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Abstract—This paper presents a method to optimize the
positions of robot tasks in a robotic work cell in terms of
minimum cycle time. In order to improve the efficiency of the
overall algorithm, the method is proposed to be decomposed into 3
stages. Firstly, a good position for each task is derived by putting
such robot task to a preferred region; secondly, based on the
results from the first stage, a switched method is designed to seek
the best space sorting of the tasks; with the benefit from these two
stages which can reduce the search space greatly in optimization,
in the third stage, the positions of all robot tasks are adjusted
simultaneously by means of Simulated Annealing Method. Several
test cases verified the effectiveness of the proposed method.

I. INTRODUCTION

In automated manufacturing processes, such as welding,
painting, cutting and material handling, a robot always per-
forms a repetitive operation sequence along a predefined path.
The productivity of a robot can be improved considerably by
reducing the cycle time for completing an operation sequence.
The cycle time of a given robot depends on many factors,
in which the positions of the tasks that the robot will perform
are very important. The cycle time can be reduced significantly
provided with a good work cell layout.

In recent years, several research work has been done to
address the cell layout problem. Basically, these methods can
be categorized into the following groups. 1) Adjusting the
position of the robot [1][3][4]. 2) Optimizing the position of
one task relative to the robot [6]. 3) Optimizing the positions
of several tasks relative to the robot [2][5]. 4) Designing
robot tool. 5) Placing external axes relative to the robot or
to each other [6]. For the first method group, In [1], a system
for optimizing the assembly work cell layout in the context
of industrial robotic CAD software products was given. The
idea is to find the free acceptable domain according to the
obstacle positions, and then the position of robot is optimized
using Simulated Annealing (SA) method. In [3], a simple
method for deciding the robot layout was presented, but only
workable layout was given, and no layout optimization was
involved. Another work from [4] aimed to find an optimal
robot placement relative to a task in terms of minimal cycle
time, robot performance from kinematics and kinetics point
of view. The method need firstly use several provisional robot
positions, from which the index for robot performance can
be defined, and hence to conduct optimization. This method
considered both cycle time and robot performance, however,

it can only handle one single task, not several sub-tasks
together, and hence can only search optimal solution based
on an existing task, so it is not adaptive in the cell layout
optimization involving several subtasks. For the second method
group, in[6], an approach was given trying to optimize the
cycle time of a robot when executing one task based on a
platform simulating the real robot. The idea was to optimize
the position of the task using experiment-based method. The
polynomial fitting method was employed to find the optimal
task position. Although the time cost is relatively low, it is not
easy to use a low degree polynomial function to fit the function
between cycle time and task position with limited sampling
points. When two or more tasks are involved, the polynomial
fitting method can’t be expected to find even better layout. For
the third method group, in [2], another system was presented
which optimized the positions of the machines relative to the
robot with SA approach. This system can work with a real-
time objective function on CAD software platform, but the
machines were put into consideration one by one, not handled
equally together. In fact, a good position for one machine can
not be guaranteed still good if another machine is put into
consideration. While in F. Masmoudi’s work [5], the station
sorting and robot travel sequencing problems were addressed,
but the robot performance factor was not considered, which is
important to reduce the cycle time.

Based on above analysis, to find optimal cell placement in-
volving multiple sub tasks for a robot remains a valuable topic
regarding shorten cycle time and improve robot performance.
In the presented method, the positions of multiple tasks are
optimized in terms of minimal robot cycle time. To be time
efficient, the method is decomposed into 3 main stages. Firstly,
each robot task is put into a defined preferred region to derive
good initial positions; then the best space sorting of the tasks
is obtained through a switched method; finally, the positions of
all the tasks are adjusted simultaneously in a greatly reduced
search space by means of SA. The given method was compared
to other existed approach through several test cases and the
results demonstrated the effectiveness of the method.

The rest of the paper is organized as follows. Section
II presents the detailed cell layout method. In Section III,
several cases are given to test the proposed method. Section
IV concludes the paper.
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Fig. 1. Solution map of optimal cell layout method.

II. OPTIMAL CELL LAYOUT METHOD

A. Solution map

Considering the time efficiency of the whole algorithm,
the cell layout method is decomposed into three stages: 1)
Individual task placement, 2) Task sorting and 3) Whole
optimization. Through the first two stages, a near-optimal
layout can be obtained in short time, which is very beneficial
in reducing search space for the whole optimization involving
all tasks in the final stage.

B. Individual task placement

In Individual task placement, each task is placed into a
Preferred region and then rotated along its own frame to get
the best position. Firstly the definition of Preferred region and
also robot target are given.

Preferred region: Based on statistics analysis, most of the
robot tasks are placed in a concentrated region within the
robot reachable range. This region can guarantee good robot
performance in terms of robot kinematics and kinetics. The
region is called as Preferred region, shown in Fig. 2. If a robot
task is put into Preferred region, good robot performance, and
hence reduced cycle time can be expected.

Robot target: Robot tasks are defined using targets. A
target can be viewed as an infinitely small object with three
coordinates defining its position and three angles defining its
orientation in a three dimensional Cartesian space. Changing
the position of a task is the same thing as changing all targets
used to define the task[6].

With above definitions, Individual task placement can be
divided into two steps.

Step 1: Putting the task into Preferred region. When putting
a task into Preferred region, the following criterion are used:

PosA = arg(min(
Nt∑

i=1

dis(Ti, P ))), (1)

in which PosA is the derived position of the task, Nt denotes
the target number involved in the task, Ti denotes target i, P is

Fig. 2. Preferred region of the robot.

Fig. 3. Equivalent positions of a task relative to the robot in terms of cycle
time.

the center of Preferred region, and dis(Ti, P ) is the Euclidean
distance of Ti to P .

Step 2: Rotating the task along its own frame to find best
orientation of the task. Based on Step 1, the task orientation
is adjusted according to the following criterion:

PosB = arg(min(CT (α))), (2)

in which PosB is the derived position; α is the orientation
of the task, α ∈ [−π, π] (the adjustment range of α can be
changed according to the actual work cell restrictions); CT (α)
is the obtained cycle time as the function of orientation α. It
is to mention that even when lacking a mathematical model of
the robot, the best orientation of the task can be obtained in
short time through performing a small group of experiments
based on the sampling values of α via running robot controller
to execute the task.

According to the above two steps, the best position for each
individual task can be obtained.

C. Task sorting

When the best position of each individual task is obtained, it
comes to a question that how to put all tasks into consideration
for a best overall work cell layout. It is assumed and verified



Fig. 4. Switched method for task sorting.

through experiments that the best position of a task will remain
best when only the first axis of the robot rotates for tending
the task. As shown in Fig. 3, when the task position is changed
from Position 1 to Position 2, the task is still in the best
position for the robot to tend. Task sorting is to find the best
space sequence of the tasks provided with a logical visiting
sequence. To provide a fast sorting, a switched method is
designed here, shown in Fig. 4. Suppose there are M tasks
to be sorted. Then there are totally M ! possible solutions
for task sorting. When M is small, searching in the space
with dimension of M ! is possible. However, if M is large,
searching the whole solution space is quite time consuming.
In such a case, the sorting method switches to a simplified
Genetic algorithm (GA) method to seek the best sequence of
tasks, since GA has been found to be an effective optimization
method when solving combinational optimization problems
with large dimension.

1) Evaluation function: As stated above, if a task rotates
only around the first axis of the robot, it will not influence the
cycle time when robot executing the task. In such a case, the
solution for task sorting can be concluded: all tasks are put
into the work cell together. Each task keeps its position and
orientation obtained in stage 1 but may rotate with different
angles around the first axis of the robot. The space sequence of
all tasks is adjusted for minimizing the travelling distance when
robot executes all tasks according to the predefined logical
visiting sequence. The measurement for the travelling distance
is expressed as:

Fn(s) =
∑

i,j

dis(Taski, T askj), (3)

where Fn(s) is the evaluation of sequence s; i is the ID
number of task i; j is the ID number of the task next to task
i that the robot will visit; dis(stni, stnj) is the robot travel
distance from task i to task j. Equation (3) is a fast calculation
considering the present computer capacity. This brings great
advantage in optimization method selection which may involve
relatively large search space.

2) GA principle: As is known, GA is an efficient stochastic
and non-gradient search method [7][8][9]. It manipulates iter-
atively a population of chromosomes, which encode a set of
possible solutions, to obtain solutions with better performance.
The variables of a problem are represented by genes in the
chromosome, and chromosomes are evaluated by the fitness
function. Recombination typically involves two genetic oper-
ators: 1) crossover and 2) mutation. The offspring are created
through altering the compositions of the genes by genetic
operators. After several generations, GA can converge to the

Fig. 5. Flowchart of GA based search in task sorting.

optimal solution[10].
3) Solution description: Based on above analysis, the prob-

lem of task sorting is proposed to be solved using a switched
method, as shown in Fig. 4. When total task number M < M0
(M0 is a threshold), the best sequence will be searched in
the whole search space with dimension of M !; while when
M >= M0, the search method switches to GA based method
to reduce the time cost.

1) Whole space search: this search method is straightfor-
ward.

2) GA based search: the flowchart of GA based search is
shown in Fig. 5. Each chromosome is a sequence of the task
IDs (each task ID is a gene). The initial population is set as
N , the crossover probability is set as Pc, and the mutation
probability is set as Pm.

Crossover operation: traditional crossover operation is per-
formed in a pair of chromosomes, for example, chromosome
1 and chromosome 2. But this may bring frequent trouble in



which the constraint that a task ID can only appear and must
appear once in one space sequence is not satisfied. Thus here
the Enhanced Edge Recombination operation[11] is adopted.

Suppose the fitness of chromosome s in generation i is
Fn(s, i) (can be calculated via equation (3)), the crossover
probability of chromosome s is calculated as:

prc(s, i) = Fn(s, i)/
N∑

j=1

Fn(j, i), (4)

where N is the size of the population. Whether chromosome s
is selected to perform crossover operation or not is determined
by Roulette Wheel Selection according to Pc and prc(s, i).

Mutation operation: in the selected chromosomes, select
one gene to perform mutation operation according to proba-
bility Pm. The selected gene mutates in {1, 2, . . . , M}, M is
the total task number. Suppose the value of the selected gene
is u, and it mutates to v, thus the gene whose value is v must
change to u to satisfy the constraint that a task ID can only
appear and must appear once in one space sequence.

End criterion: the maximum generation L is used as the
end criterion of the search method. L is set to be sufficient
large to guarantee the performance of the final solution. The
best solution in generation L is the optimal sorting solution.

D. Whole optimization

In the stage of Whole optimization, SA approach is adopted
to find the optimal cell layout involving all tasks. After the
first two stages, a near-optimal cell layout has been obtained,
which reduces the search space in this stage. SA is selected
here because it can provide better and better solutions which
provides flexibility to a user. That is, a user can stop the
optimization procedure if he or she is satisfied with the found
solution up to now. Firstly, the principle of SA is given.

1) Principle of Simulated Annealing Algorithm: The
essence of SA is based on the manner that metals recrystalize
in the process of annealing. In real annealing process, a
metal, initially at high temperature and disordered is slowly
cooled so that the system is approximately in thermodynamic
equilibrium at any time. As cooling proceeds, the system
becomes more ordered and approaches a ”frozen” ground state.
By analogy, SA to combinatorial optimization problems is
straight forward and has been used in various combinatorial
optimization problems. The current state of the thermodynamic
system is analogous to the current solution of the combinatorial
problem, the energy of the thermodynamic system is analogous
to the objective function, and frozen state is analogous to the
global minimum[12][13][14].

2) Solution Description: The initial solution S0 of SA is
the layout generated through stage 1 and stage 2. Each solution
is composed of the positions of each task. Fig. 6 shows how
SA works. SA is briefly described as follows:

1) Set initial temperature T0, decent parameter h, 0 <
h < 1, control parameter k, neighbor size L. T is a global
time-varying parameter to control the search steps. At the
beginning, it is set high, meaning that the new solution may be

Fig. 6. Flowchart of Simulated Annealing based search in Whole optimiza-
tion.

accepted even when it is worse than the current one according
to the computed probability p. This feature prevents the method
from getting stuck into a local minimum. L means to search
L neighbors of the current solution. L can be determined
according to the actual situation. k is a parameter to control
the relative weight of ∆CT and T .

2) If L neighbors have been searched for current solution
S, go to 7); else randomly vary the compositions of S in
neighborhood, obtain new solution S∗.

3) Calculate the difference between CT (S∗) and CT (S).
CT (S) is the cycle time of solution S.

4) If ∆CT < 0, accept the current solution S∗, go to 2);
else go to 5).

5) Select random number x between 0 and 1.
6) Calculate probability p = exp(−∆CT/kT ). If x < p,

accept the current solution S∗, go to 2); else go to 7).
7) Set T = h ∗ T . If the end criterion is satisfied, end the



(a) Original task position (b) Resultant position with compared method

(c) Optimized position with given method

Fig. 7. Spot welding test case 1.

algorithm; else go to 2).
It is to point out that SA can start with any initial layout.

This provides flexibility to a user: an initial solution can be
specified by the user as the starting point to trigger the Whole
optimization procedure; also the optimization process can be
stopped during algorithm execution with an intermediate result,
and resumed with the intermediate result as the starting point.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the effectiveness of the proposed method,
several application cases are given, including two spot welding
application cases, one polishing case and one machine tending
case. All the experiments are performed on ABB RobotStudio
simulation platform, which can simulate different types of
ABB industrial robots.

In spot welding cases, the robot is required to visit each
spot point to perform welding operation, shown in Fig. 7. In
spot welding case 1, the spot points are in alignment; while
in spot welding case 2, the spot points are in specifically
required positions, shown in Fig. 8. The testing results are
shown in TABLE 1. Also the testing results are compared
with the results from [6], in which the polynomial fitting
method was employed to find the optimal task position. From
TABLE 1 we can see, for either spot welding case, the
given method shows significant improvement on the compared
method. Reorientation of the tasks plays main role on cycle
time reducing.

In polishing case, the robot task is quite simple with a good

Fig. 8. Spot welding test case 1.

TABLE I
TEST CASES AND RESULTS

Test cases Compared solution Given method Improvement

Spot welding 1 34.86 s 28.9 s 17.1%

Spot welding 2 5.56 s 4.44 s 20.1%

Polishing 30.7 s 30.4 s 1.0%

Machine tending 21.9 s 19.1 s 12.8%

position already. Thus there is not too much space to improve
the cycle time.

In machine tending test case extracted from real produc-
tion, a machine for workpiece processing, two insert sta-
tions and one conveyor are included. The cycle is composed
as: Insert1 → Machine → Conveyor → Insert2 →
Machine → Conveyor. Fig. 9 (a) shows the real cell layout
before optimized, and Fig. 9 (b) shows the cell layout after
optimization via the given method. The result shows a big
cycle time improvement. The reason comes from the new space
sorting of the tasks (stations), and also the relative positions
adjustment of all tasks in optimization procedure.

As found in the experiments, for tasks with complex paths
that usually include more targets with different orientations,
the given method can exhibit significant benefits, but not for
tasks with simple paths involving small amount of targets with
similar orientations. The reason is that for simple paths, the
robot performance doesn’t vary much when the task is put at
different positions. Also found in experiments, for the individ-
ual task, reorientation will always put more influence on the
cycle time than translation. When multiple tasks are put into
consideration, task sorting and then adjusting simultaneously
are also effective ways for reducing cycle time.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

A method for optimizing the work cell layout which may
involve one or more tasks has been given. The method can
realize optimal work cell layout in terms of minimum cycle
time with three major steps: firstly, the best position for each
individual task is determined with use of preferred region;



(a) Actual cell layout and task positions

(b) Optimized cell layout and task positions

Fig. 9. Machine tending test case.

secondly, based on the results from the first stage, the optimal
space sequence of the tasks is determined by means of a
fast Genetic Algorithm; finally, the positions of the tasks are
adjusted simultaneously in a greatly reduced search space
using Simulated Annealing Method. The method was verified
through several test cases and can be used as a reference for
cell layout and improving robot performance for a new robotic
cell setup or existing cell adjustment.

B. Future work

Although a method for optimizing the work cell layout
has been implemented, there is still a gap when put into real
work cell layout application. The gap mainly comes from the
following aspects:

1) The real work cell is more complex. For example, a
real work cell may involve obstacles with all kinds of types,
the safety requirements, and other specific requirements. All
these will definitely restrict the adjustment space and freedom
when adjusting the task positions to get an optimal layout. To
extract the information from real work cell, recover them and
then combine them with the current approach is trivial work.
Thus an effective tool to capture the real work cell scenario
will be very helpful when the provided approach is put into
real applications. The tool can be realized by existed sensing
techniques, i. e., camera to SEE the real scenario, laser to
TOUGH the real scenario, etc.

2) The proposed method mainly concerns with the robot
task positioning, that is, the relative positions of the targets

belongs to the same task are not adjusted. In fact, these
positions, task position, and also tool data will put a compre-
hensive effect on cycle time. Of course, changing one aspect
of these three aspects will influence the other aspects. Thus an
integrated method taking into account these aspects together
will further improve the work cell layout for actual production
applications.
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