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Abstract—A new idea of interval quartering algorithm was 
proposed to improve the insufficiency of the conventional 
singular spectrum analysis iterative interpolation on parameter 
selection (including the number K of principal component and 
the embedding dimension M), and the applied test and 
comparative analysis recovery was carried out to the missing 
data. The experimental results showed that the improved method 
is very effective to the interpolation of missing data, and the 
computing speed of the improved algorithm is more rapid than 
that of conventional algorithm. 
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I.  INTRODUCTION 
Missed data recovery is a useful technique for many 

sciences field. Some missed data recovery methods, such as 
statistic regression, Kriging interpolation, Kalman filtering, 
fractal interpolation and phase space reconstruction, are applied 
to the missed data recovery. Multivariate statistical analysis 
technologies[1], such as Empirical Orthogonal Function 
analysis (EOF), Principal Component-Canonical Correlation 
Analysis (PC-CCA), Singular Spectrum Analysis (SSA) and 
Multi-channel Singular Spectrum  Analysis(MSSA), can be 
used to reveal the spatial correlative structure or temporal 
evolution of the scalar or vector fields, so been widely used in 
the time series analysis. How to integrate multivariate statistical 
analysis into the objectively accurate interpolation and filling 
of missing data has good prospects. 

Aiming at the shortcomings and problems of general SSA 
and MSSA, a parameter optimization method called Interval 
Quartering Algorithm was proposed in this paper. It improved 
the conventional SSA/MSSA iterative interpolation methods. 
Interpolation experiments and comparative analysis were done 
by using it. 

II. SSA/MSSA ITERATIVE INTERPOLATION 
SSA/MSSA technique can be used for extracting out some 

simple modes containing important information from actual 
time series, and filtering out some random noises. The main 
idea of SSA iterative interpolation process is as follows: an 
inner-loop iteration is started by computing the leading 
empirical orthogonal function (EOF) of the centered, zero-
padded data. Then the algorithm is performed again on the new 

time series in which the principal component corresponding to 
that EOF alone was used to obtain nonzero values in place of 
the missing point and correct the mean of the new time series. 
When this inner iteration has converged (the convergence of 
the iterative program has been proven mathematically [2]), an 
outer-loop iteration is performed by adding a second EOF for 
reconstruction and repeat the inner iteration. The embedding 
dimension M and the numbers of selected principal component 
K are optimized by the cross-validation method. Beckers et al. 
[3] discuss, in their Appendix A, how the bias introduced into 
the EOFs by missing data disappears as the iteration 
progresses. 

The process of SSA iterative interpolation algorithm mainly 
contains the following two steps: 

A. Optimization parameters of M and K by cross-validation 

1) Give initial value 1, 1M K= = , and give the 
maximum embedding dimension value maxM . 

2) The data points of the original time series are classified 
as three categories: the training data trainX , the cross-
validation data _cross validX and the missing data fillX  (i.e. 
when the points belong to fillX , it means that we do not have 
data or they are unreliable). Thereinto, trainX , _cross validX are 
known data, but _cross validX  are selected from the known 
data randomly and are seen as unknown data in the 
interpolation process. The effect of interpolation is evaluated 
by compare the interpolated values with the known values 
in _cross validX . fillX  are unknown data. 

3) Let n=0, remove mean of time series trainX , record its 
average value aveX , set _cross validX , fillX to 0,and so we get 
the time series ( )nX t . 

4) Perform SSA algorithm with embedding 
dimension M on the time series ( )nX t ,select the former K 
principal components to reconstruct time series reconX , replace 
the data _cross validX and fillX with the data reconX  at its 



         

corresponding position, and so we get the new time series 

1( )nX t+ . 
5) If 1max ( ) ( )n nX t X t ε+ − ≤ , go to 6); otherwise, 

Let 1n n= + and return 4). 
6) Let 1 1( ) ( )n n aveX t X t X+ += + , and then compute the 

root mean square error ( , )error M K between the 
interpolated value of 1( )nX t+ at _cross validX and the known 
observed value at the same positions. 

7) ①  If K M< , then 1K K= + , jump to ③ ; ② 
If K M= , then 1, 1M M K= + = ;③ If maxM M= , go to 
8); Otherwise, return to 2) and start a new interpolation 
process. 

8) Find out the optimal parameters optM and optK that 
makes the root mean square error is minimum. Program is 
over. 

B. Interpolate missed data by SSA 

1) The data points of the original time series are classified 
as two categories: the training data trainX (i.e. all known data 
including _cross validX thereinbefore) and the missing 
data fillX . 

2) Let n=0, remove mean of time series trainX , record its 
average value aveX , set fillX to 0, and so we get the time 
series ( )nX t . 

3) Perform SSA algorithm with embedding 
dimension optM on the time series ( )nX t , select the 
former optK principal components to reconstruct time series 

reconX , replace the data fillX with the data reconX at its 
corresponding position, and so we get the time series 1( )nX t+ . 

4) If 1max ( ) ( )n nX t X t ε+ − ≤ , 1( )nX t+ are the 
interpolation result of the time series, program is over; 
otherwise, Let 1n n= + and return to 3). 

The process of MSSA iterative interpolation is similar to 
that of SSA.The differences between MSSA and SSA iterative 
interpolation are as follows: at the first step 4) and the second 
step 3), MSSA performs Multi-channel Singular Spectrum 
Analysis; at the second step 7), the condition that K should 
satisfy is not K M≤ , but min( , ')K M L N≤ × .The 
specific algorithm of MSSA algorithm is omitted. 

From said above, the deficiency of the conventional SSA 
iterative interpolation are as follows: because the optimization 
parameters M and K are exhausted much time, and for the total 
interpolation program, the goal of the first step is only 
providing the optimal parameters for the second step. 
Therefore, the deficiency of determining the optimal 
parameters should be improved. 

III. AN IMPROVED ALGORITHM OF SSA/MSSA -INTERVAL 
QUARTERING ALGORITHM 

To overcome the shortcomings of the general SSA/MSSA, 
an improved algorithm of SSA iterative interpolation-Interval 
Quartering Algorithm was presented. 

A. The idea of Interval Quartering Algorithm 

Firstly, the value range of independent variable, 1 1[ , ]a e ,is 
divided into four small intervals with three divided 
points 1 1 1, ,b c d ,and then judge which one interval or two 
adjacent small intervals contain minimum of function (assume 
it is 1 1[ , ]b c );secondly, narrow the range of the interval 

to 1 1[ , ]b c , the interval 1 1[ , ]b c is subdivided into four smaller 
intervals and then judge which smaller interval containing 
minimum of function, and so on; repeat this process until no 
longer interval can be subdivided. At last, the values of each 
point in the interval that cannot be subdivided are computed, 
and then the location of the minimum point is found out. 

How to find the interval where the minimum of the function 
is? Let five endpoints of four sub-intervals are , , , ,i i i i ia b c d e , 
and the corresponding function values are , , , ,fa fb fc fd fe , 
then: 

1)  if min( , )fb fa fc≤ : the minimum value must at 
interval[ , ]i ia c . 

2)  if min( , )fc fb fd≤ : the minimum value must at 
interval[ , ]i ib d . 

3) if min( , )fd fc fe≤ : the minimum value must at 
interval[ , ]i ic e . 

If all these three conditions are not satisfied, 

then min( , )fb fa fc> , min( , )fc fb fd> ,
min( , )fd fc fe> must be satisfied  at the same time. Under 

these conditions, if fa fb< , according to the character of 

function ( )y f n=  (in the character of “first decreases, and 
then increases” or “monotony”), there must 

be fa fb fc fd fe< < < < , the minimum value must at 

interval [ , ]i ia b ; if fa fb> , according to the three 

inequalities min( , )fb fa fc> , min( , )fc fb fd>  

and min( , )fd fc fe> , then we can 

deduce fa fb fc fd fe> > > > , the minimum value must at 

interval [ , ]i id e . Hence, two additional judgment conditions 
are as follows:  

4) if fb fc< : the minimum value must at 
interval[ , ]i ia b . 

5) if fc fd> , the minimum value must at interval 
[ , ]i id e .  



         

The above five judgment conditions have included all sort 
situations. 

Interval Quartering Algorithm has two major advantages:  

1) Compared to the conventional method of finding the 
optimal parameters, Interval Quartering Algorithm is very 
timesaving. The time complexity of conventional algorithm is 
O(n), but that of Interval Quartering Algorithm is only 
O(log2n), the calculation speed was improved greatly. 

2) It hardly fall into the local minimum. Because the 
algorithm is narrowing interval gradually, and the error 
function has only small fluctuations. For the large interval, 
small fluctuations do not affect the right selection of 
parameters. When the interval is reduced to a certain extent, 
computing all value of small interval and finding the minimum 
value can avoid the effect of small fluctuations. 

B. The progress of Interval Quartering Algorithm 

1)  Let 1i = ,assign values to 1a and 1e (find minimum at 
the interval 1 1[ , ]a e ); Let 

1( )fa f a= , 1( )fe f e= , 0flagC = (if the middle point C 
needs recomputation,mark flagC  with 0). 

2) Let
4

i ie aτ − =   
; if 1τ ≥ , then: ① 

i ib a τ= + , i id e τ= − , ( )ifb f b= , ( )ifd f d= ; ② 
if 0flagc = ,then 2i ic a τ= + , ( )ifc f c= ; if 1τ < , then 
compute the value at points 1, 2,..., 1i i ia a e+ + − , and find 
the minimum from , 1,..., 1,i i i ia a e e+ − . Program is over. 

3) if min( , )fb fa fc≤ , 
then 1i ia a+ = , 1i ic b+ = , 1i ie c+ = , fc fb= , fe fc= ,

1flagC = , go to 4); 
if min( , )fc fb fd≤ ,then 1i ia b+ = , 1i ic c+ = , 1i ie d+ = ,
fa fb= , fe fd= , 1flagC = , go to 4);  if 

min( , )fd fc fe≤ , then 

1i ia c+ = , 1i ic d+ = , 1i ie e+ = , fc fc= , fe fd= ,
1flagC = ,go to 4); if fb fc< ,then 

1i ia a+ = , 1i ie b+ = , fe fb= , 0flagC = ,go to 4); if 
fc fd> , then 

1i ia d+ = , 1i ie e+ = , fa fd= , 0flagC = ,go to 4). 
4) 1i i= + , return to 2). 

Interval Quartering Algorithm for MSSA is similar to SSA, 
so omitted. 

IV. EXPERIMENT ON IMPROVED SSA/MSSA ALGORITHM 

A. Area Coverage of Data 
The NCEP/NCAR daily OLR (outgoing long wave 

radiation for describing cloud and convection activity ) data 
was used in this paper, the data grid is 2.5 ° × 2.5 °,and 
rangement:90-140 ° E, 10 ° S-30 ° N, the temporal range of the 

time series is form May 1st ,2004 to April 30th,2006 (730 days 
in total), containing 260610 grid data. 

B. OLR data interpolation experiment 
1) Iteration Process Explanation: SSA iterative 

interpolation is for univariate time series, while MSSA 
iterative interpolation can handle multivariate time series 
problems. Therefore, we stretch the space grid points to one 
dimension, and the space grid points are seen as different 
variables. The Interval Quartering Algorithm is used to select 
parameters of MSSA iterative interpolation. We randomly 
select 40% of data from 260,610 grid points as missing data, 
and the remaining 60% as the known data. 10% of the known 
data (6% of the total data) are selected as cross-validation data, 
and the remaining 90% (54% of the total data) as training data. 

Assign the parameter M=1, 2… in turn, and then apply the 
improved parameter selection method (Interval Quartering 
Algorithm) to search the corresponding optimal parameters K. 
According to the root mean square error of cross-validation 
data, we can identify the corresponding optimal parameter K 
for different embedding dimensions: M = 1, K = 32; M = 2, K 
= 52; M = 3, K = 68... , and get the corresponding root mean 
square error for different M values (see Table I). 

TABLE I.  CROSS-VALIDATION DATA ERROR COMPARISON OF OPTIMAL 
PARAMETER K IN DIFFERENT EMBEDDING DIMENSIONS M 

Optimal 
parameters 

correlation 
coefficient 

root mean square error of missing 
data (W/S2) 

M=1,K=32 0.83780 22.864 
M=2,K=52 0.85120 21.746 
M=3,K=68 0.85076 21.880 

M=1, EOF optimal iterative interpolation; M=2, MSSA optimal iterative interpolation. 

 

The data of tab.1 showed that the MSSA iterative 
interpolation has a wider choice of parameters compared with 
EOF, and MSSA iterative interpolation method has an 
advantage over EOF iterative interpolation. 

2) Interpolation Experiment Effect Analysis. 
a) MSSA iterative interpolation effect and its 

comparison with EOF: In order to check up the interpolated 
effect of OLR spatial field, two days was selected for making 
the comparison between the actual fields and the recovery 
fields interpolation (Fig.1 and Fig.2). 

 



         

Figure 1.  The comparison map of different OLR fields in December 12th, 
2004. (a)OLR field missing 40% data; (b) actual OLR field; (c) reconstructed 

field by EOF; (d) reconstructed field by SSA 

 
Figure 2.  The comparison map of different OLR fields in April 5th, 2006. (a) 
OLR field missing 40% data ; (b) actual OLR field; (c) reconstructed field by 

EOF; (d) reconstructed field by SSA 

It can be seen from Fig.1-2, EOF iterative interpolation is 
also a better interpolation technique.But the MSSA iterative 
interpolation is rather better than EOF,especially in detail 
describing. The differences between EOF and SSA showed 
clearly in Table II. 

In order to check up the interpolated effect of OLR single-
site time series, we take the time series at point [90 ° E, 30 ° N] 
as an example, and the correlation coefficient between EOF 
interpolated values and the corresponding poing actual time 
series is 0.7750, while that between MSSA interpolated values 
and the actual data time series 0.8251. 

To further compare the effect of EOF iterative interpolation 
with that of MSSA iterative interpolation quantificationally, the 
correlation coefficient and the root mean square error between 
all interpolated values and the actual values for each method is 
computed (See Table 2). As can be seen from the table, the root 
mean square error of M = 2 (MSSA iterative interpolation 
method) is smaller than M = 1 (EOF iterative interpolation 
method), and the correlation coefficient of MSSA is higher 
(due to the large quantity of missing points containing 104,244 
points, the result has good statistical significance), so the 
MSSA iterative interpolation is better than EOF. 

TABLE II.  THE INTERPOLATED EFFECT COMPARISON OF OPTIMAL 
PARAMETER K IN DIFFERENT EMBEDDING DIMENSIONS M 

M and the corresponding 
optimal K correlation 

coefficient 

root mean square 
error of missing data 

(W/S2) 
M=1,K=32 0.84578 22.268 
M=2,K=52 0.85530 21.483 
M=3,K=68 0.85375 21.583 

M=1, EOF optimal iterative interpolation ; M=2, MSSA optimal iterative interpolation. 

b) Comparison between improved MSSA and general 
MSSA iterative interpolation: The superiority of the improved 
MSSA iterative interpolation compared with the conventional 

MSSA iterative interpolation is embodied mainly in 
computing time (see Table III) and calculation accuracy. It can 
be seen from Table III clearly that the computing speed of the 
improved MSSA iterative interpolation raises tens of times 
than that of the conventional MSSA iterative interpolation, and 
so the improved MSSA iterative interpolation has more 
obvious advantages, especially for large volume of data. As 
the conventional MSSA iterative interpolation needs more 
time, in order to reduce computing time, it often takes large 
time step of K and can not search the global optimal parameter 
K, which makes interpolated accuracy lower. By using the 
Interval Quartering Algorithm, the improved MSSA iterative 
interpolation can search the global optimal parameter K, the 
method makes the interpolated data is of high precision and 
accuracy. Therefore, the Interval Quartering Algorithm is a 
very effective algorithm for SSA/MSSA iterative 
interpolation, and it helps to improve the conventional 
SSA/MSSA iterative interpolation and develop the advantage 
of interpolation further. 

TABLE III.  THE COMPUTING TIME COMPARISON BETWEEN 
CONVENTIONAL AND IMPROVE MSSA ITERATIVE INTERPOLATION 

M 

conventional MSSA 
iteration that needs 

computing number of 
Ｋ 

improved 
MSSA iteration 

that needs 
computing 

number of Ｋ 

improved times 
of computing 

speed  

1 357 19 17.8 
２ 714 22 31.5 
３ 728 22 32.1 

V. SUMMARY 
The general SSA/MSSA iterative interpolation can improve 

the interpolated accuracy compared with the EOF iterative 
interpolation, but the parameters selection contains some 
arbitrariness and blindness, which directly affect the quality of 
interpolated missing data and computational efficiency. 
Against the insufficiency of conventional SSA/MSSA iterative 
interpolation, this paper proposes an improved method of 
selecting the optimal parameters-Interval Quartering 
Algorithm. This method can effectively improve the efficiency 
and accuracy to SSA/MSSA iterative interpolation. Its main 
advantages are: (1) It is capable of finding the global optimal 
parameter to the error curve which has small local oscillation 
effectively; (2) The computing efficiency can be markedly 
improved by using SSA/MSSA iterative interpolation, the time 
complexity of general algorithm is O(n),but that of Interval 
Quartering Algorithm is only O(log2n), and the computing 
speed was greatly improved. 

REFERENCES 
[1] Wu Hongbao, Wu Lei. Methods for diagnosing and Forecasting Climate 

variability [M]. China Meteorological Press, Beijing, 2005(in Chinese). 
[2] Jiang Zhihong, Ding Yuguo,Tu Qipu. Interpolation experiment of 

meteorological fields based on PC-CCA [J]. Journal of Nanjing institute 
of Meteorology, 1999, 22 (2):141-148(in Chinese). 

[3] Beckers J M, Rixen M. EOF calculations and data filling from 
incomplete oceanographic datasets [J]. Journal of Atmospheric and 
Oceanic Technology, 2003, 20(12):1839-1856. 

 


