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Abstract—There are many algorithms to construct good Low-
Density Parity-Check (LDPC) Code, the most typical algorithms 
are bit-filling algorithm, randomly construction algorithm, and 
PEG (Progressive Edge Growth) algorithm. As shown in [1], the 
error floor of LDPC Code is decreased by using PEG algorithm, 
but the error correction performance in waterfall region is 
compromised since a stopping set with small size will form the 
codeword with small Hamming weight over AWGN [2]. In this 
paper, we propose a novel algorithm to construct LDPC Codes. 
In our algorithm, we construct LDPC Code to avoid small girth 
and small stopping set by detecting the complete associated 
matrix of check node (defined in this paper) that converted from 
bipartite graph of LDPC Code based on the graph theory. 
Simulation shows that the LDPC code constructed by our 
algorithm has lower error floor than randomly constructed 
LDPC Code. The performance improvement of our algorithm is 
0.1dB at BER of 310−  compared with PEG algorithm. 
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I.  INTRODUCTION 
Low-Density Parity-Check (LDPC) Codes were introduced 

by Gallager [3]. It’s shown that LDPC Codes can achieve 
performance close to the channel capacity at low complexity 
when iterative decoding is used. Recently LDPC Codes have 
increasingly been drawn attention due to its superior error 
correction capability and low complexity [4]. Galllager 
considered only regular LDPC codes whose parity check 
matrix have a fixed number of “1” in each row and also have a 
fixed number of “1” in each column. It has been shown that the 
performance of LDPC Code can be improved using irregular 
scheme [2].  

As we know, the smaller length girth and smaller stopping 
set would reduce the performance of LDPC Code, especially in 
waterfall region [5]. To keep longer length girth and larger 
stopping sets are two main objectives to construct LDPC Code 
presented in this paper.   

Based on the knowledge of graph theory, the check nodes 
in a girth in bipartite graph would form an Euler loop, and this 
sub-graph can be described by a matrix. So we can determine 
whether a girth will be formed by some check nodes by 
detecting the matrix correspond to the sub-graph generated 
from original bipartite graph. Similarly, based on the definition 
of stopping set in graph, we can get another description of it 
with matrix. So during the construction of LDPC Code as 
following two steps: 1. Check whether there will be a stopping 

set if we set “1” at current position. If it is, fill “0” in the 
current position. Else: 2. Check whether the check node 
represented by current position of parity check matrix will form 
a girth less than pre-defined by designer. If it is, set “0” at the 
current position. Or “1” is set. The method mentioned above 
can avoid the appearance of small stopping set and small girth 
in the parity check matrix. 

This paper is organized as follows. Section 2 introduces 
some definitions of LDPC Code. The basic idea of construction 
of LDPC Code with graph theory   is described in section 3. In 
section 4, we give the algorithm of construction of LDPC Code 
with graph theory. The results of simulation are shown in 
section 5. The conclusion is given in section 6. 

II. BASIC DEFINITION OF LDPC CODE 
Assume the length of a LDPC Code is n . This LDPC Code 

can be described by specifying its binary parity check matrix 
H . We call this code low density parity check code because 
H is a sparse matrix. An LDPC Code and its decoding are 
represented by a bipartite graph which can be described as 

( ) ( , )G H V E= with m n+  vertices 
(1,2, , , 1, , )V m m m n= + + . The first m vertices 

correspond to m parity check equations also referred to 
m check nodes in bipartite graph. The rest vertices correspond 
to n variable nodes. An example of bipartite graph of regular 
LDPC Code is represented as in figure 1 (a). This bipartite 
graph is corresponded to the parity check matrix H of this 
LDPC Code that is shown in figure 1 (b). The parity check 
matrix and its bipartite graph of LDPC with length 10n = and 
number of parity check equations of 5m = are shown in figure 
1. 

 
Figure. 1 (a) Bipartite graph of a regular LDPC Code 



         

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1
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Figure. 1 (b) Parity check matrix of a regular LDPC Code corresponded to 
bipartite graph shown in fig. 1(a) 

As shown in the figure 1 (a), we call the number of edges 
that connected to a node is the degree of this node. So the 
degrees of variable (check) nodes are all same for regular 
LDPC Code as shown in figure 1 (a).  

For irregular LDPC Code, the degrees of each variable 
(check) node are not same. 

We assume iλ and iρ are fraction of edges emanating from 
variable and check codes of degree i . Then the expression of 
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degree distribution and check node degree distribution 
respectively where vd and cd are the maximum degree of 
variable nodes and check nodes. 

III. ALGORITHM OF CONSTRUCTION WITH GRAPH 
THEORY 

A. Basic idea of construction with graph theory 
As we know, during the construction of LDPC Code, one of 

the main targets is to make sure there is not the small length 
girth in the bipartite graph correspond to parity check matrix. 
Considering the construction of LDPC Code with its bipartite 
graph directly, it will be too complex because of the large 
number of vertices and edges in the bipartite graph.  So we try 
to generate a new graph or matrix that can depicts the girth in 
original bipartite graph. As shown in graph theory, the girth in 
bipartite graph is a loop. We list each vertices of a girth, 
eliminate the variable vertices. Then an Euler loop will be 
formed whose vertices are all check nodes in girth in bipartite 
graph. We can also write the matrix that can depicts the graph 
generated from original bipartite graph. So we can avoid the 
girth by controlling the matrix that we generated as above. 

B. Abbreviations and Acronyms 
Definition 1. We call the graph as Structure graph of Parity 
check node if this graph represents the relationship of each 
check node shown in bipartite graph. 

For example, the parity check matrix is shown as follows: 

1 0 1 0 0 0 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0 0 1 1
1 0 0 1 0 0 0 1 1 1 0 1
0 1 0 1 1 1 0 1 1 0 0 0
0 1 1 0 1 1 1 0 1 1 1 0

H

 
 
 
 

=  
 
 
 
 

 

Assume that 1, 2, , 6c c c  denotes the check nodes and 
1, 2, 12v v v denotes the variable nodes in bipartite graph 

which is correspond to this parity check matrix. From the parity 
check matrix, we can get that there is a cycle in its bipartite 
graph as 2 1 4 4 5 5 2c v c v c v c→ → → → → → . Then we 
eliminate the information of variable node, we can get the 
structure graph of parity check nodes as  

 
Figure. 2 Structure graph of parity check matrix with 6-cycle 

Definition 2. We call a loop as Euler Loop if all vertices are 
passed when each edge in the graph is passed once and only 
once. 

Definition 3. We call a graph as Euler graph if there is an Euler 
loop. 

Definition 4. Assume graph ,G V E=< > and graph 

 ' ' ',G V E=< > , we call these two graphs are isomorphic if 

there exists a mapping one by one: g: '
i iv v→ and 

( , )i je v v= is an edge of G if and only if ' ( ( ), ( ))i je g v g v= is 
an edge of 'G . 

Theorem 1. The structure graphs of parity check matrix with 
cycles that have the same length are all Euler graph and 
isomorphic.  

The proof of this theorem is shown in [4]. 

Definition 5 Assume G is a graph. Let 1 2, , , pv v v  and 

1 2, , , qe e e are vertices and edges of G respectively. Matrix 

( ) ( )ijM G m= in which  

1,
0,ijm


= 
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if  is not associated with 

i j

i j

v e
v e

 

Then we call matrix M as complete associated matrix of 
graph G . 

Definition 6. We call a matrix without an all “0” sub-matrix 
(with or without column permutation) and all the numbers of 
“1” of rows are less or equal than 2 as sub-matrix that can not 
be divided. 

Theorem 2. If there is a sub-matrix of complete associated 
matrix that can not be divided, and the numbers of “1” in each 
rows are not all 2, then the check nodes represented by this 
sub-matrix can not form a cycle in bipartite graph. 

Proof:  



         

Step  1. Initialize the parity check matrix and the complete 
associated matrix of structure graph of parity check matrix 
of all the check nodes.  
Step 2. Set “1” or “0” for each element by column. This 
step will divided into the following three cases: 
1). If the number of “1” in this column is zero, then 

choose the row whose weight is the least one and less 
than iq to set “1”. 

2). If the number of “1” in this column is less than 

jd and number of “1” in this row is less than iq : 
 Determine whether there will be a cycle with 

length less than p according to theorem 1 and 2. 
 Determine whether there will be a small 

stopping set based on the definition described 
with matrix. 

3). If all the cases are satisfied, then set “1” at this row 
otherwise choose another check node and go to b. 

4). If the number of “1” in this column is equal to jd , 
then go to a for the next column. 

a) Because the sub-matrix of complete associated matrix can 
not be divided as shown in the definition 6, we can get 
that this graph is a simple connected graph. 

b) We assume that the check nodes mentioned in theorem 2 
consist a cycle in bipartite graph. Based on the definition 
of complete associated matrix, these check nodes form an 
Euler loop. Based on the definition of Euler loop, we 
know that the degrees of vertices are all two. This result is 
opposite from the condition in the theorem 2. 
According to the above, we know the check nodes 
mentioned in theorem 2 represented by the sub-matrix 
given in the theorem can not form a cycle in bipartite 
graph. The theorem is proofed completely. 

Based on the definitions and theorems above, we can 
choose a check node that avoid the appearance of d-cycle (d is 
pre-determined by user) bipartite graph by detecting the 
complete associated matrix of this check node with other 1

2
d −  

check nodes during the construction of LDPC Code.  

As mentioned in [3], the performance of LDPC Code is 
decreased since every codeword with small Hamming weight is 
caused by a stopping set with small size. So preventing small 
stopping sets also helps to increase the minimum distance and 
performance of LDPC. The stopping set can be described as 
follows: 

Definition 7 A stopping set S  of variable nodes is said to form 
a stopping set if all its neighboring check nodes are connected 
to S  at least twice. 

As described in definition 7, the stopping set can also be 
presented by parity check matrix as follows: 

First we define a function:  

( ) ( [ ] 1)SC
i

f I iα α= =∑  

Where α indicates column vector and ( )I x indicates the 
indicator function. Thus SCf counts the number of 1’s in a 
column vector. 

Consider a subset S of the columns of the parity check 
matrix of size m n× . Let ii S

v
∈

∆ =∑ , where the sum is over 

the real field (not over GF (2)). The set S  forms a stopping set 
if ( ) 0SCf ∆ = . 

For example, assume the parity check matrix as  

1 0 1 0 1
1 1 1 1 0
0 1 1 1 1

H
 
 =  
 
 

 

The rows denote the check nodes 1, 2, 3c c c and the columns 
denote the variable nodes 1, 2, , 5v v v . Then the set of variable 
nodes 1, 2, 3v v v is such that 1 2 3 [2,3, 2]Tv v v+ + = which does 

not have a 1 in any component. So, it forms a stopping set. So 
we also should make sure that we did not form a small stopping 
set during the construction of LDPC Code. 

According to the definitions and theorems shown above, we 
randomly choose some check nodes to determine whether these 
check nodes and other variables nodes could form a girth, we 
can firstly get the structure graph of these parity check nodes 
and its complete associated matrix as shown in definition 1 and 
5. Then the girth can be found by detecting if this structure 
graph of these parity check nodes can form a Euler graph 
according to theorem 2. 

IV. CONSTRUCTION OF LDPC CODE WITH GRAPH 
THEORY 

According to all the above, we summarize the algorithm of 
construction of LDPC Code with graph theory. Consider we 
construct an irregular LDPC Code with the column weight as 

0 1 1( , , , )ND d d d −= , row weight as 0 1 1( , , , )MQ q q q −= and 
length of cycle greater than p . We set “1” at proper position 
for each column one by one and others are “0”. The criterion of 
construction is shown as follows: 

Figure. 3 Criterion of construction of LDPC code 

V. SIMULATION AND RESULT 
We did the simulation of irregular LDPC Code with length 

10000 and rate 1/2. In this LDPC code, we avoided the 
appearance the cycle of length less than 6. The variable node 
degree distribution is 

2 3 8( ) 0.4999 0.3294 0.1707x x x xλ = + + and the check node 
degree distribution is 7 8( ) 0.9514 0.0486x x xρ = + . The BP 
algorithm is used in the decoding. The simulation used Adding 
White Gaussian Noise (AWGN) channel and BPSK 
modulation technology. 



         

We compared the performance of LDPC Code constructed 
by graph theorem proposed in this paper and that of LDPC 
Code whose edges of bipartite graph are selected randomly by 
avoiding cycles of length four and also the LDPC Code 
constructed by PEG algorithm. The performances of the figures 
are shown in the figure 4. The horizontal axis denotes the 
signal-to-noise (SNR) and the vertical axis denotes the frame 
error rate (FER). 

 
Figure. 4 Performances of different methods for construction of LDPC Code 

As shown in the figure 4, we can get the best performance 
of LDPC Code constructed with graph theory method proposed 
in this paper. The randomly constructed LDPC Code shows a 
relatively higher error floor. It also shown from the figure that 
the construction algorithm proposed in this paper outperforms 
the PEG algorithm by more than 0.1 dB. 

VI. CONCLUSION 
In this paper, we proposed a new algorithm of construction 

of LDPC Code with graph theory. This algorithm can avoid the 
appearance of d -cycle in the bipartite graph ( d is pre-
determined by designer of LDPC Code).  Furthermore, the 
small stopping set is avoided in our LDPC Code constructing 
algorithm with graph theory. So the error floor constructed by 
our algorithm proposed in this paper is lower than that of 
randomly construction algorithm and the performance in 
waterfall region is also be improved than original PEG 
algorithm. 
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