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Abstract—It’s currently the market trend to make industrial 
robot easy to use. This paper analyzed the key areas and 
identified key bottlenecks that stop a robot simulation and offline 
programming tool to be intuitive and easy to use. The key areas 
are geometrical model handling, robot targets and paths 
handling, path configuration planning, etc. Based on the analysis, 
the solutions for each of the identified key areas were provided 
from easy of use perspective. The proposed solution has been 
implemented as a software product based on RobotStudio, ABB’s 
simulation and offline programming tool. 
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I.  INTRODUCTION 
The presented work related to robotic cell simulation and 

offline programming oriented to automated production 
applications. A robotic work cell includes a robot, one or more 
robot tools and one of more workstations that robot will visit 
and operate. 

Conventional robot simulation and offline programming 
tools mainly oriented to skilled engineers rather than a person 
without too much engineering background, such as a sales man. 
To show a robotized solution via simulation to end customer 
directly from a sales man can guarantee fast response and better 
understanding of the proposed solution. From a sales man point 
of view, the existing simulation and offline programming tools 
are difficult to use from the aspects of modeling a geometrical 
entity; generating robot targets and paths; adjusting robot 
targets; planning path configuration; positioning cell objects; 
etc. In addition, to show different scenarios of the engineering 
solution for a customer always involves re-engineering, i.e., 
setting up virtual cell for simulation and offline programming 
from very beginning, which is time consuming, or even 
impossible regarding the engineering time. 

In this paper, the key steps of setting up a virtual cell for 
offline programming and simulation are identified. For each of 
such steps, the challenges from easy of use perspective are 
analyzed. Based on the analysis, the corresponding solutions 
are presented with examples. 

II. KEY STEPS TO SETUP A VIRTUAL ROBOTIC CELL FOR 
OFFLINE PROGRAMMING  

Figure 1 shows the flow and key steps to setup a virtual 
robotic cell for offline programming and simulation. 

 
Figure 1.  The key steps of offline robot programming and simulation 

The starting point to create a virtual robotic cell is loading a 
robot model, and CAD models that form the cell as devices and 
facilities that a robot will handle. It is necessary to adjust the 
relative positions of robot and all devices as the initial cell 
layout. Based on this, the TCP – tool central point and the wobj 
– local reference coordinate system for different devices can be 
defined for later on robot targets creation. Robot targets needs 
then first created for different devices as the visiting points for 
a robot that can be linked as different robot paths. In order to 
make a robot go through all the paths within a cell, all robot 
targets need to be reachable for a robot. Based on this, the arm 
configuration of a robot when it visits a target needs to be 
correctly set to ensure robot can go from one target to another 
along all paths. Otherwise, either the positions of different cell 
components, includes different devices and the robot, or 
position & orientation of individual robot target need to be 
adjusted. When the needed events, such as pick a part, correctly 
defined with connection with different signals from either a 
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robot or a device, the offline program is ready and the 
simulation can be run. If the simulation result is satisfied from 
the perspective of robot motion or application needs, the offline 
programming is done. Otherwise any of the above steps need to 
be repeated for a good solution. 

For the steps as shown in figure 1, good engineering 
background of geometrical modeling, robotics know-how, and 
usage of robot offline programming tools is necessary. How to 
lower the threshold of each of the key steps, or in another word, 
how to enable a person, such as a sales man without enough 
engineering background, to conduct offline programming and 
simulation is a challenging job. 

III. BOTTLENECK ANALYSIS AND SOLUTIONS FOR KEY STEPS 
OF EASY OFFLINE PROGRAMMING AND SIMULATION 

A. Geometrical modeling 
The current way of geometrical modeling is either using a 

commercial CAD tool, such as Pro-Engineer or Solidworks, or 
the modeling module of a robot simulation software to build a 
complex CAD model with building blocks, such as box, 
cylinder. Several drawbacks can be identified for such a 
modeling way: 

 The threshold to do so is high: at least several days 
training of the modeling tool is required and necessary 
practice is needed for an engineer; 

 Geometrical modeling is a time consuming process 
even for a skilled engineer that prolong the preparation 
stage of offline robot programming 

 In the solution proposal stage, once the size of a 
geometrical model needs to be changed, creating a new 
model from beginning is required. 

In order to reduce the difficulty level and shorten the time 
for geometrical modeling, parametric driven modeling is 
presented. Based on the analysis of different robotic 
applications, the devices for a robotized cell can be categorized 
to form a device library. For each of the devices, the 
geometrical model can be standardized as one or several typical 
shapes. Such a geometrical model can be defined as a 
parametrical driven model. Figure 2 shows such a model for an 
injection molding machine. 

In figure 2, the model of an injection molding machine is 
defined with 13 driven parameters. Each parameter has a 
default value to ensure the correct creating of a model. If the 
size of the model is not as desired, each of the parameter set 
can be changed separately or simultaneously to match the 
reality. In such a way a user can easily and quickly create a 
complex injection molding machine model without extensive 
knowledge of any traditional geometrical modeling tools. 
Besides that, with change of one or several driven parameters, a 
new model of an injection molding machine can be quickly 
created. Such a technology can be applied to any devices in a 
robotics cell that needs a 3D geometrical model. 

 
Figure 2.  The parametric model of an injection molding machine 

B. Target and path generating 
The current way of target generating is either jogging a 

robot to a position to record the posture (position and 
orientation) of the tool center point, or input the value of the 
posture directly to define a robot target. Either way is not 
convenient and involves try-and-error regarding the precision 
of the created targets. Once all needed targets defined, it comes 
to the issue of how to organize different targets as one or 
several paths. This involves how to define the order of the 
robot motion, and how to define the properties of each robot 
motion item, such as motion speed, moving type, i.e., linear 
move or joint move, etc. This is also a time consuming process 
which demands extensive knowledge for a user regarding 
robotics knowledge and the skills to use a robot offline 
programming tool. Further more, even the above factors is not 
an issue, it is hard to merge the requirements of a specific robot 
application into the generated targets and paths, such as 
preferred posture of a target and motion setting of a path. This 
is highly depends on the experience of a user that can not 
guarantee a common standard. 

In order to reduce the difficulty of robot target and path 
generating, and integrate well with the process requirements, an 
automatic robot target and path generating method based on 
parametric driven model is presented. The method is 
introduced based on but not limited to machine tending 
application. 

Taking machine tending application as an example, there 
are typical devices, such as machines and conveyors, can be 
defined as different types of work stations that includes a 
geometrical model, two or more robot targets that formed as 
one or more paths. As introduced above, the basic shape of a 
parametric driven model is clearly defined with variation of the 
size. There is certain connection between the well defined 
geometrical model and the posture of a robot target based on 
the analysis of machine tending application. For example, the 
picking point for a molded part is always in line with the 
central point of the molding plate. To formulize such 
relationship between a robot target and the geometrical model 
as algorithms will enable the automatic way of target 
generating. Further more, the specific application needs on 
robot targets and paths can be organized as different templates. 
Such a template defines the order of targets in a path, motion 
properties of each motion items for a path, etc. With such a 
template, a robot path that is well matched with the application 



         

needs can be quickly generated that can ensure a common 
standard of offline robot programming. Figure3 shows the 
relationship from geometrical model to robot targets and paths. 
In figure3, the model is the parametric driven model. Robot 
targets are created from the same set of the driven parameters 
for the model as shown in figure 2. All robot targets are 
organized as two paths (one in-path and one out-path) 
according to the process template. 

 
Figure 3.  Figure3 A geometrical model and associated targets and paths 

It is common that the size of a workstation needs to be 
changed to match with the needs of a specific application case. 
The proposed methods can avoid recreating a geometrical 
model from scratch as introduced above. Further more, since 
the targets are associated with a geometrical model, all targets 
belong to a work station can then be updated automatically to 
remain the same relationship with the station model. Hence an 
automatic way to generate and update a work station, includes 
geometrical model and all robot targets, is obtained. 

C. Scenario based robot programming 
It happens that different scenarios need to be evaluated and 

compared for a good solution. A scenario represents how a 
robot will tend a work station. For example one scenario for an 
injection molding machine represents picking a part from the 
front side of a machine, while another is for releasing a part to 
a machine, then picking a new molded part from the top of the 
machine. A scenario is formed with different actions for robot 
motion, tool methods and station logics. Robot motion involves 
robot paths, tool method involves tool data and tool signal 
logics, and station logic encapsulates station signal handling. 
Station logic is not supposed to be discussed here. Different 
templates need to be provided to match with different 
scenarios. But different scenarios of a work station are all based 
on the same station model.  

In order to create different scenarios, the traditional way is 
to copy the station model and to create another set of the robot 
targets and paths manually, plus different tool methods and 
station logic setting. This is quite time consuming operation. 
The method introduced in this paper, i.e., scenario based robot 
programming, can not only realize automatic generating of 
geometrical model, targets and paths, but it is possible to map 
one geometrical model with different set of robot targets and 
paths from different scenarios. This makes it quite easier and 
faster to switch and compare different layouts, i.e., scenarios, 
of a specific application case. 

In figure4 two scenarios of an injection molding machine is 
displayed. Scenario-1 represents picking a part from an 
injection molding machine, while scenario-2 represents putting 
an insert part into the same work station and then going to 
another side of the used mould to pick a molded part. 

Once a new scenario is chosen for a work station, the 
actions collection will be changed according to the new 
scenario template. That means robot will use different paths 
when travels inside a station, use different tool methods to 
handle part with new station logic. From then on, different path 
templates can be used for the same geometrical model of a 
work station. 

Scenario-1 

 MoveIn (Path1); 

 PickPart (Part1, doTool1Closed, 1, Tool1, 0.5); 

 MoveOut(Path2); 

Scenario-2 

 MoveIn (Path3); 

 ReleasePart (Insert1, doTool2Closed, 1, Tool2, 0.5); 

 InsideTravel (Path4); 

 PickPart (Part1, doTool1Closed, 1, Tool1, 1.0); 

 MoveOut(Path2); 
Figure 4.  Two scenarios for an injection molding machine station. 

D. Target configuration planning 
It is usually possible to attain the same robot target in 

several different ways, using different sets of axis angles. These 
are called as different robot configurations[1]. Figure5 shows 
two different arm configurations used to attain the same robot 
target. The configuration on the right side is attained by 
rotating the arm backward, and axis1 is rotated 180 degrees. 

 
Figure 5.  Two different arm configurations when robot approaches a target 

Robot can reach two targets does not mean it can go along 
the path between the targets. This depends on if the rotation 
limits of any axis reached when robot moving. Since in most 
cases there are more than one configuration option for one 
robot target, this raises an issue of how to choose an 
appropriate configuration data for each robot target to ensure 
robot going along an entire path. Further more, the 
configuration setting for each robot target should ensure a 
smooth robot motion for a cycle that serves as the collection of 
paths for a robotic cell. 



         

Currently for most of the offline robot programming tools, 
the configuration data for each robot target is defined by a user 
manually. This is again a time consuming process which has a 
high usage threshold, and highly depends on the knowledge 
and the experience of a user. For RobotStudio, the offline 
programming and simulation tool from ABB, it is possible to 
do target configuration planning for a path automatically. This 
is a big improvement compared with other similar tools. But 
how to set the configuration data for the starting and ending 
targets of a path to ensure a smooth change from one path to 
another along a robot motion cycle is still open. The methods 
presented here is for targets configuration planning along the 
whole robot motion cycle. 

The principle, instead of the detailed implementation, of the 
targets configuration planning algorithm is introduced. The 
flow of targets configuration planning algorithm is shown in 
figure6. In figure6, only the configuration data selecting for 
two adjacent targets are shown to explain the principle. 

 
Figure 6.  Algorithm of target configuration planning 

For the algorithm in figure6, the key factor is to define the 
criteria for configuration selection for the later target based on 
the configuration data of the former target. A tight rule, called 
rule-1 is applied first. Rule-1: the selected configuration for a 
target should ensure any of the 6 axis of a robot not rotate more 
than 90 degree when the robot comes from the previous target. 
If more than one solution of the configuration for a target can 
be found based on the rule-1, another rule, rule-2, should be 
applied. Rule-2: to calculate the sum of the joint angle change 
from one target to another based on equation (1), choose the 
configuration data that can realize minimum distance in joint 
space. If there is no solution based on Rule-1, a loose rule 
called Rule-3 should apply. Rule-3: the selected configuration 
for a target should ensure any of the 6 axis of a robot not rotate 
more than 180 degree when the robot comes from the previous 

target. But it can happen that there is a solution according to 
Rule-3, but any of the robot axis can be out of reachable range 
when robot start to move based on such a solution. A test run 
should be conducted to finally verify if the solution is ok or not. 
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Where in: 

i is the number of the robot joints; 

j is the current target No. 
E. Cell components placement 

How to placement all components of a robotic cell is very 
important in terms of making a good use of the capacity of a 
robot and improving productivity of a robotic cell. To conduct 
the job of cell components positioning needs a user has good 
robotics knowledge and rich experience of the robotic 
application which again not possible for a sales man. The 
solution for optimal cell components placement in terms of 
minimum robot cycle time is presented in another dedicated 
paper [2]. Here only a brief introduction of the solution is given 
as a part of the total solution. The flow the cell components 
placement is shown in figure7. 

 
Figure 7.  Flowchart of optimal cell placement 

Usually there is not only one robot task in a robotic cell. An 
assumption for robot task positioning is applied for the 
presented work: repositioning of a robot task will not result in 
difference regarding robot performance if such repositioning 
will only cause different rotation of the first axis of a robot. 
This assumption has been verified with test cases. Based on the 
assumption, the positioning of several robot tasks can be 
divided into 3 stages, i.e., individual task positioning; task 
sorting; and optimizing. Firstly, each individual robot task will 
be considered separately for a best position and orientation 
relative to a robot. Secondly, based on the visiting sequence of 
all robot tasks, there should be a best order of all involved robot 
tasks, i.e., how the neighboring relation will be of all involved 
robot tasks to reach minimum cycle time. The first two stages 
can be regards as the initialization for the final optimizing. In 
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the final optimizing stage, position and orientation of all robot 
tasks can be adjusted simultaneously with use of the simulated 
annealing algorithm. As the result, the optimal robot tasks 
layout is better compared with that from optimal robot 
positioning [3] 

IV. EXAMPLES 
As the total solution for easy offline robot programming, 

the work presented here has been implemented as a software 
product called as Machine Tending ProcessPac (MTPP) tailed 
to RobotStudio, ABB’s offline programming and simulation 
platform. Examples for each of the key areas discussed above 
are provided. 

With MTPP, an IRB1600 robot, together with two work 
stations, one robot tool, one robot base and one cell fence can 
be quickly configured to form a machine tending robotic cell, 
as shown in figure 8. One work station is an injection molding 
machine, another is a conveyor. The robot will first go into the 
machine to pick a molded part and put it onto the conveyor to 
form a robot task cycle. Model of both stations, including the 
robot base and cell fence, are parametric model whose size can 
be easily changed to match with reality. Such changes on 
model size can be reflected in figure9. 

 
Figure 8.  Sample machine tending robotic cell 

Targets are created from the same set of driven parameters 
of both stations are displayed in figure8. These targets further 
formed as different paths according to the scenario that defined 
based on application requirements. The scenario of a station 
can be easily changed according to reality. For example, the 
scenario of the injection molding machine is changed from 
“pick from back side” to “release and pick from top”, which 
means robot will first go into the machine to release a part 
(usually an insert) at one side of the plate, and then go to 
another side of the plate to pick a molded part and comes out of 
the machine from its top side. The predefined scenarios for an 
injection molding machine are shown in figure10. 

 
Figure 9.  The same machine tending cell with modified cell configure data 

If the scenario chosen for the injection molding machine 
station is “release and pick from top” as shown in figure10, the 
corresponding robot executable program generated is shown in 
figure11. In figure11, there are some actions for signal handling 
that do not discussed in this paper. For the path action, such as 
ExecutePath “InReT_1”, the executable robot program 
generated is shown in the same picture. 

 
Figure 10.  Different scenarios of an injection molding machine 

 

Figure 11.  The robot program generated for the selected scenario 

All the work stations, as the place holder for different robot 
tasks, are positioned automatically with the method introduced 
in the cell components placement section for an optimal cell 
layout in terms of minimum robot executing cycle time. 

V. SUMMARY 
The presented work analyzed the key challenges of easy 

offline robot programming. For each of the identified 
bottleneck, the corresponding solutions were provided. The 
solutions have been implemented as a software product called 



         

as MTPP that based on RobotStudio. Together with other 
solutions in MTPP that can not be introduced limited by the 
paper size, a total solution for easy offline robot programming 
and simulation can be realized. The solution enables a sales 
man to create a virtual robotic cell and hence run simulation 
directly within an hour.  

A solution engineer can work out detailed solution based on 
the results from a sales engineer. Or in another scenario, MTPP 
can be used directly by a solution engineer for offline 
programming purpose.  
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