-D discrete uncertain 
systems described by the Roesser model with norm-bounded 
uncertainties. A criterion for robust guaranteed cost control by 
static-state feedback is established. The criterion is LMI 
-based and can effectively be solved by using Matlab LMI 
Toolbox. The presented approach can also be applied to obtain 
sufficient condition for existence of dynamic output feedback 
controller. But, it provides only sufficient condition for the 
stability and is not necessary. Further work will be required to 
reduce conservative nature. 
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