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Abstract 
 This paper deals with the observer-based H∞ control 

problem for T-S fuzzy systems. By Lyapunov stability and 

the three index combination technique, a new nonlinear 

matrix inequality condition for the existence of an 

observer-based H∞ controller is derived. To solve  

controllers with LMI algorithms, a set of LMI conditions 

which are necessary and sufficient to the derived nonlinear 

condition are developed as well. It can be shown that the 

present result is more relaxed than the existing ones and 

includes them as special cases. 

Keywords  T-S fuzzy systems, linear matrix 

inequality (LMI), H∞ control. 

I. Introduction 

Fuzzy sets and systems have gone through substantial 

development since the introduction of fuzzy set theory 

by Zadeh since 1965 [18]. There have been a great 

variety of successful applications in the area of image 

processing, industrial applications, medicine, finance, 

control engineering and so on in the literature 

[1,2,6,10,17,19]. In particular, the T-S fuzzy model, 

also called the Type-III fuzzy model by Sugeno 

[11,12], is recognized as a powerful tool. For example, 

it offers an alternative approach to describing 

nonlinear systems [20]. By using the fuzzy model, lots 

of nonlinear control problems can be easily solved 

[13,15,16]. Therefore, considerable attention has been 

paid to the analysis and synthesis of T-S fuzzy systems 

and various techniques have been developed during 

the decade [4,14]. 

The H∞ control problem of T-S fuzzy systems has 

been investigated by many authors recently. For 

example, the papers [3,7,8,9] and the references 

therein solved the H∞ control problem via fuzzy 

observer-based feedback control. Among which, the 

result of [8] is quite interesting. It introduced a new 

type of observer and developed a nonlinear condition 

for the existence of controllers. For obtaining 

controllers, a sufficient LMI condition was proposed 

and solved by a two-step procedure. Later on, the 

reference [7] proposed an improved result, in which an 

LMI condition equivalent to the nonlinear condition 

was developed. By the LMI conditions, the controller 

and observer can be obtained simultaneously. Thus 

remove the drawback of two-step procedure in [8]. In 

our paper, a new nonlinear condition which is more 

relaxed than that of [8] is proposed. An LMI condition 

which is equivalent to our nonlinear condition is also 

given. The present LMI condition is more relaxed than 

those of [7] and [8]. Such improvement on 

relaxization makes possible for finding a controller 

achieving a better H∞ performance and allowing a 

larger size of uncertainties for robust control. 

II. Preliminaries 
Consider a nonlinear system that is represented by the 
following T-S fuzzy model： 

Plant Rule i :If θ1(t) is Mi1 and … and θs(t) is Mis 
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In (1), Mij (i = 1,2,…,r, j = 1,2,…,s) is the fuzzy set 

and r is the number of If-Then rules. θi(t), i=1,2,…,s 

are the premise variables which are measurable, 

 is the state vector,  is the exogenous 
disturbance,  is the controlled output,  

is the output vector, and  is the control input 

vector. Assume   
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For simplicity, ( )( )ih tθ  is replaced by  in the 

sequel.  
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Definitions: If w(t) = 0, the system (2) is termed to be 

“disturbance-free”. A disturbance-free fuzzy system is 
said to be quadratically stable if there exists a  

such that , where . 

If u(t) = 0, the system 

0P >

( )t Px( ) 0( )V x t < ( ) ( )( ) TV xx t =

0

t

(2) is termed to be “unforced”. 
Given a prescribed scalar γ > , if for any 

( )2( )w t L 0, , wm∈ ∞  (the set of square integrable 

functions), the response z(t) of the unforced fuzzy 

system (2), under zero initial condition, satisfies 
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then the fuzzy system (2) is said to be stable with 
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Consider the observer model same as in [7,8]  
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Assume the fuzzy controller is 

                          (5) 

Kwhere  and  are the controller gains and 

observer gains to be determined. Denote the 
estimation errors as 
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The objectives of the observer-based H∞ control are  

(i) The disturbance-free fuzzy system (6) is 

quadratically stable. 

(ii) The unforced fuzzy system (6) is stable 
with γ -disturbance attenuation. 

The following is the main results of [8]. It is stated 

here for the ease of relaxization comparison with our 

result from a theoretic viewpoint in next section. 
Lemma 1 [8] : For a given real number 0γ > ,  the 
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Note that the inequalities (7)-(9) are actually nonlinear 
with respect to iK  and . In order to solve iL iK  

and  with LMI algorithms, following the idea of 

[3,9], the paper [8] presented another sufficient 

condition and proposed a two-step procedure to solve 

the condition. The drawback of two-step procedure 

was overcome latterly by [7], in which a set of LMI 
conditions were developed and was proved to be 

equivalent to the nonlinear matrix conditions of [7]. In 
next section, a new nonlinear condition that is more 

relaxed than Lemma 1 is proposed. A new LMI 

condition necessary and sufficient to our developed 

nonlinear condition is also derived for obtaining the 

gains in one step. Actually, we will show the present 

result is more relaxed than those of [8] and [7] and 
includes them as special cases. 

iL

III. Main results 
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In what follows, we are going to show that Lemma 2 

is more relaxed than Lemma 1 and includes it as a 

special case. 

Theorem 1: The set of solutions to (7)-(9) in Lemma 
1 is a subset of solutions to (10)-(13) in Lemma 2. 

Remark 1: Since Lemma 2 is more relaxed than 
Lemma 1, the controller set obtained by Lemma 2 is 

lager than that of Lemma 1. This improvement makes 

possible for finding a controller achieving a better H∞ 

control performance and allowing a bigger size of 

uncertainties for robust control. This will be 

demonstrated in the numerical example section. 
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In this case, the controller gains and the observer gains 
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Finally, we compare the conservativeness of Theorem 

2 with [7] and [8]. For the above numerical example, 

the maximal interval of the positive parameter a such 

that the conditions are feasible is given Table 1. Our 

result allows the largest interval for three different 

cases. 

Table 1. the maximal allowable interval of a by using 

different conditions 

cases Theorem 2 [7] [8] 

0.2γ = , 
 0.01b =

0 7132042a< ≤  0 1931000a< ≤  0 1421000a< ≤

0.2γ =
/ 2b
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π=  0 1527433a< ≤  0 1126768a< ≤  0 935466a< ≤

0.1γ = , 
 2b =

0 2200000a< ≤  0 430414a< ≤  0 226590a< ≤

Since our condition is the most relaxed, the designed 

controller may achieve a better control H∞ 

performance which is demonstrated as follows. 

Table 2 the comparison of H∞ control performance by 

using different design approaches 

 Theorem 2 [7] [8] 

a=4358774, b=0.01 γ =0.198 γ =0.4 γ =1.5 

a=1527433,  / 2b π= γ =0.2 γ =1.87 γ =3.2 

a=610558,  b=2 γ =0.06 γ =0.2 γ =1.2 

Fig. 2 show the state response of the closed-loop fuzzy 

system when the initial condition is  

and w(t) is a disturbance given by 

[ ]0.7 0.5 0.1 T
−

( )0.5( ) 0.5 sin 5tw t e tπ−= . 

The solid line denotes the state variable, the dotted 

line denotes the observer state.  
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Fig. 2 Responses of the state and its estimation 

 

 



V. Conclusions 
In this paper, a new nonlinear matrix inequality 

condition for the existence observer-based H∞ control 

of T-S fuzzy systems is developed. The condition is 

shown to be more relaxed than [8] and include it as a 

special case. For solving the observer and the 

controller via LMI algorithms by one step, a set of 

LMI conditions necessary and sufficient to the new 

developed nonlinear condition is also derived. Our 

LMI condition is more relaxed than that of [7] since 

the result of [7] is only equivalent to the nonlinear 

condition of [8]. 
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