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Abstract—In this paper, active control of space manipulator 
with flexible-link and flexible-joint was investigated based on the 
singular perturbation method. Owing to the combined effects of 
the link and joint flexibilities, the dynamics model of this type of 
manipulator became more complex and led to a series of unsolved 
control system. To simplify the design of control system, singular 
perturbation method was exploited to obtain the two-time-scale 
simpler subsystem and composite control methods were designed 
to realize precise trajectory tracking and vibration suppression 
simultaneously of one-link and one-joint flexible manipulator 
with payload. In the slow subsystem, a fuzzy sliding-mode 
controller was designed to decrease the influences of external 
disturbance and parameters uncertainties, the system stability 
and asymptotic trajectory tracking performance were guaranteed 
by Lyapunov function; while a linear-quadratic controller was 
designed to suppress the vibration in the fast subsystem. The 
performances of proposed controller were demonstrated by the 
simulation results.  

Keywords—Space Flexible Manipulator, Flexible-
joint/Flexible-link, singular perturbation, sliding-mode control,  
fuzzy system. 

I.  INTRODUCTION  
Over the past decades, the modeling and control of space 

flexible manipulators have been the challenging research 
topics. As the development of space technology, the research of 
space flexible manipulator has made a significant progress[1]. 
However, the characters of large-scale and lightweight of space 
manipulator link and the needs for a high speed, high payload 
to weight ratio for these flexible manipulators pose control 
system lots of the challenging problems. Furthermore, space 
manipulator actuators are usually driven by harmonic reducer 
which brings joint flexibility and lead to a series of nonlinear 
problems such as friction, hysteresis, backlash and 
resonances[2]. Thus, realizing precise trajectory tracking and 
vibration suppression of link and joint simultaneously by joint 
actuators brings great challenge for the design of control 
system.  

There have been quite a number of studies dealing with 
stabilization and tracking control of flexible manipulators. In 
Ref[3], a dynamic state feedback controller is used to achieve 
robust regulation of the rigid modes as well as suppression of 
elastic vibrations. However, unknown disturbances included 
high-frequency modes generated by the nonlinearities of the 

plant and large parameter uncertainties arising from tip mass 
changes have greatly degraded the performances of control. In 
Ref.[4], an adaptive controller for the vibration suppression is 
addressed to guarantee the stability of the system in the 
presence of model uncertainty. In Ref.[3], a nonlinear adaptive 
and robust controllers were designed for two-link flexible arm. 
In Ref.[5], the H∞  controller was designed for the purpose of 
incorporating robustness and also for attenuating the 
disturbances, and the experimental results suggested that the 
control scheme was more robust to uncertainties. In Ref.[6], a 
composite controller is designed based on singular perturbation 
model for one-link flexible manipulators, where a new adaptive 
sliding mode controller with robust tracking performance is 
designed for the slow subsystem, the adaptive algorithm is used 
to estimate the unknown perturbation part of system 
parameters, the proposed controller not only can attenuate 
effectively the effect of system uncertainties on tracking error, 
but also can suppress tip vibration. At present, intelligent 
control methods are used in the control of flexible manipulator 
more and more. In Ref.[7], a fuzzy composed controller with a 
nonlinear compensatory and a PD controller is proposed based 
on the dynamic model of a planar two-link flexible manipulator 
and the control method is verified by computer simulation. In 
Ref.[8], a fuzzy logic controller in the feedback configuration is 
proposed, and an efficient dynamic recurrent neural network in 
the feedforward configuration is developed, ang get remarkable 
performance for the control of two-link flexible manipulator 
system. 

However, most research in these literatures have only 
concentrated on the control of flexible link and omitted the 
flexibility of joint. The flexibility of joint brings additory 
degree of freedom and makes the dynamic model more 
complicated. In Ref.[9], a dynamic modeling of an N-flexible-
link and N-flexible-joint robot was reported, each flexible joint 
is modeled as a linearly elastic torsional spring and the method 
of assumed modes was adopted to describe the deformation of 
the link. Reference [10] take harmonic as a linearly rotational 
spring model and set up the dynamics model of flexible-
joint/flexible-link, then a decoupled output feedback sliding 
mode control is used to servo the flexible manipulator and 
suppress residual vibrations. In harmonic driven actuator, the 
nonlinearities problems including friction, backlash and 
hysteresis always exist in practice. In Ref.[11], three-layer 
neural network is used to approximate the unknown plant 



 

function, then design a backstepping and variable structure 
controller to provide robustness to all the uncertainties.  

In this paper, the singular perturbation technique is used to 
reduce the full order dynamic model of the flexible-link and 
flexible-joint manipulator into two reduced order systems 
including one slow rigid subsystem and one fast subsystem. 
The joint angular was taken as the slow state variables and the 
generalized flexible coordinates and the joint flexibility were 
viewed as the fast subsystem variables. Then, composite 
control method was adopted to realize precise trajectory 
tracking and vibration suppression simultaneously for this two-
time-scale subsystem. A fuzzy sliding mode controller is 
adopted to decrease the influences of external disturbance and 
parameters uncertainties in the slow subsystem for the 
existence of high frequency mode and the model uncertainty, 
the system stability and asymptotic convergence are guaranteed 
by Lyapunov function; while a linear-quadratic controller is 
designed to suppress the vibration in the fast subsystem. The 
performances of proposed controller are demonstrated by the 
simulation results. 

This paper is organized as follow: The dynamics of 
flexible-joint/flexible-link manipulator is built in Section Ⅱ. 
Then, singular perturbation method is realized in Section Ⅲ. 
Fuzzy sliding-mode control for slow subsystem and LQR 
control for fast subsystem are realized in Section Ⅳ . 
Simulation results and analysis are presented in Section Ⅴ. 
Finally, conclusions are driven in Section VI. 

II. DYNAMICS OF FLEXIBLE MANIPULATOR 
In this paper, an experimental flexible manipulator setup 

was fabricated and its schematic diagram was shown as Fig.1, 
The flexible joint is driven by Yaskawa SGMAH-02A AC 
servo motor and a harmonic reduction, an aluminum beam 
clamped to the output shaft of harmonic. Strain gauge sensors 
embedded on the boot of beam and an acceleration meter 
attached on tip of beam were used to measure vibration of 
beam. A shaft encoder of motor is used to measure the angular 
speed of rotation of motor and another MicroE rotary encoder 
is used to measure the rotate angle of joint output shaft. 
Trajectory tracking and vibration suppression of flexible 
manipulator are realized simultaneously by joint actuator. The 
dimensions and the mechanical properties of beam are given in 
Table 1. 

      
Figure 1.  Schematic diagram of Flexible Manipulator 

TABLE I.  MECHANICAL PROPERTIES OF MANIPULATOR 

Properties Values 
Length of beam, L 0.7 m 

Thickness, h 0.004 m 
Width, b 0.03 m 

Linear density, ρ 2.7×10
3
 Kg/m

3 
Modulus of elasticity, EI 11.36 N·m2 

Tip mass, mp 0.2 Kg 
Motor inertia, JM 0.106×10

-4
Kg·m

2 
Joint  inertia, JJ 0.42×10

-4
Kg·m

2 
Stiffness of harmonic, K 7.5×10

3
 Nm/rad 

Reduction ratio of harmonic, N 100:1 
 

The flexible manipulator is assumed to operate on the 
horizontal plane so that the effect of gravity is ignored, and the 
flexible beam is modeled as a spring-pinned beam attached to 
the rotating hub driven by harmonic. The beam deflection 
satisfies the Euler-Bernoulli beam theory and the assumed 
modes method can be used. The deflection of a point located at 
a distance x along the beam can be expressed as 

1
( , ) ( ) ( )

n

i i
i

u x t x q tφ
=

=∑ i                                         (1) 

Where ( , )u x t  is the deflection, ( )i xφ  is the mode shape 
function, ( )iq t  is the time varying modal coordinate, n  is the 
number of finite modes.  

In Fig.1, r denotes the position vector of a point x on the 
manipulator with respect to the Cartesian coordinate and can 
be written as 

( , ) { cos sin , sin cos }J J J Jr x t x u x uθ θ θ θ= − +              (2) 

Where Jθ  is the output angle of joint and we can get 

       ( , ) { sin cos , cos sin }J J J Jr x t x u x uθ θ θ θ= − − −�             (3) 

The total kinetic energy of the flexible manipulator system 
with the motion of motor, joint and link associated tip mass 
can be written as   
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The potential energy due to the elastic deflection of link 
and the joint spring can be written as 
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The boundary conditions of spring-pinned constraint and 
clamped-mass are used to get the mode shapes. Then, the 
dynamic equations of the system can be derived using 
Lagrange equation. The dynamic equation with joint flexibility 
and link flexibility can be expressed as[12] 
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Where the inertia matrix M(θ,q) is 
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Where 3 3JI J ALρ= + , M
JN

θδ θ= − , the stiffness matrix 

wK is written as 1 2( , , )ndiag k k k=wK " ,and 2
i ik ω= . 
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In order to explain in brief, the dynamic equation can be 
rewritten as 
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III. SINGULAR PERTURBATION MODEL 
The dynamic model can be transformed into a two-time-

scale singular perturbation model as described below. Define a 
matrix H . 
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Form the equation (6), we can get 
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11 12( , ) ( , )J J wH q K H q K qθ δ θ+ ⋅ − ⋅                         (9) 

       

21 1 22 2( , ) ( , , , ) ( , ) ( , , , )J J J J J Jq H q g q q H q g q qθ θ θ θ θ θ= − −� ��� � �  

        21 22( , ) ( , )J J wH q K H q K qθ δ θ+ ⋅ − ⋅                      (10) 
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Define a common scale factor ck  as the minimum of all 
the stiffness, 1 2min( , , , , )c nk K k k k= " [13], define 

1/ ckµ = ,the joint torsional spring stiffness K and flexible 
beam stiffness wK  can be scaled by ck , so that 
K Kµ= ⋅� , w wK Kµ= ⋅� , and define q ck qτ = ⋅ , ckδτ δ= ⋅ , and 
substitute qq µ τ= ⋅ , δδ µ τ= ⋅  into the equation (9),(10), we 
can get 

11 1( , ) ( , , , )J q J J q qH gθ θ µτ θ θ µτ µτ= −�� � �  

12 2( , ) ( , , , )J q J J q qH gθ µτ θ θ µτ µτ− � �  

12 11( , ) ( , )J q w q J qH K H K δθ µτ τ θ µτ τ− +� �                  (12) 

21 1( , ) ( , , , )q J q J J q qH gµτ θ µτ θ θ µτ µτ= − ��� �  
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       22 21( , ) ( , )J q w q J qH K H K δθ µτ τ θ µτ τ− +� �                    (13) 
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On setting 0µ → ， we can get the rigid motion 
equation form (13), (14), when 0µ = , we can get 

1 2 1
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And note that: 
1 1
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The slow subsystem in the state-space form can be written 
as 

1 2
11 ( ,0) ( )J J M M JM N N Jθ θ τ θ−= ⋅ −�� ��                                  (17) 

This can be reduced as 

2 1
11( )J M MM N J Nθ τ−= + ⋅��                                              (18) 

Where superscript “¯” indicate the value of the variable at 
0µ = . In order to get the state-space equation, the following 

state variables are defined[14]: 

1 Jx θ= , 2 Jx θ= � , 1 qz τ= , 2 qz ετ= � , 1y δτ= , 2y δετ= � ,  

ε µ= . 

Based on the above state variables, the state-space equation 
of singular perturbation modal can be expressed as: 
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On setting 0ε =  in the equation (18), we can get the state-
space equation of the slow subsystem 

1 2
2 1

2 11( )M M

x x

x M N J Nτ−

 =


= + ⋅

� �
�                                           (22) 

In order to get the fast subsystem, a fast time scale 
/ft t ε=  is introduced. At the boundary 

layer 0ε = , 1 / 0fdx dt = , 2 / 0fdx dt = , 1 1 2( , ,0,0) 0g x x = , 

2 1 2( , ,0,0) 0g x x = , So the slow variables can be viewed as 
constant, Hence in the fast time scale, define new fast 
variables as[15] 

1 1q qzη τ= − , 2 2q zη = , 1 1yδ δη τ= − , 2 2yδη =  

Based on the above fast time scale variables, the fast 
subsystem state-space equation of singular perturbation modal 
can be determined as 
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On setting f M Mτ τ τ= −  as the fast input torque variable, 
equation (21) can be rewritten in brief 

f f f f fx = A x + B τ�                                                 (24) 
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IV. CONTROL SYSTEM DESIGN FOR MANIPULATOR  
Based on two time-scale decomposition, the design of 

controller of the flexible manipulator can be decomposed into 
the control of the angle tracking of the slow subsystem and the 
vibration suppressing of fast subsystem.  

Because of the unmodelled high frequency modes and the 
model uncertainty in the slow subsystem, the good 
performances can not always be guaranteed. The variable 
structure control strategy using the sliding-mode has very 
strong robustness to extern disturbances and parameter 
perturbations, and in order to make certain the upper bound of 
uncertainties in sliding mode control system, a fuzzy sliding-
mode control schemes was designed to estimate the 
uncertainties upper bound by judging the sliding surface. 

A. Fuzzy Sliding-mode Control for Slow Subsystem  
In order to achieve excellent performance of position 

trajectory tracking with the unknown parameters and external 
disturbances, fuzzy sliding mode controller is designed. 
Define J J Je θ θ ∗= − and J J Je θ θ ∗= −� �� , Jθ ∗  and Jθ ∗� are desired joint 
angle and joint velocity, and assume that  Jθ ∗  , Jθ ∗�  are 
continuous and bounded, the sliding-mode surface is defined 
as 

 J Js e eλ= +�                                                      (25) 

Where λ  is positive constant and 0λ > . The controller is 
designed to drive dynamic variables to the manifold 0s =  and 
constrain them there, and the following sliding-mode control 
law is introduced 

( ) ( )2
11

1 ( ) sgn( )M M J J JM N J s
N

τ θ λ θ θ ρ∗ ∗= + − − − ��� � �        (26) 

Where the estimated gain Eρ ξ= +� , E is the assumed 
uncertainties upper bound, and ξ  is a positive constant. 
Define Lyapunov function as 

                 21
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                  2 1
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Substitute control law (26) into (28), we can get 

           ( )sgn( ) ( )V s s E t sρ ξ= − + ≤ −��                           (29) 

In order to suppress the effect of chattering in practical 
system, a fuzzy control system is designed to estimate the upper 
bound of the uncertainties in sliding mode control. Proposed 
fuzzy system takes s  and s�  as input variable and ρ∆  is the 
output variable, which is described in Fig.2. Define ρ�  as the 
fuzzy estimation value of upper bound of uncertainties, 
then, ρ ρ ρ= + ∆� . 

s�
ρ∆

+

−

+

+
ρ̂

Jθ∗
Jθ

Jθ

    

Figure 2.   fuzzy sliding-mode control system 

The linguistic input variable and output variable are 
defined as follow 

{ , , };s P Z N= { , , };s P Z N=�  
{ , , , , , , }NB NM NS Z PS PM PBρ∆ = ; 

Where: 



 

N=negative, Z=zero, P=positive
NB=negative big, NM=negative medium,  NS=negative small

 PS=positive small, PM=positive medium, PB=positive big
The universe of discourse of s  is assigned as [-2, 2], s�  is [-4, 4], 
output ρ∆  is [-2, 2]. The triangular type input and output 
membership functions are used and described in Fig.3. 

 

s�
 

ρ∆

  
Figure 3.  Membership functions of s , s�  and ρ∆  

In sliding-mode control system, the reaching condition of 
sliding surface is 0ss <� , if ss�  is positive, ρ should be enlarged 
to overcome the effectiveness of uncertainties and drive the 
system states to the surface as soon as possible; If ss� is negative, 
the reaching condition is satisfied, in order to reduce the 
magnitude of chattering besides of sliding surface, ρ can be 
decreased. Therefore, the switch gain can be described as follows: 

R1: IF s  is P  and s�  is P  THEN ρ∆  is NB ; 

R2: IF s  is P  and s�  is Z  THEN ρ∆  is NM ; 

R3: IF s  is P  and s�  is N  THEN ρ∆  is NS ; 

R4: IF s  is Z  and s�  is P  THEN ρ∆  is NS ; 

R5: IF s  is Z  and s�  is Z  THEN ρ∆  is ZE ; 

R6: IF s  is Z  and s�  is N  THEN ρ∆  is PS ; 

R7: IF s  is N  and s�  is P  THEN ρ∆  is PS ; 

R8: IF s  is N  and s�  is Z  THEN ρ∆  is PM ; 

R9: IF s  is N  and s�  is N  THEN ρ∆  is PB ; 

The fuzzy output ρ∆  can be calculated by the centre of area 
defuzzy method, described as follow 

          
9 9

1 1
( ) / ( )i

i i
x i iρ µ µ

= =
∆ =∑ ∑                                           (25) 

Where: ρ∆ is output of fuzzy system, ( )iµ  is the fuzzy 
membership function, ix is the centre of the membership 
function. 

B. LQR Control for Fast Subsystem  
In the fast subsystem, ( fA , fB ) is found to be completely 

state controllable, therefore, a fast state feedback control can 
be designed[6].  

1( ) ( )T
f opt f f f fK x t R B Px tτ −= − = −                                  (26) 

Where the feedback gains optK  can be obtained through an 
LQR approach, the cost function given below 

0

1 ( ) ( ) ( ) ( )
2

T T
f f f f fJ x t Qx t u t Ru t dt

∞
 = + ∫                      (27) 

V.  SIMULATION RESULTS AND ANALYSIS 

The proposed controller was used to a manipulator with 
one flexible-joint and one flexible-link. Only two assumed 
modes is considered in the vibration suppress of flexible-link, 
and the mechanical properties of manipulator are described in 
table 1. 

Presume the desired position trajectory 2sin(2 )J Ftθ π∗ = , 
1.0F Hz= , and 70λ = , 2ρ = , unknown uncertainties 

( ) 20sin( )E t t= . The simulations are realized by sliding-mode 
method and fuzzy sliding-mode method, results of period 
sinusoidal trajectory tracking and tracking errors are depicted 
in Fig.4.a, b, c. From the simulated results, we can find that 
the sliding-mode method can track sinusoidal trajectory 
precisely with maximum 0.05D position error at the influence 
of uncertainties. Therefore, sliding-mode control system can 
track period sinusoidal precisely since the bound of lumped 
uncertainties is large enough to get rid of all kinds of 
influences of uncertainties. The result of fuzzy sliding-mode 
for trajectory tracking show that it degenerate the maximum 
position error to 0.015D , and the chattering of control output 
torque is reduced, which is described in Fig.5. 

In the fast subsystem, selecting LQR matrix 
(100,10,10,10)Q =  and 100fR = , then the gains 

( )0.7089, 0.418,6.3735,0.3369optK = − − . The first assumed 
modes are described in Fig.6. 
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Figure 4.  simulated response of sinusoidal tracking 

a. tracking response of trajectory of sliding-mode controller; 
b. tracking trajectory of fuzzy sliding-mode controller; 
c. position errors for two controller. 
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Figure 5.  Control torque of fuzzy sliding-mode system 
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V. VI. CONCLUSION 
The dynamic equation of space manipulator with one 

flexible-joint and one flexible-link has been derived by Euler-
Lagrange principle and the assumed modes method. A 
composite controller is used to transfer complex one flexible-
joint and one flexible-link manipulator into a slow-subsystem 
and a fast subsystem by singular perturbation approach. To 
achieve excellent performance of position trajectory tracking 
with the unknown parameters and external disturbances, a kind 
of sliding mode controller is designed and fuzzy system is used 
to suppress the affection of chattering; while a linear-quadratic 
controller was designed to suppress the vibration of flexible-
link in the fast subsystem. The simulation results demonstrated 
that the proposed composite controller can track position 
trajectory precisely and suppress vibration of flexible-link 
simultaneously using flexible-joint actuators. 
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