
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Virtual Engineering: Challenges and Solutions for
Intuitive Offline Programming for Industrial Robot

Liwei Qi, Xingguo Yin, Haipeng Wang, Li Tao
ABB Corporate Research China

No. 31 Fu Te Dong San Rd., Waigaoqiao Free Trade Zone, 200131
Shanghai, P. R. China

Levy-liwei.qi@cn.abb.com，Xingguo.yin@cn.abb.com

Abstract—It’s currently the market trend to make industrial
robot easy to use. This paper analyzed the key areas and
identified key bottlenecks that stop a robot simulation and offline
programming tool to be intuitive and easy to use. The key areas
are geometrical model handling, robot targets and paths
handling, path configuration planning, etc. Based on the analysis,
the solutions for each of the identified key areas were provided
from easy of use perspective. The proposed solution has been
implemented as a software product based on RobotStudio, ABB’s
simulation and offline programming tool.

Keywords—industrial robot, cell, easy robot programming

I. INTRODUCTION
The presented work related to robotic cell simulation and

offline programming oriented to automated production
applications. A robotic work cell includes a robot, one or more
robot tools and one of more workstations that robot will visit
and operate.

Conventional robot simulation and offline programming
tools mainly oriented to skilled engineers rather than a person
without too much engineering background, such as a sales man.
To show a robotized solution via simulation to end customer
directly from a sales man can guarantee fast response and better
understanding of the proposed solution. From a sales man point
of view, the existing simulation and offline programming tools
are difficult to use from the aspects of modeling a geometrical
entity; generating robot targets and paths; adjusting robot
targets; planning path configuration; positioning cell objects;
etc. In addition, to show different scenarios of the engineering
solution for a customer always involves re-engineering, i.e.,
setting up virtual cell for simulation and offline programming
from very beginning, which is time consuming, or even
impossible regarding the engineering time.

In this paper, the key steps of setting up a virtual cell for
offline programming and simulation are identified. For each of
such steps, the challenges from easy of use perspective are
analyzed. Based on the analysis, the corresponding solutions
are presented with examples.

II. KEY STEPS TO SETUP A VIRTUAL ROBOTIC CELL FOR
OFFLINE PROGRAMMING

Figure 1 shows the flow and key steps to setup a virtual
robotic cell for offline programming and simulation.

Figure 1. The key steps of offline robot programming and simulation

The starting point to create a virtual robotic cell is loading a
robot model, and CAD models that form the cell as devices and
facilities that a robot will handle. It is necessary to adjust the
relative positions of robot and all devices as the initial cell
layout. Based on this, the TCP – tool central point and the wobj
– local reference coordinate system for different devices can be
defined for later on robot targets creation. Robot targets needs
then first created for different devices as the visiting points for
a robot that can be linked as different robot paths. In order to
make a robot go through all the paths within a cell, all robot
targets need to be reachable for a robot. Based on this, the arm
configuration of a robot when it visits a target needs to be
correctly set to ensure robot can go from one target to another
along all paths. Otherwise, either the positions of different cell
components, includes different devices and the robot, or
position & orientation of individual robot target need to be
adjusted. When the needed events, such as pick a part, correctly
defined with connection with different signals from either a

Load Robot & CAD model

Tune inter-position of cell

Define TCP and Wobj

Create / Edit targets

Create / Edit Paths

Tune Targets configuration along

Robot can go
through all paths

Define events with signals

Simulation is
OK?

End

Y

Y

N

N

robot or a device, the offline program is ready and the
simulation can be run. If the simulation result is satisfied from
the perspective of robot motion or application needs, the offline
programming is done. Otherwise any of the above steps need to
be repeated for a good solution.

For the steps as shown in figure 1, good engineering
background of geometrical modeling, robotics know-how, and
usage of robot offline programming tools is necessary. How to
lower the threshold of each of the key steps, or in another word,
how to enable a person, such as a sales man without enough
engineering background, to conduct offline programming and
simulation is a challenging job.

III. BOTTLENECK ANALYSIS AND SOLUTIONS FOR KEY STEPS
OF EASY OFFLINE PROGRAMMING AND SIMULATION

A. Geometrical modeling
The current way of geometrical modeling is either using a

commercial CAD tool, such as Pro-Engineer or Solidworks, or
the modeling module of a robot simulation software to build a
complex CAD model with building blocks, such as box,
cylinder. Several drawbacks can be identified for such a
modeling way:

 The threshold to do so is high: at least several days
training of the modeling tool is required and necessary
practice is needed for an engineer;

 Geometrical modeling is a time consuming process
even for a skilled engineer that prolong the preparation
stage of offline robot programming

 In the solution proposal stage, once the size of a
geometrical model needs to be changed, creating a new
model from beginning is required.

In order to reduce the difficulty level and shorten the time
for geometrical modeling, parametric driven modeling is
presented. Based on the analysis of different robotic
applications, the devices for a robotized cell can be categorized
to form a device library. For each of the devices, the
geometrical model can be standardized as one or several typical
shapes. Such a geometrical model can be defined as a
parametrical driven model. Figure 2 shows such a model for an
injection molding machine.

In figure 2, the model of an injection molding machine is
defined with 13 driven parameters. Each parameter has a
default value to ensure the correct creating of a model. If the
size of the model is not as desired, each of the parameter set
can be changed separately or simultaneously to match the
reality. In such a way a user can easily and quickly create a
complex injection molding machine model without extensive
knowledge of any traditional geometrical modeling tools.
Besides that, with change of one or several driven parameters, a
new model of an injection molding machine can be quickly
created. Such a technology can be applied to any devices in a
robotics cell that needs a 3D geometrical model.

Figure 2. The parametric model of an injection molding machine

B. Target and path generating
The current way of target generating is either jogging a

robot to a position to record the posture (position and
orientation) of the tool center point, or input the value of the
posture directly to define a robot target. Either way is not
convenient and involves try-and-error regarding the precision
of the created targets. Once all needed targets defined, it comes
to the issue of how to organize different targets as one or
several paths. This involves how to define the order of the
robot motion, and how to define the properties of each robot
motion item, such as motion speed, moving type, i.e., linear
move or joint move, etc. This is also a time consuming process
which demands extensive knowledge for a user regarding
robotics knowledge and the skills to use a robot offline
programming tool. Further more, even the above factors is not
an issue, it is hard to merge the requirements of a specific robot
application into the generated targets and paths, such as
preferred posture of a target and motion setting of a path. This
is highly depends on the experience of a user that can not
guarantee a common standard.

In order to reduce the difficulty of robot target and path
generating, and integrate well with the process requirements, an
automatic robot target and path generating method based on
parametric driven model is presented. The method is
introduced based on but not limited to machine tending
application.

Taking machine tending application as an example, there
are typical devices, such as machines and conveyors, can be
defined as different types of work stations that includes a
geometrical model, two or more robot targets that formed as
one or more paths. As introduced above, the basic shape of a
parametric driven model is clearly defined with variation of the
size. There is certain connection between the well defined
geometrical model and the posture of a robot target based on
the analysis of machine tending application. For example, the
picking point for a molded part is always in line with the
central point of the molding plate. To formulize such
relationship between a robot target and the geometrical model
as algorithms will enable the automatic way of target
generating. Further more, the specific application needs on
robot targets and paths can be organized as different templates.
Such a template defines the order of targets in a path, motion
properties of each motion items for a path, etc. With such a
template, a robot path that is well matched with the application

needs can be quickly generated that can ensure a common
standard of offline robot programming. Figure3 shows the
relationship from geometrical model to robot targets and paths.
In figure3, the model is the parametric driven model. Robot
targets are created from the same set of the driven parameters
for the model as shown in figure 2. All robot targets are
organized as two paths (one in-path and one out-path)
according to the process template.

Figure 3. Figure3 A geometrical model and associated targets and paths

It is common that the size of a workstation needs to be
changed to match with the needs of a specific application case.
The proposed methods can avoid recreating a geometrical
model from scratch as introduced above. Further more, since
the targets are associated with a geometrical model, all targets
belong to a work station can then be updated automatically to
remain the same relationship with the station model. Hence an
automatic way to generate and update a work station, includes
geometrical model and all robot targets, is obtained.

C. Scenario based robot programming
It happens that different scenarios need to be evaluated and

compared for a good solution. A scenario represents how a
robot will tend a work station. For example one scenario for an
injection molding machine represents picking a part from the
front side of a machine, while another is for releasing a part to
a machine, then picking a new molded part from the top of the
machine. A scenario is formed with different actions for robot
motion, tool methods and station logics. Robot motion involves
robot paths, tool method involves tool data and tool signal
logics, and station logic encapsulates station signal handling.
Station logic is not supposed to be discussed here. Different
templates need to be provided to match with different
scenarios. But different scenarios of a work station are all based
on the same station model.

In order to create different scenarios, the traditional way is
to copy the station model and to create another set of the robot
targets and paths manually, plus different tool methods and
station logic setting. This is quite time consuming operation.
The method introduced in this paper, i.e., scenario based robot
programming, can not only realize automatic generating of
geometrical model, targets and paths, but it is possible to map
one geometrical model with different set of robot targets and
paths from different scenarios. This makes it quite easier and
faster to switch and compare different layouts, i.e., scenarios,
of a specific application case.

In figure4 two scenarios of an injection molding machine is
displayed. Scenario-1 represents picking a part from an
injection molding machine, while scenario-2 represents putting
an insert part into the same work station and then going to
another side of the used mould to pick a molded part.

Once a new scenario is chosen for a work station, the
actions collection will be changed according to the new
scenario template. That means robot will use different paths
when travels inside a station, use different tool methods to
handle part with new station logic. From then on, different path
templates can be used for the same geometrical model of a
work station.

Scenario-1

 MoveIn (Path1);

 PickPart (Part1, doTool1Closed, 1, Tool1, 0.5);

 MoveOut(Path2);

Scenario-2

 MoveIn (Path3);

 ReleasePart (Insert1, doTool2Closed, 1, Tool2, 0.5);

 InsideTravel (Path4);

 PickPart (Part1, doTool1Closed, 1, Tool1, 1.0);

 MoveOut(Path2);
Figure 4. Two scenarios for an injection molding machine station.

D. Target configuration planning
It is usually possible to attain the same robot target in

several different ways, using different sets of axis angles. These
are called as different robot configurations[1]. Figure5 shows
two different arm configurations used to attain the same robot
target. The configuration on the right side is attained by
rotating the arm backward, and axis1 is rotated 180 degrees.

Figure 5. Two different arm configurations when robot approaches a target

Robot can reach two targets does not mean it can go along
the path between the targets. This depends on if the rotation
limits of any axis reached when robot moving. Since in most
cases there are more than one configuration option for one
robot target, this raises an issue of how to choose an
appropriate configuration data for each robot target to ensure
robot going along an entire path. Further more, the
configuration setting for each robot target should ensure a
smooth robot motion for a cycle that serves as the collection of
paths for a robotic cell.

Currently for most of the offline robot programming tools,
the configuration data for each robot target is defined by a user
manually. This is again a time consuming process which has a
high usage threshold, and highly depends on the knowledge
and the experience of a user. For RobotStudio, the offline
programming and simulation tool from ABB, it is possible to
do target configuration planning for a path automatically. This
is a big improvement compared with other similar tools. But
how to set the configuration data for the starting and ending
targets of a path to ensure a smooth change from one path to
another along a robot motion cycle is still open. The methods
presented here is for targets configuration planning along the
whole robot motion cycle.

The principle, instead of the detailed implementation, of the
targets configuration planning algorithm is introduced. The
flow of targets configuration planning algorithm is shown in
figure6. In figure6, only the configuration data selecting for
two adjacent targets are shown to explain the principle.

Figure 6. Algorithm of target configuration planning

For the algorithm in figure6, the key factor is to define the
criteria for configuration selection for the later target based on
the configuration data of the former target. A tight rule, called
rule-1 is applied first. Rule-1: the selected configuration for a
target should ensure any of the 6 axis of a robot not rotate more
than 90 degree when the robot comes from the previous target.
If more than one solution of the configuration for a target can
be found based on the rule-1, another rule, rule-2, should be
applied. Rule-2: to calculate the sum of the joint angle change
from one target to another based on equation (1), choose the
configuration data that can realize minimum distance in joint
space. If there is no solution based on Rule-1, a loose rule
called Rule-3 should apply. Rule-3: the selected configuration
for a target should ensure any of the 6 axis of a robot not rotate
more than 180 degree when the robot comes from the previous

target. But it can happen that there is a solution according to
Rule-3, but any of the robot axis can be out of reachable range
when robot start to move based on such a solution. A test run
should be conducted to finally verify if the solution is ok or not.

∑
=

−−=
6

1
1,,

i
jijiDis αα

 (1)

Where in:

i is the number of the robot joints;

j is the current target No.
E. Cell components placement

How to placement all components of a robotic cell is very
important in terms of making a good use of the capacity of a
robot and improving productivity of a robotic cell. To conduct
the job of cell components positioning needs a user has good
robotics knowledge and rich experience of the robotic
application which again not possible for a sales man. The
solution for optimal cell components placement in terms of
minimum robot cycle time is presented in another dedicated
paper [2]. Here only a brief introduction of the solution is given
as a part of the total solution. The flow the cell components
placement is shown in figure7.

Figure 7. Flowchart of optimal cell placement

Usually there is not only one robot task in a robotic cell. An
assumption for robot task positioning is applied for the
presented work: repositioning of a robot task will not result in
difference regarding robot performance if such repositioning
will only cause different rotation of the first axis of a robot.
This assumption has been verified with test cases. Based on the
assumption, the positioning of several robot tasks can be
divided into 3 stages, i.e., individual task positioning; task
sorting; and optimizing. Firstly, each individual robot task will
be considered separately for a best position and orientation
relative to a robot. Secondly, based on the visiting sequence of
all robot tasks, there should be a best order of all involved robot
tasks, i.e., how the neighboring relation will be of all involved
robot tasks to reach minimum cycle time. The first two stages
can be regards as the initialization for the final optimizing. In

Find the best position of a robot task

Find the best orientation of a robot task

For one robot task

Find the best sequence of all stations

Final optimization

Final layout

For all robot tasks

the final optimizing stage, position and orientation of all robot
tasks can be adjusted simultaneously with use of the simulated
annealing algorithm. As the result, the optimal robot tasks
layout is better compared with that from optimal robot
positioning [3]

IV. EXAMPLES
As the total solution for easy offline robot programming,

the work presented here has been implemented as a software
product called as Machine Tending ProcessPac (MTPP) tailed
to RobotStudio, ABB’s offline programming and simulation
platform. Examples for each of the key areas discussed above
are provided.

With MTPP, an IRB1600 robot, together with two work
stations, one robot tool, one robot base and one cell fence can
be quickly configured to form a machine tending robotic cell,
as shown in figure 8. One work station is an injection molding
machine, another is a conveyor. The robot will first go into the
machine to pick a molded part and put it onto the conveyor to
form a robot task cycle. Model of both stations, including the
robot base and cell fence, are parametric model whose size can
be easily changed to match with reality. Such changes on
model size can be reflected in figure9.

Figure 8. Sample machine tending robotic cell

Targets are created from the same set of driven parameters
of both stations are displayed in figure8. These targets further
formed as different paths according to the scenario that defined
based on application requirements. The scenario of a station
can be easily changed according to reality. For example, the
scenario of the injection molding machine is changed from
“pick from back side” to “release and pick from top”, which
means robot will first go into the machine to release a part
(usually an insert) at one side of the plate, and then go to
another side of the plate to pick a molded part and comes out of
the machine from its top side. The predefined scenarios for an
injection molding machine are shown in figure10.

Figure 9. The same machine tending cell with modified cell configure data

If the scenario chosen for the injection molding machine
station is “release and pick from top” as shown in figure10, the
corresponding robot executable program generated is shown in
figure11. In figure11, there are some actions for signal handling
that do not discussed in this paper. For the path action, such as
ExecutePath “InReT_1”, the executable robot program
generated is shown in the same picture.

Figure 10. Different scenarios of an injection molding machine

Figure 11. The robot program generated for the selected scenario

All the work stations, as the place holder for different robot
tasks, are positioned automatically with the method introduced
in the cell components placement section for an optimal cell
layout in terms of minimum robot executing cycle time.

V. SUMMARY
The presented work analyzed the key challenges of easy

offline robot programming. For each of the identified
bottleneck, the corresponding solutions were provided. The
solutions have been implemented as a software product called

as MTPP that based on RobotStudio. Together with other
solutions in MTPP that can not be introduced limited by the
paper size, a total solution for easy offline robot programming
and simulation can be realized. The solution enables a sales
man to create a virtual robotic cell and hence run simulation
directly within an hour.

A solution engineer can work out detailed solution based on
the results from a sales engineer. Or in another scenario, MTPP
can be used directly by a solution engineer for offline
programming purpose.

REFERENCES

[1] ABB LTD, RAPID Reference Manual 4.0.40. 2002.
[2] Zhang, D., Qi, L. Virtual Engineering: “Optimal cell layout method for

improving productivity for industrial robot”, IEEE CIS & RAM 2008
(Not published).

[3] ABB RESEARCH LTD, ”METHOD FOR OPTIMISING THE
PERFORMANCE OF A ROBOT”, Patent Number: US 2007106421,
2007.

