
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

ABIS: A Language of Intelligent Systems

A.Poletykin, M.Byvaykov and A.Baybulatov
Laboratory of distributed information/analytical, and control systems

V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of sciences (ICS RAS)
Moscow, Russia

poletik@ipu.rssi.ru, ipu31@mail.ru

Abstract—The high-level language ABIS has been developed
at the ICS RAS for artificial intelligence systems. The basis of the
language is the relational data model and forward chaining
logical inference based on rules. At present, the language is a
corporative software product and is successfully applied to create
software of large control systems of nuclear power plants.
However, the language is universal and may be applied to
develop a large spectrum of software codes in different branches.

Keywords—progranming language, inference engine, data base

I. INTRODUCTION
There exist many problems whose solution is based on a

logical analysis of different-type data via complex heuristic
algorithms which are not based on strict mathematical methods
while being sequences of looks of data bases, matching data
from different sources, logical inferences, information
conversion, its filtering, etc. These problems involve an
analysis of data archives of an arbitrary nature, maintaining a
dialogue with a human, processing flows of measured data,
data mining, and many others.

Frequently, to create software codes intended to solve such
a kind of problems an approach is used under which the access
to the data is implemented by a relation type DBMS with the
SQL language, wile as a toll of the analysis algorithms
implementation a universal programming language is used, for
instant C++ or an other one.

We do not criticize such an approach, although we have a
negative experience of its applying within problems when a
guaranteed system reply is to be assured. We propose another
way, using the ABIS language, which organically combines
tools of storing and manipulating data with powerful logical
constructions.

The basis of the ABIS language is the mathematical
apparatus of conformances proposed by M.A. Zuenkov at the
middle of 1980s. But in the sequel, the language has been
developing independently and has received its logical
completeness at the middle of 1990s.

One should underline that the purposes of creating the
ABIS language were increasing the programmers labor
productivity and increasing the software code quality.
Primordially, it has been being developed as a tool of crating
complex software codes in large control systems, where an

intelligent data processing, their generalization, and filtering
are required.

The problem of creating a commercial version of the
language has become actual recently, after proving that the
ABIS enables one to develop complex software products
possessing high reliability, high operation rate, and low cost.
Such an inference has been done in accordance to results of a
successful development of a SCADA-system for nuclear power
engineering, which enables one to implement intelligent
processing hundreds of thousands values of signals and data
on-line [1].

II. DATA STRUCTURE OF THE ABIS LANGUAGE
The language supports simple data types: logical variables,

strings, integers, floating point numbers, arrays, etc.

But these types are auxiliary. The basic type is sets of facts
(factsets). These are sets of relations tuples which resemble
those ones used in the relational data bases. In entity, the
factsets are data bases. However, the ABIS language uses an
“extended” relational data model.

The basic concepts of the model are: relation, attribute,
domain, and tuple. Let us introduce these concepts by the
following simple example. Let be a table entitled as “Supplier”
consisting of the following columns: “Enterprise”
“Merchandise”, “Volume”, “Measurement unit”, in which two
records are:

TABLE I. “SUPPLIER”

Enterprise Merchandise Volume Measurement
unit

Electric power
plant Electric power 30 Megawatt

Metallurgical
plant

Rolled metal 1000 Thousand of
tonnes

In the terms of the relational data models, the table is a
relation, the columns are attributes, a range of values of the
records in a column is an attribute domain, and a total string of
the table is a tuple of the relation. The data model is a set of the
relations:

R1(A11,…,A1n)

R2(A21,…,A2m)

…

Rk(Ak1,…,Akl)

where Aij is the attribute j of the relation Ri.

Each string (tuple) of the relation R(A1,…,An) may be
represented in the form:

R(A1=s1,…,An=sn),

where si is a concrete value of the attribute Ai.

For instance, the first string of the relation “Supplier” may
be written as follows:

Supplier (Enterprise = Electric power plant,

 Merchandise = Electric power,

 Volume = 30,

 Measurement unit = Megawatt)

or in a brief record form (omitting the attributes names):

Supplier (Electric power plant, electric power, 30,
megawatt).

Consider now those values which the attributes may take.
Here, three basic variants are possible:

• Terminal (definite) value;

• Non-definite (unknown or indifferent) value;

• A reference to a child tuple of a relation of the data
model.

In the example “Supplier” considered above, all the
attributes values presented are the terminal ones. But if one will
consider such a fact:

“There is an enterprise producing 30 megawatts of the
electric power”,

than to represent it, one would require a tuple of the relation
“Supplier” of the following form:

Supplier (_ , electric power, 30, megawatt).

Here, as a value of the attribute “Enterprise”, the character (_)
is used representing the non-definite value.

Let us consider now another case. Let the “Merchandise”
produced by enterprises may not be described by a single
terminal value, and one requires to introduce the relation
“Merchandise” of, for instance, the following form:

TABLE II. “MERCHANDISE”

Name Production date Delivery type

Rolled metal December Rail way

In that case, the fact:

“In December, the metallurgical plant produced 10
thousand tones of the rolled metal and shipped it via the rail
way”

may be written in the following form:

Supplier (Metallurgical plant,

 Merchandise (rolled metal, December, Rail
way),

 10, thousand tonnes)

Here, the value of the attribute “Merchandise” of the relation
“Supplier” is the direct record of the corresponding tuple of the
relation “Merchandise” with, in accordance to the terminology
of the ABIS-system, is referred as reference since in the
internal representation (after compiling) it is indeed
transformed into an address reference.

III. STRUCTURE OF THE SOFTWRE CODES IN THE ABIS
LANGUAGE

The basic software code units of the language are rules. For
simplicity, we will not use the formal syntax and will be
limited by commonly used concepts.

Each rule contains a condition (IF) and a corollary (THEN)
which are processed by an inductive system (inference engine).

The conditions contain a number of sentences which are to
be met. The sentences may be simple (comparison for equality,
inequality, or their logical combinations), or contain checking
contents of certain factsets.

The corollaries also contain a number of sentences, each of
them assumes implementing an action: assigning a value to a
simple variable, modifying a factset, transfer to another rule,
etc.

The sentences of a condition and corollary may contain
variables which are assigned within the process of processing
the condition and are used under implementing the corollary.
This gives rice to the situation that the rules are met under
different combinations of the variables values, i.e. multiply.

Let us consider the following example. Let, besides the
relation “Supplier” already introduced, be a relation
“Consumer” with the same attributes names: “Enterprise”,
“Merchandise”, “Volume”, and “Measurement unit”.

Then the rule

“If: there is a consumer of a merchandise, then: there should be
a supplier of the merchandise”

may be written only by explicit indication both for the supplier
and consumer that the speech is on the same merchandise. This
enables one to make the mechanism of the variables

If : consumer (_, _T, _, _)

Then : supplier (_, _T, _, _).

Here, availability of the same variable _Т both in the condition
and corollary parts of the rules tells that the speech is about the
same merchandise. Thus, in the rules of the knowledge-base
there is admitted to use also variables as values of the
attributes.

Under performance of the deductive system, the basic
procedure is matching the facts from the data base and the

conditional parts of the knowledge-base rules. The process of
matching is reduced to the feature that if in the conditional part
of the rule there is a tuple of a relation R, then the rule may be
successfully matched only with the facts being tuples of the
relation R, at that the matching process is to be implemented
attributewise. The process of matching fact tuples and a rule is
referred as conformance. Table 3 contains results of
conformance for different types of attributes and a rule
implemented in the ABIS language. A successful conformance
is designated via 1, and unsuccessful, via 0.

TABLE III. A TABLE OF SUCCESS/UNSUCCESS OF CONFORMANCE FOR
DIFFERENT TYPES OF FACT ATTRIBUTES AND A RULE

Fact attribute

Rule sentence

attribute

Non-definite
value

Terminal
value

Reference

Non-aforsaid variable 1 1 1

Non-definete value 1 1 1

Terminal value 0 Checking for
equality

0

Refernce
0 0 Recursion

IV. INPUT-OUTPUT FUNCTIONS OF THE ABIS LANGUAGE
In the ABIS language, all the functions envisioned in the C

language are implemented. Besides that, there are used input-
output functions of the factsets in the text and binary forms, as
well as functions of their transmission through network
channels.

V. CURRENT IMPLEMENTATION OF THE ABIS LANGUAGE
The ABIS language is simple. Its description involves 150

text pages with examples and comments. In totality, the
Pseudocompiler, interpreter, and debugger involve 14 thousand
lines in the C language.

The existing version performs under the operation system
Linux.

The current version is oriented to professional programmers
and contains a minimally sufficient list of possibilities and
services.

VI. EXPERIENCE OF APPLYING THE ABIS LANGUAGE
The most considerable application of the language is a

SCADA-system applied for organization of monitoring and
control of power units of Russian nuclear power plants. Let us
list its basic characteristics:

• Number of processed signals is 250 thousands;

• Information processing cycle is not more than 1.7
seconds (in average, 0.7 seconds);

• Automatic reconfiguration under faults of backup
equipment;

• Service of 25 workplaces;

• Availability of computer-aided design tools.

The system has been created under a limited budget (USD
300 thousands) during 3 years. The system is maintained by 4
persons jointly with implementing other job duties.

The SCADA-system is an example of a software which
solves tasks of processing information flows on-line. To
achieve the indexes of speed of operation and reliability, the
system has been created as a distributed set of computing
processes in the ABIS language which implement parallel
information processing as a pipeline.

A typical example of implementing algorithms of the
logical analysis of static data in the ABIS language is the
program code of monitoring integrity of the file system in order
to detect un-authorized deviations. It performs in two modes:
the model of learning and the mode of monitoring. In the
learning mode, the program code composes a data base of
characteristics of important files. In the main mode, the
program code monitors availability of deviations. The
programs implement rather complex heuristic algorithms, and
the number of processed files reaches several dozens
thousands. At that, the program code itself is very simple,
evident, takes not more than 1 Mb of the RAM and performs
fast.

Possible branches of applying the ABIS language are not
defined yet. However, with a great confidence one may affirm
that their list is not limited by processing data flows and logical
analysis of data bases only.

In accordance to results of application, one may emphasize
several features of the source code in the ABIS language and
particularizes of program codes debugging.

The first feature is “seamlessness” of the internal data with
may be easily looked at the stage of debugging and even within
the program codes operation.

The second feature is a possibility of simple creating highly
effective highly tailored languages to implement certain works.
This enables one to create programmable, configurable systems
in the ABIS language.

The third feature is the shortness of the program code and
small size of the load images. This enables one to run the
software codes at any modern computing devices up to home
automation and cellular phones.

And, finally, the forth feature is a possibility of creating
computing pipelines of a different topology, in which
processing algorithms are decomposed and implemented in
independent computing processors connected by network
channels to transmit intermediate results in the form of the
factsets.

VII. PERSPECTIVES
We assume that basing on the ABIS language one may

create a self-sufficient instrumental platform to develop a
software of different intention. For that, one should elaborate a
standard of the language, add required libraries, created
suitable and modern debugging tools and implement all other
necessary works.

VIII. CONCLUSIONS
The ABIS language has passed all the required stages in its

development and has proven its right for the future.

We believe that it should become available for a broad
community of software developers.

At present, we implement preparation works and look for
partners and sponsors to create a public version of the ABIS
language.

REFERENCES

[1] M. E. Byvaikov, E. F. Zharko, N. E. Mengazetdinov, A. G. Poletykin, I.
V. Prangishvili, and V. G. Promyslov, “Experience from Design and
Application of the Top-level System of the Process Control System of
Nuclear Power-plant,” Automation and Remote Control. Moscow, vol.
67, no. 5, pp. 735–747, 2006 [Avtomatika i Telemekhanika, no. 5, pp.
65-79, 2006].

